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EXPLICIT FORMULAS FOR THE ASSOCIATED 
JACOBI POLYNOMIALS AND SOME APPLICATIONS 

JET WIMP 

1. Introduction and notation. In this paper we determine closed-form 
expressions for the associated Jacobi polynomials, i.e., the polynomials 
satisfying the recurrence relation for Jacobi polynomials with n replaced 
by n + c, for arbitrary real c ^ 0. One expression allows us to give in 
closed form the [n — \/n] Padé approximant for what is essentially Gauss' 
continued fraction, thus completing the theory of explicit representations 
of main diagonal and off-diagonal Padé approximants to the ratio of two 
Gaussian hypergeometric functions and their confluent forms, an effort 
begun in [2] and [19]. (We actually give only the [n — \/n] Padé element, 
although other cases are easily constructed, see [19] for details.) 

We also determine the weight function for the polynomials in certain 
cases where there are no discrete point masses. Concerning a weight 
function for these polynomials, so many writers have obtained so many 
partial results that our formula should be considered an epitome rather 
than a real discovery, see the discussion in Section 3. (Nevai [12] has, for 
all practical purposes, solved the problem when c is an integer.) Finally we 
construct a generating function for the polynomials using a fairly deep 
result of [9]. Even special cases of this formula seem to be new. 

We employ the notation of [8] for our special functions, except in a few 
cases, where ad hoc notation is defined when it is first used. pF Q\ x) 
denotes the generalized hypergeometric function with p numerator 
parameters, a]9 a2, . . . , a , q denominator parameters, bx, b2, . . . , b , and 
argument x. When p = 2 and q = 1, we drop the subscripts (Gauss' 
function). F is meromorphic in its parameters. It is our general policy not 
to give conditions on the parameters to make the function defined because 
obvious limiting processes can always be invoked to obtain formulas valid 
in these cases. For instance, formula (28) contains T(y + c), formula (33) 
the term 1//?. We do not require, in the first instance, that y + c ^ 0, — 1, 
— 2, nor in the second ji ¥* 0. This convention keeps our formulas from 
being buried under an avalanche of irrelevant restrictions. 

Although we generally assume all parameters to be real, many of our 
formulas, particularly the purely algebraic ones, will be valid for the 
parameters complex. 
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984 JET WIMP 

2. Background and basic formulas. Let {pn(x) } be a system of 
orthogonal polynomials satisfying the recurrence 

Pn + \ = (M*)* + B{n))pn - C(n)pn_u 

(1) n = 0, 1, 2, . . . , 

/>_, = 0',px = 1. 

If ^4(r), 5 ( 0 , C(0 are defined for all / > 0, then for any fixed real c ^ 0 
we may define the associated polynomials pn(x, c) by means of the 
recurrence 

Pn + \ = (A(n + c)x + B(n + c))Pn - c(n + <*)/>,,-1, 
(2) n = 0, 1, 2, . . . , 

/>_! = 0;/?! = 1. 

In general, these polynomials will also be orthogonal with respect to 
some positive measure on the real line but, at least in the cases of the 
classical orthogonal polynomials, one should expect the measure to be 
much more exotic than the measure for the original polynomials pn(x). 

For any given system of orthogonal polynomials, it is usually of great 
interest to determine explicit formulas for the associated polynomials, i.e., 
some reasonably simple expression for the coefficients ^(c) in the 
expression 

n 

(3) Pn(x\ c) = 2 \ink{c)x\ n = 0, 1, 2, . . . . 

There are several reasons for this. First, the rational function 

(4) pn-x(x\ c + Y)/pn(x\ c), 

is the [n — \/n] Padé approximant for a significant function (the Hilbert 
transform of the measure). Askey and Wimp [1] did this for the associated 
Laguerre polynomials L"(x; c), finding that 

( ) ""kiC) ~ n!(c + l)k(c + a+l)k 

/ k - n, c, c + a \ 
3 2\c -h a + k + 1 , c 4- k + 1 ' / 

and this enabled them to construct a closed-form expression for the 
[n — \/n] Padé approximant to the function 

(6) *(a + 1, b\ x)/*(a, b\ x). 

(These Padé approximants are, of course, just truncated continued 
fractions, the continued fraction for (6) having been known for a long 
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time, see [16, p. 350].) In [19] the present author discovered the associated 
polynomials necessary to construct the [n — \/n] Padé approximant for 

(7) <fr'(a; b\ x)/<fr(a; b; x). 

The work in the present paper will result in a formula for the [n — \/n] 
approximant to Gauss' continued fraction. 

Second and third reasons for the advantages of having an explicit 
formula available forpjx; c) are that often it helps to analyze the measure 
for the polynomials (see how Askey and Wimp, [2], used it to do this) and 
to allow interesting limiting cases to be constructed. 

To motivate the derivation of our main formula, we introduce the 
moments 

/*oo 

(8) m,(c):= } ^Sdtft; c), 

where dfx is the measure for ptl(x\ c). If JU,?A(C) is known for any c, and if 
mk(c) is also known, fink(c + 1) may be obtained as follows. The formula 
[8, v. 2, p. 162 (6) ] implies 

,9) „„<« c + 1) - — ! — ZJ-^'''C) - * " " ' ''Mr, C. 
A(c)m0(c) J °° x — t 

The polynomials defined by the expression above are the traditional 
"associated" polynomials, usually written qu + x(x). But they satisfy the 
same recurrence as pn(x; c) except that q0 = 0, qx == 1. Thus, obviously, 

?„(*) = Pn-\(x> c + *)• 

Putting the formula for pn + \ into the integrand and expanding 
(xk - tk)/(x - t) gives 

1 " 
(10) iink(c + 1) = 21 iin + Xr+x(c)mr__k(c). 

A(c)m0(c) r=k 

It is not feasible to iterate this equation to determine [ink(c + j) from 
^nk{c) since the necessary moments mk(c + s), s = 0, 1, 2, . . . , j — 1, 
will not be known. But, as the reader shall see, the formula can provide 
useful insights. (It is also possible to derive a recurrence which expresses 
Huk(c H- 2) directly in terms of other coefficients, 

(11) pnk(c + 2) = C(c + l r 1 

X { * ( ' K + u ( c + 1) + A(c)^1 + Uk_l(c + 1) - /iw + 2,A.(c)}. 

Though this can be iterated, it does not appear to be very useful.) 
Now the associated Jacobi polynomials P;, (x; c) are the polynomials 

satisfying the recurrence 
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2(n 4- c 4- l)(n + c + y)(2w 4- 2c + y - l)/?w + 1 

= (2n 4- 2c 4- y)[ (2« + 2c + y - 1)(2« 4- 2c 4- y 4- l)x 

(12) + (y - l)(y — 2j8 — 1) ]/>„ - 2(/i + c + y - fi - 1) 

X (n + c + 0)(2/i 4- 2c + y 4- 1 ) ^ . , , 

« = 0, 1, 2, . . . , y = a + /? 4- l,/?_, = 0;/?() = 1. 

Rather than work with these polynomials, we shall use instead the 
shifted polynomials 

(13) R{
n
a^(x; c) = P(^\2x - 1; c). 

Note for c = 1 the polynomials are a constant multiple of the shifted 
"associated" polynomials q\j(2x — 1), 

(14) q\^\x) := j\x (t - x)-\l - tf(\ + tf[P^\t) 

- P^\x)]dt 

i.e., 

(15) fâft(2x - 1) = (y + l )2*- '* (a + 1, /? + 1 ) ^ W 

Using (13) we can write our expansions in powers of x rather than 
(x 4- l)/2, a space saver. For these polynomials (see [8, v. 2, p. 170 
(16)]) . 

"A «!£!(£ 4- 1)A 

and, of course, the recurrence satisfied is the above with JC replaced by 
2x - 1. 

Also 

(17) mA(0) = J Q (1 - x)ax^+kdx = fi(a 4- 1, yS 4- A: 4- 1). 

Applying the formula (10) gives 

(18) finkil) = (-my + 2)l,W + 2)„(-n)k(n + y + 2)k 

"k (7 + l)„«!(2),(i8 + 2), 

v (k-n, n + y + k + 2, /? + 1, 1 \ 
X 4 M P + k + 27k + 2,y + \ '' l ) ' 

y = a + P + 1. 

A comparison of this with the Askey-Wimp formula (5) and for
mula (2.12) of [19] which is essentially the case of the associated 
Bessel polynomials strongly implies that a similar formula should 
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hold for polynomial (13). In fact, an abundance of experimentation led us 
to the expression below, which turns out to be 

THEOREM 1. 

(19) R^\X; c) = (-my + 2cUP + c+VX, 
(J + c)nn\ 

x js {-n\{n + y + 2c\xk 

k=o (c + 1),06 + c + 1), 

p( k — ft, ft + y + /c + 2c, /? + c, c , \ 
4 3\/2 + A: + c + 1, A: + c + 1, y 4- 2c - 1' / ' 

Proof. The proof is not a simple one, and depends on some substantial 
results, including a transformation theorem for 4F3's of unit argument. 

First we construct an explicit Wronskian-type formula for RfV 

Let 

n m , lV ,r(n + j8 + c + 1) J - , 2 - c, ft + y + c \ 
(20 ) W" : = ( ~ 1 } r(ft + c + i ) F\ /> + i ; 4 

Then the usual power series arguments (Sister Celine's technique, [14, 
Chapter 14] ) show un satisfies the same recurrence as Rn. The function 

( - l ) 'T( t t + y + c - B) 
(21) v„ : = 

" r(/i + y + c) 
J—n — B — c,n + y + c—B \ 

\ \-B ;A7 XF[ l-fi 

can be shown to satisfy the recurrence also by the substitutions n —> — ft, 
/} —» — /?, c—> fi — c — y, y ^ y — 2/? and the identification v̂  = /?_w. 
Note that 

(22) v * : = x ~ \ 

satisfies the same second order linear differential equation as u}V namely 

(23) x(l - x)y» + [08 + 1) - (y + l)x]/ 

4- (ft + c)(ft + y + c)y = 0, 

(see the tabulation [8, v. 1, p. 105 (17) and p. 56 (1)]) . Elementary 
arguments show the Wronskian of any two solutions^j,^2 of this equation 
has the form 

(24) W(yuy2) = Kx~fi-\l - xf~\ 

a result which will be of use later. 
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By the theory of linear difference equations, an appropriate linear 
combination of un, vn must give Rn. That combination is easily seen to 
be 

(25) J A 

Surprisingly, A turns out to be simple. 

LEMMA 1. 

(26) F(Û + l b ~ *; x) = - — L — { J C ( 1 - x)(a + 1 - 6 ) 
V e / a(c — b) \ 

X — F p 6 ; x ) + a [ - jc(a + 1 - 6) 
dx \ c ' 

(*»}• + (c - Z.) ]F 

Proof. This follows by application of the differential-difference relations 
[8, v. 1, p. 102 (21), (23) ] and the differential equation (23). 

By using this lemma, A may be expressed in terms of W(un, v*) and the 
constant K in the formula (24) may be found by expanding out in a few 
powers of x. The final result is 

(1 - xf+l~y/3T(J3 + c)(y + 2e - l)T(y + c - 0 - 1) 
(27) A = 

T(c + l)T(y + c) 

We now use a Kummer transformation [8, v. 1, p. 105 (2) ] on v_, and vn in 
the numerator to cancel out the factor of (1 — J C ) ^ + 1 ~ Y arising in the 
denominator. We thus arrive at the representation 

(28) * „ = ( - iHXc+DiXr + o 
pr(/3 + c)(y + 2c - l)T(y + c - 0 - 1) 

x f T(y + c - j8 - l)r(/i + j8 + c + 1) / ç 2 - y - c \ 

X F\ 

T(y + c - l)T(w + c + l ) 

/ - / i - c, n + y + c. \ _ r(j8 + c) T(n + y + c - /?) 

v 0 + 1 ' / r(c) r(« + c + y) 

(An irony of working with such formulas is that it is far from obvious that 
the expression on the right is a polynomial in x.) 
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On each of the the last two F9s above we again use a Kummer 
transformation and then take Cauchy products of power series by means 
of the formula [8, v. 1, p. 187 (14) ]. The resulting series involves gamma 
functions and the two hypergeometric functions 

(29) 

/ / c, 2 - y - c9 -k9 -P - k , \ 
| 4 3V1 - j8,w 4 c 4 1 - k, 1 - n - y - c - k' ) 

( /3 + c,l3 + 2-y-c9-k,p-k . \ 
4 3 \ £ +\,n + c + \ + p - k , p + \ - n - y - c - k ' J 

where k is the summation variable. 
We will submit each of these two quantities to a transformation which is 

an analog of a well-known transformation of a 3F2 with unit argument, see 
[3, p. 15(2)]. 

LEMMA 2. 

where 

(3i) a, = —-— x ~— n —-j—- n ^ ^ — - . 
7 IX1 4- a: - ax) r=\ T(br -a.) r=2 T(ar) 

(The * indicates the parameter corresponding to 1 is to be deleted.) 

Proof. The proof follows Bailey's proof for the case p = 2 exactly. The 
function 

. . T(a] + . ? ) . . . r(ûL + 1 4 s) 
(32) e±msT(-s)— - ^ 

r ( i , 4 s) . . . T(bp 4 s) 
is integrated along an appropriate contour. Both sides of the resulting 
equality are multiplied by e±ma and the two equations subtracted. This 
gives the lemma. 

In this lemma we let p = 2. The result we apply to the previous series 
and the two 4F3's (29), choosing first 

(aY, a2, a3, a4) = ( — k, —ft — k, c, 2 — y — c) 

and then 

(al9 a2, a3, a4) = (13 — k9 /3 4 c, —k9 13 4 2 - y - c). 

We are left with six 4̂ 3 s. Three of these are identically zero, two cancel, 
and the remaining one is that displayed in the theorem. This completes the 
proof. 
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Despite the eye appeal of (19), the respresentation (28) is more useful. It 
reveals, for instance, that 

(33) 4 ^ ( 0 ; c) (~l)" /He + IXï + c - 1) I n 
c - 1 ) 1 

X 

y6(y + 2c - 1 ) I T(0 + c) 

T(n + jS + c + 1) cT(y + c)T(n + y + c - 0) 

(34) = 

T(n + c + 1) T(y + c - /3 - \)T(n + y + c) . 

( - 1 ) " (T(c + \)(y + c - l)/i* 

AY + c - i) I ros + c) 
cT(y + c)n~p 

) f i + o(I)l 
r(y + c - yS - 1)J L V/i/J 

and (33) serves to sum a terminating Saalschutzian 4i^ with slightly 
specialized parameters: 

si*\ rl ~n> n + a,b, c A 
(35) *FAa-l,b+ l,c + 1;1J 

= fl!£c Ua - c - 1)„ + 1 _ (a- b - l)w + 1 j 

This formula seems new and cannot be obtained by using the known 
transformation formulas for a Saalschutzian 4F3 (see [3, p. 56 (1) ] ). 

Another interesting but rather specialized Saalschutzian 4F3 can be 
summed by means of the following trick. It is easily verified that 

\ 2 / n + c 

satisfies 

(36) Pn+\ = 2(2x ~ I K ~ # , - 1 -

Thus 

(-a (37) *<, 1/2' 1 /2)(x; c) = ] ] ' Un(2x - 1), 

(the shifted Chebyshev polynomial). Equating /cth powers of x on both 
sides gives 

k — ft, n + /: + 2c, c — - , c 

(38)( 4 /§ 1
 2 ; i 

H c + - , A: + c + 1, 2c - 1 
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I > + k + 2)T(c + k + l )Hc -f it + - J22c~2 

^ + 0F(W 0 -f c ) r U + - JT(n + 2c + &)T(& + 1) 

We suspect this formula also holds for A: arbitrary complex. 
Letting x —> x/y, y —* oo in (19) yields the associated Laguerre 

polynomials. Letting x —» xfi, Pn —» f}~"Rn, fi —> oo, gives the polynomials 
discussed by the present author, [19], essentially the associated Bessel 
polynomials. If then one takes x —> ix, c —> IK + c/2, y —» 1 — 2//c, one 
obtains polynomials shown in [19] to be orthogonal on a discrete point set, 
namely, the zeros of 

(39) rfU + iK; C, -±) 

which are real. A special case of this, K = 0, gives the Lommel 
polynomials, and the discrete point set is then the zeros of 

(£)• 
see [19]. These facts will also turn out to be limiting cases of our work in 
Section 3. 

The following special cases are easily demonstrated from (19) and 
[8, v. 1, p. 188 (3)]: 

( &-<\x; c) = (a + C+ l)»n- #?-e)(x). 
' (« + l)„(c + 1)„ 

(40) { R\rc"m(x; c) = BÇ+l-^x); 

Ri-^(X; c) = ( / ? + C + l)""] R\r%). 
(fi+ l)„(c + 1)„ " 

These, along with c = 0, are the only cases where RfJ so simplifies. 
A fact not obvious from (19) but which follows directly from the 

recurrence is 

(41) R^\\ -x;c) = (-\)"Rfa\x;c). 

(This provides a check in the first and third formulas above.) 
A number of algebraic relationships are known for special cases of the 

Jacobi polynomials, viz., 

(42) * j r"V) =(2n)l(a + ^H^^l 
" n\(a + \)2n

 2" \ 2 I 
see [10, p. 437 (5) ]. 
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Formula (28) allows us to generalize these formulas. The relation (42) 
generalizes in a highly unexpected way. Using [8, v. 1, p. I l l (10), (14), 
and (41) ] and a little algebra shows: 

(43) *<„»•-"V;c) 

x(a + 2c)2n + x\2c + a - -) 

(A limit must be taken when c —* 0.) 
Other identities are possible, e.g., 

(44) R{,?'U2)(x2; c) 

R ( 2 a ^ ( ^ 2 c - \ ) . 

(2c + « + 1)2„ + i 

X 

*22"+1(2c + « + ^ ) ( c + \)n(a + c + ^)n 

The number of such formulas seems to be large. 
The representation (28) also provides a description of the asymptotic 

behavior of Rn since the asymptotics of un, vn are known (see [11, v. 1, 
p. 237 (8) ] ). The required tool, which is due to Watson, can most 
conveniently be written 

(45) F(a + ">c
b ~ "; sin2e) 

^ — c o s 2nd + (a — b)0 — - I c — - I , 

w —> oo , 6 <= (0 , 77). 

After a little algebra, one finds 

/ ^ ( s i n 2 * ; c) 

( - i ) w r ( c + i)T(Y + c) 

X 

yfimPT(P -f c)(y + 2c - l)T(y + c ~ (3 - 1) 

T(y + c - j8 - l)r()8 + 1) 

{ .T(Y + c ~ l)(cos 0) a + l / 2(sin ef+u2 

(46) X F ( C ' 2 J " V C; s i n 2 ^ )cos [2^ + (y + 2c)0 - Up + M ] 
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T(fi + c)T(l - p) 
r(c)(cos 6»)l/2_a(sin 0 ) l / 2 ^ i' c,y + c 

H- 1 sin 

X cos 2n6 + (y + 2c)e-^ " / * ) ] } , 

n —> oo, 0 <= (0, 7r). 

The representation (28) is also useful for deriving a generating function 
for RfV as we shall see later. 

Another interesting consequence of (28) depends on the following 
observation: if y and w each satisfy a second order linear homogeneous 
differential equation, then their product satisfies a fourth order equation. 
The computations to derive the equation, however, are truly formidable, 
see [17, p. 146] for a suggestion of the details involved. Computer algebra 
is the only feasible approach. In this case we find, using MACSYMA, that 
Rn satisfies the equation 

(47) A0(x)yIV + Ax(x)y'" 4 A2{x)y" 4 A3(x)y' 4 A4(x)y = 0, 

where 

(48) ^ A3 

K 
C 

(x 1)V; 
AY = 5(x - 1)JC(2JC - 1); 

A2 = -[x2(2K 4 2C 4 y2 - 25) 
4- x(-2K - 2C - 2/3y - 2y + 2$ 4- 26) 4 £z 

-3[JC(2# 4 2C 4 y2 - 5) 

4]; 

( (A: - c r - 2 :̂ - 2c 
(« 4- c)(« 4 y 4 c) 
(c - l)(y 4 c - 1). 

AT - C - y£ - y 4- fi 4 3]; 
- 1 — y ) and 

3. Padé approximants and the weight function. For this discussion it is 
convenient, because of their simple asymptotics, to take as solutions of the 
recurrence the (shifted) extended Jacobi functions 

(49) wn(c):=Pffl(2x - 1) = 

(50) 

(« + l)w + c 

T(n 4 c 4- 1) 

X F" ( — n — c, n 4 
a 4 1 1 -

-) 

_ T(n + c + a + l)r(w + c + /? + 1) 
2I\2« + 2c + y + 1) 

X (x - 1) - n — a — 1 -
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(w + c + U + c + tt+1, 1 \ 
V 2n + 2c -h y + 1 ' 1 - je/ 

x will be the complex plane off the cut [0, 1]. wn(c) is obviously a solution 
and tn(c) can be shown to be one by Sister Celine's techniques. 

We can write 

(51) ^ ^ r ) - ^ 1 ^ " - ^ " ^ 1 ^ ^ 
A(c) 

(52) A(c) = / _ , ( c H ( c ) - w_, (0 'o(0 

_ (2c + y ~ l)r(c + a)r(c + jS)(x - l)~ t t .x"g 

2T(c + 1)I> -f y) 

by [8, v. 2, p. 172 (26) ]. In C — [0, 1], wn dominates tn exponentially, as 
results of Watson show [11, v. 1, p. 237 (11)]. In fact, the asymptotic 
theory of linear difference equations [18] shows that tn/wn has a complete 
asymptotic expansion of Poincaré type, 

(53) 
v w„ L n n J 

T(X) = \fx + ^/x~ — 1, n —» oo, x <£ [0, 1]. 

We now follow the construction given in [8, v. 2, 10.5]. The nth 
convergent to the continued fraction generated by the recurrence for Rf] is 
Fn/Gn where 

(54) F„ = R^L%; c + 1), G„ = R^Xx; c). 

(55) EL 
G., 

t_x{c + l K _ , ( c + 1) - w_,(c + !)*„_,(<• + 1 

X 

t_](c)w„(c) - tv_,(c)f„(c) 

A(c) 

s] 

A(c + 1) 

Now vw/;_j(c + 1) = %(c), tn_l(c + 1) = tn(c). Dividing numerator 
and denominator by wn(c) shows 

( 5 6 ) EL = ^ ) A ( e ) 4 

G„ f_,(c)A(c + 1) 

« —» oo, x £ [0, 1]. 

Fn/Gn is the [A? — \/n] Padé approximant (about oo) to the function 
on the right, and the above formula asserts convergence as n —» oo for 
all x £ [0, 1]. 

Redefining things a little, we arrive at the following 
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THEOREM 2. The [n — \/n] Fade approximant about 0 to the function 

(57) / ( , ) : = ^ +
C

1 ; \ + 1 ; , ) / F ( ^ ; X ) 

is Un/Vn where 

v _ -n(c + n + l )x" - ' "y ' (1 - n)k(n + c + 2),x~A 

(a + \)(b + 1) k=0 (a + 2)k(b + 2)k 

(k + \ - n, n + k + c + 2, a + \, b + I \ 
4 3 \ k + a + 2, k + b + 2, c + 2 ' / 

(59) V„ = X» ± <-">*<" + C + ^X" 
k=0 (a + \)k(b + l)k 

p(k — n, n + k + c+ 1, a, b 
4 A k + a + l,k + Z> + 1, c '' 

Un/Vn converges 0[o(x) ri] in the cut plane C — [1, oo) tof(x), where 

(60) a(x) : = v ^ / ( l + \ /T : = : ^ ) . 

The case a = 0 is a result foreshadowed by Laguerre and given by Luke 
[11, v. 2, p. 168]. Confluent cases were given in [2] and [19]. 

Now we consider the measure for Rn. Let 

(61) g(x)-, ' o ( C ) 

) 

t-x(c) 

The F in t_x(c) has parameters (c, c -f a, 2c + y — 1), argument 
1/(1 — x). Using a Kummer transformation produces an F with 
parameters (c, c + /?, 2c 4- y — 1), argument \/x. 

Consequently that function will be positive for all real x £ [0, 1] 
provided c ^ O , c + a > 0 , c + / ? > 0 , for instance. (Other conditions are 
also possible.) Thus, the denominator of g cannot vanish on R — [0, 1] and 
/ c a n have no poles there, so the measure can have no point masses there 
(see the discussion in [1, Chapter 2] ). This is the only case we will consider 
here. The same theorems used in [6] show the measure is continuous in 
(0, 1) and has support in [0, 1] and the formulas (34), (41) can be used to 
rule out mass points at 0 or 1, again, see [6]. The Stieltjes inversion 
formula gives 

(62) w(t, c) = lim [g(t - ic) - g(t + /€) ]. 

Determining the weight function is extremely tedious. We shall only 
sketch the derivation. 

Let 
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(63) « / ( * ) : = — - , 
xn(c — 1) 

<£A^ i , x Je + l,C + P + l l\ 

(64) h(c):=F{ 2 c + ,P! ;-J 
W(JC) is a constant multiple of ?0(c)/?_](c) and hence the Stieltjes 

transform of w(c, t). 
We have, by [8, v. 1, p. 108(2)] 

(65) h(c) = B{(c)(xe-«y+iF(C + ^ ! _ ~ y ~ Y; * ) 

+ B 2 ( C X ^ - " ' ) C + / , + , F ( C + 0 + ^V,' ~ Y ~ c; * ) . 

We need to evaluate 

(66) u (x) — u~(x) := r(x) 

where u denotes the value of u above the cut [0, 1], u~ the value of u 
below the cut. 

We have 

[h + (c)h-(c - 1) - h+(c - l)h-(c)] 
(67) r(x) = T = . 

xh + (c - \)h (c - 1) 
The numerator is now expanded and Lemma 1 used on /z+(c), h~(c). 

After being subjected to much algebra, the numerator reduces to a 
Wronskian. We have 

THEOREM 3. Let c ^ 0, c 4- a > 0, c + £ > 0. 77?^ {Rn
(a^\t; c) } is an 

orthogonal set on [0, 1] with respect to the weight function 

(68) w(t; c) 

(\-t)atP 

(69) K(c) 
r(-j8>r(c + j8)r(c + Y - i) 
ros)r(c + y - 0 - i)r(c) " 

As a curious example of this theorem, (/? = 1 — c) we find that the 
polynomials R^]~c\t; c) are orthogonal on [0, 1] with respect to 
the weight function 

(70) w(t) = f~]\B(c + a, 1 - c) ~ evicBt(l - c, -a) | - 2 . 

Here £, is the incomplete beta function, [8, v. 1, p. 87]. 
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When c = k = 1, 2, . . . , is integral, the weight function can be simply 
expressed in terms of Rk(t) and shifted "associated" polynomials 

q^\2t - 1) = ( c o n s t . ) / ^ / ; 1). 

A convenient alternate form of (68) to use in this case is 

, 7 n „ v (const.Xl - tffi  
(71) Wit, C) = 7T-A T S'A . 

[c-i)^a-i(0]+[('-i)a^-i(or 
Now by [8, v. 2, p. 171 (25) ], we have 

m «, - „ • / & . « - '(- + 1-<»+1){>-'f('vV,•= )) 

X **_,(*) - (y + l )« ,_ 2 (n 1) 

k = 1, 2 , . . . . 
} 

(We omit superscripts for convenience.) In a number of interesting cases, 
the F can be summed, (a = fi = 0; y = 0; a = 0, fi = — 1/2, etc.) 

Special cases of the formulas in this section have been considered by 
many writers. Nevai [12] has determined a formula for w(t, c) for integer c 
for a class of polynomials generalizing the Bernstein-Szëgo polynomials. 
The case (72) can be determined from his work. Our formula only 
produces an explicit evaluation of an integral in his master formula, 
p. 414. See also [4, 6, 13, 15]. Pollaczek [13] gave the formula for w(t, c) for 
general c in the case a = ft (the associated ultra-spherical polynomials). 

If fi is an integer in (68), limits must be taken, but the techniques for 
doing this are well-established, see [11] for many examples. Logarithms 
arise in these cases. 

4. A generating function. We start with an intriguing expansion which 
has been derived independently by several authors. 

THEOREM 4. Let /, x, a, b, c, be complex, x £ [1, oo), 

\t\ < iv^ + \/sr=rr2. 
Then 

(73) J lc + *UWJ-«-a,« + b.x) 
„=o n\{a + b + 1)„ V c J 

= 0)6(z2 - \y-%z2 + if+"-h 

J-a, b_ 1 ~ ZA (g + c,a+ 1. 2 \ 
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where 

1 — é 1 + é / 7 
(74) Z, = - , Z2 = - , <f> = V(l - tf + 4.x/. 

Flensted-Jensen and Koornwinder first stated this in full generality in 
1975, [9]. In 1977 Cohen, [7], gave it for the case where a is an integer 
(although his proof doesn't really require this hypothesis). Bellandi Fo and 
de Oliveira, unaware of either earlier paper, published it in 1982, [5]. The 
proofs are radically different. Cohen's, which is very elegant, relies only on 
an elementary (and clever) series argument. 

Note all the functions above are multivalent, and one must be careful to 
select the correct branches. The branch of <f> is taken which is positive 
when t is small positive. 

We now multiply both sides of (28) by 

(-\y\c + y)n(c + l)nt
n/n\(y + 2c + 1), 

and sum from n = 0 to oo, using first the above result with 

(a, b, c) = (c, y + c, yS + 1), 

next with 

(a, ft, c) = (y + c - 1, c + 1, 1 - j8), 

then replace t by —/. Everything fits together very neatly and after a 
Kummer transformation on the third, fourth and fifth F we arrive at 

THEOREM 5. Subject to the conditions of the previous theorem 

(75) g {c + y)"(c + W^*- c> 
„=0 n\(y + 2c + 1)„ 

1 / 2 y+g 
Ai + t + o> 7?(Y + 2c - 1)M + t + p 

X {(/? + C)(Y + c - 1)F(C' 2J _y
p

 C; x) 

/ - c , y + c. 1 + ? ~ p \ / y + c - 0, Y + c. 2J 

V /8 + 1 ' 2 ; / \ Y + 2c + 1 ' i + t 

Jy + c - 0, -c - /?. 1 + t - p\ 
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(y + c + fry + c. 2t \ \ 

p = V(l + /)2 - 4xt. 

There is no doubt one of the most exotic generating functions known 
which utilizes only fairly ordinary functions. Yet, in a sense, it is the 
generating function for Rn. True, it does not reduce when c = 0 to 
the standard generating function for R^\x), 

oo 9 Y - I 

(76) 2 t"R^\x) = — ( 1 - r + p)-«(l + / + p ) " " 
«=0 P 

yielding instead 

00 n 

(77) 2 -A—*^) 
„=o (n + y) 

= V 2 Vpfy - A y. 2/ \ 
yVl 4- / + p / V 7 + 1 ' 1 + t + p / ' 

but the generating function which does have this property, and which can 
be obtained from (75) by multiplying by ty+lc and differentiating with 
respect to /, is horribly complicated. The simplest generalization does not 
always yield the simplest specialization. 

Letting x —» x/y, y —> 00, gives a generating function for L^(x; c) 
found by Askey and Wimp [2]. 

When a = ft the formula produces a different generating function from 
the one given by Bustoz and Ismail for the associated ultraspherical 
polynomials, [6]. Theirs, which involves the Appell function Fx, does 
reduce, when c = 0, to a standard generating function for C,* \x). 
a = fi produces no simplification in our formula. 

Acknowledgement. The author thanks Alberto Izaguirre of the Universi
ty of Pennsylvania for assisting him in the computer algebra computations 
of Section 2. 

R E F E R E N C E S 

1. R. Askey and M. Ismail, Recurrence relations, continued fractions and orthogonal 

polynomials, Memoirs Amer. Math. Soc. 300 (Providence, RI , 1984). 

2. R. Askey and J. Wimp, Associated Laguerre polynomials, Proc. Roy. Soc. Edinburgh 96 

(1984), 15-37. 

3. W. N . Bailey, Generalized hyper geometric series (Cambridge University Press, Cam

bridge, 1935). 

4. P. Barrucand and D. Dickinson, On the associated Legendre polynomials, in Orthogonal 

expansions and their continuous analogs (Southern Illinois University Press, Carbon-

dale, IL, 1967). 

https://doi.org/10.4153/CJM-1987-050-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-050-4


1000 JET W I M P 

5. J. Bcllandi Fo and E. C. de Oliveira, On the product of two J acobi functions of different 

kinds with different arguments, J. Phys. 15 (1982). 

6. J. Bustoz and M. Ismail, The associated ultraspherical polynomials and their q-analogues, 

Can. J. Math . 34 (1982), 718-736. 

7. M. E. Cohen, On J acobi functions and multiplication theorems for intergrals of Bessel 

functions, J. Math . Anal . Appl . 57 (1977), 469-475. 

8. A. Erdélyi et al, Higher transcendental functions, 3v. (McGraw-Hi l l , N Y , 1953). 

9. M. Flensted-Jensen and T. Koornwinder , The convolution structure for J acobi function 

expansions, Ark. Mat . 11 (1975), 245-262. 

10. Y. L. Luke, Mathematical functions and their approximations (Acad. Press, NY, 1975). 

11. The special functions and their approximation, 2v. (Acad. Press, NY. 1969). 

12. P. Nevai , A new class of orthogonal polynomials, Proc. Amer. Math . Soc. 91 (1984), 

409-415. 

13. F. Pollaczek, Sur une famille de polynômes orthogonaux à quatre paramètres, C.R. Acad. 

Sci., Paris 230 (1950), 2254-2256. 

14. E. D. Rainville, Special functions (MacMil lan , N Y , 1960). 

15. J. Sherman, On the numerators of the convergents of the Stieltjes continued fraction, Trans . 

Amer. Math . Soc. 35 (1933), 64-87. 

16. H. S. Wall, Analytic theory of continued fractions (Chelsea, N Y , 1948). 

17. G. N . Watson , A treatise on the theory of Bessel functions (Cambr idge University Press, 

Cambr idge , 1962). 

18. J. Wimp, Computation with recurrence relations (Pi tman Press, London , 1984). 

19. Some explicit Padé approximants for the function 0 7 0 and a related quadrature 

formula involving Bessel functions, S IAM J. Math . Anal . 76 (1985), 887-895. 

Drexel University, 
Philadelphia, Pennsylvania 

https://doi.org/10.4153/CJM-1987-050-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-050-4

