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Integer ambiguity validation is pivotal in precise positioning with Global Navigation Satellite
Systems (GNSS). Recent research has shown traditionally used ambiguity validation methods
can be classified as members of the Integer Aperture (IA) estimators, and by the virtue of the
IA estimation, a user controllable IA fail-rate is preferred. However, an appropriately chosen
fail-rate is essential for ambiguity validation. In this paper, the upper bound and the lower
bound for the IA fail-rate, which are extremely useful even at the designing stage of a GNSS
positioning system, have been analysed, and numerical results imply that a meaningful IA
fail-rate should be within this range.
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1. INTRODUCTION. Global Navigation Satellite Systems (GNSS) can
employ two types of measurements to locate the position of a receiver, namely
the carrier phase measurements and the code measurements. The carrier phase
measurements are more accurate than the code measurements so that for precise
GNSS positioning, carrier phase measurements are indispensable. However, the
unknown integer cycles of wavelength are difficult to determine and consequently
the problem of integer ambiguity resolution and validation arises.
In general, there are three steps to resolve the double differenced integer ambiguity

vector. The first step is to estimate the float solution and its variance-covariance
matrix by the least-squares or Kalman filter, regardless of the constraints of the integer
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property of the ambiguity, and the mathematical models can be expressed as:

y = Aa+ Bb (1)
where:

y is the ‘observed minus the computed’ distance.
A is the design matrix for ambiguities.
a represents the carrier phase ambiguity vector and is normally referred to as the

float solution.
bmeans the unknown parameters like coordinates, with associated design matrix B.

From Equation (1), the real-valued a and b together with the variance-covariance
matrices can be estimated as:

â
b̂

[ ]
� Qâ Qâb̂

Qb̂â Qb̂

[ ]
(2)

The second step is to obtain the integer ambiguity resolution with â and Qâ by the
Integer Least-Squares (ILS). The principle is to search for an integer ambiguity vector
which minimizes the quadratic form of ambiguity residuals, as shown in Equation (3).

‖â− ă‖2Qâ = min (3)
Once the correct integer ambiguity has been resolved, the last step is to adjust the

coordinates with the constraint of the known integer ambiguity to accomplish a
centimetre or even millimetre level accuracy.
The ambiguity resolution step, more precisely, consists of two parts: ambiguity

resolution and ambiguity validation. With the principle of ILS, an efficient approach
to ambiguity resolution can be conducted by de-correlating and searching for the
integer ambiguity candidates with the popular LAMBDA method (Teunissen, 1995).
Several sets of integer ambiguity candidates can then be yielded. To validate the
resolved integer ambiguities, the quadratic forms of ambiguity residuals associated
with the most likely integer ambiguity candidate ă1 and the second most likely integer
candidate ă2 can be formulated, and then several statistics have been developed to
validate the integer ambiguity candidates from a statistical and probabilistic point of
view, such as the R-ratio test (Euler and Schaffrin, 1991; Feng et al., 2012), F-ratio test
(Frei and Beutler, 1990), W-ratio test (Wang et al., 1998; Wang et al., 2000), difference
test (Tiberius and de Jonge, 1995), and projector test (Han, 1997). A common feature
for this type of validation methods is that a critical value, which comes either
empirically or is based on the distributions of their statistics (Verhagen, 2004; Li and
Wang, 2012), is necessary to determine whether to accept the most likely integer
candidate or not. With the introduction of the Integer Aperture (IA) estimator
(Teunissen, 2003a), some of these methods can be mathematically expressed as IA
estimators (Verhagen, 2005; Verhagen and Teunissen, 2006), and several other IA
estimators also have been introduced, such as the Ellipsoidal IA (EIA) estimator,
(Teunissen, 2003b), Penalized IA (PIA) estimator (Teunissen, 2004), and a unified
theoretical framework has been established. The ambiguity validation is then carried
out by a user-defined fail-rate, which performs the same function as the critical value
in the traditionally used statistics tests but allows for an explicit and overall
probabilistic evaluation of the outcome, to validate the integer ambiguities.
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However, there is a lack of studies on the IA fail-rate upper bound and lower bound
as well as their implications on the ambiguity validation statistics. Therefore, in this
contribution, under the principle of ILS estimation and the IA estimation, the upper
bound and the lower bound for the IA fail-rate have been analysed and the implic-
ations of these bounds have been addressed. The following sections are organized as
follows. In the second section, the theory of the IA estimation is presented and two IA
estimators, RIA (R-ratio) and WIA (W-ratio) are introduced. In the third section, the
inter-probability and intra-probability relationships for ILS and IA are discussed, and
the definitions of the upper bound and lower bound are emphasized. In the fourth
section, two-dimensional simulations with different geometrical strengths and two real
GNSS data sets are studied. The experimental results indicate that the knowledge
of the upper bound and the lower bound are essential for the determination of the
fail-rate and also for the determination of the bounds for the critical values. In
addition, theoretically, in the case of a very strong geometry, the most likely integer
candidate from LAMBDA can be accepted with an extremely high success-rate. In
the end, conclusions are summarized and future work on ambiguity validation is
emphasized.

2. INTEGER APERTURE ESTIMATION. The IA estimator of the un-
known ambiguity vector is defined as follows (Teunissen, 2003a), (Teunissen and
Verhagen, 2011):

aIA = z if â [ Ωz

â if â � Ω

{
(4)

with each aperture acceptance region as Ωz, and Ω,Rn satisfying the following three
conditions as:

Ωz = z+ Ω0, ∀z [ Zn (5a)
Int(Ωu)> Int(Ωv) = 1, ∀u, v [ Zn, u = v (5b)

<︸︷︷︸
z[Zn

Ωz = Ω , Rn (5c)

where ‘Int’ stands for interior, and the Ω are the integer acceptance regions,
which have a property of integer translational invariant, and any float solution falling
within this region is considered as acceptable. Its complements are the integer rejection
region.
The outcomes of an IA estimator, therefore, can be distinguished into three cases:

. Success, (or correctness), if the float solution falls into the correct aperture
acceptance region, as shown in Figure 1, the red dash region.

. Failure, if the float solution falls into the IA acceptance regions but not the
correct one, the blue dash regions in Figure 1.

. Undecided, if the float solution falls into the other regions.

The probabilities for each outcome are Ps
IA, PIA

f and PIA
u respectively. By pre-

defining a PIA
f , the user is able to control the size of the aperture pull-in regions,

with two limiting cases as the aperture pull-in regions are empty, for instance, PIA
f =0
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or equivalent to the pull-in regions of ILS (solid hexagons in Figure 1),
e.g., PIA

f =PILS
f . So, instead of determining the critical values by empirical values,

the user can also rely on the pre-defined PIA
f in the framework of IA estimation and

this fail-rate is connected to the critical value according to simulation. Meanwhile, it is
worth mentioning that the IA estimation does not test the correctness of the ILS
solution.
Previous work (e.g.,Verhagen, 2005; Verhagen and Teunissen, 2006) has shown

some of the ambiguity validation tests are members of the class of IA-estimators,
e.g., RIA, FIA, Difference IA (DIA), PIA. Analogously, W-ratio (Wang et al., 1998)
can be categorized as one of the IA estimators, named as WIA. Presuming the a priori
or a posterior variance as 1.0, the acceptance regions of WIA are as follows:

ΩW = {x [ Rn|||x− x̆2||2Qâ
− ||x− x̆1||2Qâ

≥ 2c||x̆2 − x̆1||Qâ
} (6)

with x̆1 and x̆2 are the most likely and second most likely integer candidates from ILS,
and c represents the critical value.
The acceptance regions fulfil the following properties:

Ω0,W = {x [ Rn|zTQ−1
â x ≤ 1

2
||z||2Qâ

− c||z||Qâ,
z = argmin ||x− z||2Qâ︸���������︷︷���������︸

z[Zn\{0}

}

Ωz,W = Ω0,W + z, ∀z [ Zn

ΩW = <︸︷︷︸
z[Zn

Ωz,W




(7)

Due to the difference of the shifting rate of c||z||Qâ
in each direction and the

constraints on the second closest integer vector, the shape of the acceptance regions for
WIA is different from the pull-in regions of DIA and the ILS. For these five IA
estimators, according to their definitions of the acceptance region Ω0, two types of
construction can be sub-divided. The first type is where the acceptance regions are
bounded by ellipsoids, e.g., RIA, FIA and the second type is bounded by planes or
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Figure 1. With correct integer as [0 0], two-dimensional visualization of correct ILS pull-in region
(Solid red), ILS pull-in region (solid blue), correct IA acceptance region (dash red), and incorrect
acceptance region (dash blue).
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lines (for the two dimensional cases), e.g., DIA, PIA, WIA. Therefore, RIA and
WIA are applied here to study the shrinking and expansion of the acceptance
regions. Examples of the acceptance regions for RIA and WIA can be found in
Figure 2.

3. THE UPPER BOUND AND LOWER BOUND FOR IA
ESTIMATION FAIL-RATE. The IA estimation can be closely connected to
the ILS estimation. For ILS estimation, only two outcomes are obtained, namely the
correct integer candidate (success) or the incorrect integer candidates (failure). For IA
estimation, more specifically, an undecided outcome is added besides the success and
failure decision. When lacking confidence for the best ILS ambiguity candidate, the IA
estimation is more user-controllable than the ILS estimation, such as the IA
estimation can control the probabilities of three different outcomes. To make it
clear, the inter-probability relationships among the ILS and IA estimators are shown
as (Teunissen and Verhagen, 2009):

Ps
ILS + Pf

ILS = 1,Ps
IA + Pf

IA + Pu
IA = 1 (8)

Recalling the optimal property of the ILS estimation (Teunissen, 1999) and the
definition of IA estimation, the intra relationships between the ILS and an IA
estimator can be concluded as:

0 4 Ps
IA 4 Ps

ILS, 0 4 Pf
IA 4 Pf

ILS (9)
It is therefore noted that the fail-rate for the IA estimator is user controllable, but in

a reasonable range. From Equations (8) and (9), the upper bound and the lower bound
for the IA fail-rate are easily defined. The upper bound for the IA fail-rate indicates
that the IA acceptance regions expand to the ILS pull-in regions, which means the
corresponding critical values for R-ratio and W-ratio reach the upper bound and
lower bound respectively. The lower bound for the IA fail-rate implies the acceptance
regions no longer exist, which means only the undecided decision is left for IA
estimation, and the relevant critical values for R-ratio and W-ratio reach the lower
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Figure 2. Two-dimensional visualization of the correct WIA acceptance region (dash blue), and
RIA acceptance region (dash black).
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bound and upper bound respectively. By exploring the nature of the fail-rate for IA
estimation, it reveals that in practical applications, the user pre-defined fail-rate should
be appropriately chosen to satisfy the upper bound.
In terms of a two dimensional explanation for the minimum acceptance

regions of RIA and WIA, it can be seen from Figure 3 that the current 2D ILS pull-in
region can be divided into six sectors with each sector corresponding to a second
closest integer, measured by Equation (3). For RIA, which is defined here as
||x− x̆1||2Qâ

4c||x− x̆2||2Qâ
, with c ranges from 0 to 1, the acceptance region continues

to shrink until an integer grid, shown as a green dot. For WIA, the acceptance region
shrinks along the solid black line until the first merging of the symmetric parallel lines
into one line, which runs across the integer grid. Both of these scenarios are the case of
the empty acceptance region with the IA fail-rate as 0.
Furthermore, once the geometry is extremely strong, as an upper bound for the

IA fail-rate, PILS
f should be extremely close to zero. Then, Equation (8) is further

simplified as:

Ps
ILS ≈ 1,Pf

ILS ≈ 0,Ps
IA + Pu

IA ≈ 1,Pf
IA ≈ 0 (10)

Consequently, under such a condition, the adjustment of the acceptance region only
changes the success-rate and the undecided rate for IA estimation, but hardly has any
impact on the fail-rate. As a result, the acceptance regions for IA estimators should
expand to the limit, the ILS pull-in regions, to achieve the highest success rate (close to
100%). This is fairly important for ambiguity validation in the future multi-
constellation and multi-frequency GNSS, because even in a single epoch, occasionally
the geometry is strong enough to guarantee the condition of Pf

ILS&0, and then the
most likely integer candidate from the ILS should be accepted directly (with an
extremely high success-rate).

4. NUMERICAL ANALYSIS
4.1 Two Dimensional Analysis. To demonstrate the performance of IA esti-

mation by the pre-defined fail-rate and the practical implication of the upper bound and
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Figure 3. The ILS pull-in region is divided into six sectors surrounded with solid black line and red
line. Each sector corresponds to a second closest integer.
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the lower bound to ambiguity validation, 500,000 two dimensional ambiguity float
solutions were simulated with zero mean (the true correct integer ambiguity vector)
and the following matrix as the variance covariance matrix, e.g., â*N ([0, 0], Qâ),
which also represents the geometrical strength of the float ambiguity. If the outcome
of the ambiguity resolution equals to a zero vector, it is considered to be a correct
integer solution, and then the PILS

s can be calculated. Otherwise, the resolved integer
ambiguity vector is incorrect, with PILS

f . By counting the number of points that fall
into the correct IA acceptance region, a success-rate of PIA

s can be obtained. Similarly,
counting the numbers that fall inside the IA acceptance region but not the correct one,
we can have the fail-rate PIA

f and the rest are the undecided PIA
u . The detailed

simulation procedures can be referred to Teunissen and Verhagen (2009), Li and
Wang (2012). Note that by simulation, we have the knowledge that a mean value for a
zero vector is the correct integer ambiguity and as the IA estimation totally relies on
simulation, the success-rate for ILS and IA are all correct rates.

Qâ = [0·1392− 0·0486;−0·04860·1583]; (11)

Qâ,k =
Qâ

k
(12)

In order to reveal the upper bound and the lower bound for the IA fail-rate, Qâ is
utilized first. According to the simulation with a sample of 500,000, the success-rate
and the fail-rate of the ILS from LAMBDA is PILS

s =0·6740, PILS
f =1−PILS

s =0·3260.
Being aware of the fact that the critical values for WIA and RIA are related to the IA
fail-rate, we can, therefore, adjust the critical value to analyse the performance of the
IA fail-rate and success-rate.
As shown in Figure 4, with the increasing of the WIA’s critical value, the fail-rate

and the success-rate decrease until a certain point. It is clearly shown that there are
upper bound and lower bound for the IA fail-rate, as well as for the success-rate.
When the critical value of WIA is 0, the IA’s acceptance regions expand to the same
region as the ILS, so that the fail-rate and the success-rate of WIA are maximized as:
0·3260 and 0·6740 respectively, which are equivalent to the fail-rate and the success-
rate of the ILS, and thus the probability of undecided is 0. Since the critical value of
WIA cannot be smaller than 0, the chosen value of the fail-rate for WIA should not be
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Figure 4. Upper bound and lower bound of the IA fail-rate for the geometry of Qâ.

327THEORETICAL UPPER BOUND AND LOWER BOUND FOR INTEGERNO. 3

https://doi.org/10.1017/S0373463312000513 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463312000513


larger than 0·3260, which is the ILS fail-rate. When the critical value increases to 1·33,
the fail-rate and the success-rate of WIA equal to 0 and any increasing in the critical
value has no impact on the WIA’s IA fail-rate or success-rate. The acceptance regions
for WIA, therefore, shrink to the minimum, e.g., one pair of the boundaries merges
into one line, which runs across the zero origin. In this case, all the outcomes are the
undecided float solutions.
The same phenomenon happens for RIA, which can be understood from Figure 5.

Due to the special structure of the ratio test, the critical value has to be equal to or
larger than 0 but cannot exceed 1. Then the IA fail-rate and success-rate for RIA reach
the lower bound when the critical value is 0, and achieve the upper bound, 0·3260 and
0·6740 respectively, when the critical value is 1.
So, for a geometry defined by Qâ, the user controllable fail-rate has to be pre-defined

within the range of the upper bound, (0·3260) and the lower bound (0), and any chosen
fail-rate beyond the this range is meaningless. The implications for the normally used
statistic tests, e.g., R-ratio, F-ratio, W-ratio, Difference test, Projector test, are that
there should be upper bounds and lower bounds for the chosen critical values as well,
as shown in Figure 6 within the IA estimation framework, for example, the upper
bound for W-ratio in this geometry is 1·33. If a user choose a critical value larger than
1·33, the user can be advised that there won’t be any integer outcomes, which
coincides with the IA fail-rate as 0. Similarly, due to the special structures for R-ratio
and F-ratio, their critical value bounds are always 0 and 1.
If the strengthening of the geometry changes, for instance, with the increasing of k,

the ILS success-rate for Qâ increases, whereas the fail-rate decreases. Before the ILS
fail-rate comes close to 0, the IA fail-rate upper bound has to be narrowed down due
to the decreasing of the ILS fail-rate, and then the choice of the pre-defined fail-rate
has to be narrowed down as well. As shown in the left side of Figure 7, the allowable
chosen area of the IA fail-rate is plotted in grey, and any IA fail-rate above the upper
bound (solid blue line) is not appropriate for IA-based ambiguity validation. On the
right side of Figure 7, the correspondingly upper bounds for W-ratio’s critical values
have been plotted. It can be seen there are indeed upper bounds of the critical values
for different geometry. As long as the ILS success-rate is extremely close to 1, it implies
that almost all the simulated float solutions are within the correct ILS pull-in region,

0 0.2 0.4 0.6 0.8 1
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0.4

0.6
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1
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Fail-rate
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Figure 5. Upper bound and lower bound of the IA fail-rate for the geometry of Qâ.
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and almost all the most likely integer candidates from LAMBDA are the correct ones
with an extremely small fail-rate. An adjustment of the IA fail-rate only tunes the
acceptance region, which balances the IA success-rate and the undecided-rate, and
hardly changes the fail-rate. Consequently, the pre-defined fail-rate for the IA
estimation can be extremely close to 0. In this case, the chosen critical value for
W-ratio should be very close to 0, regardless of the upper bound. Ambiguity
validation in such an extreme geometry becomes trivial.

4.2 Practical Implications. The upper bound for the IA fail-rate is defined by the
fail-rate from ILS. Unfortunately, it is very complex to evaluate the ILS fail-rate.
Simulation with a large sample size is an ideal way, but the computation burden
increases dramatically with the increasing of the ambiguity dimension. As alterna-
tives, the user has to resort to the efficient approximation for the evaluation of the ILS
fail-rate, for instance, the approximation based on the Ambiguity Dilution Of
Precision (ADOP), as shown in Teunissen (1997), Verhagen (2005).
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Figure 7. Left: The ILS fail-rate of Qâ,k (solid blue line) and the allowable chosen of the IA fail-rate
(grey area), right: W-ratio upper bounds for different k.
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Figure 6. The simulated statistics for W-ratio and R-ratio tests with the geometry of Qâ.
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Two static data sets have been selected to analyse the upper bound and lower bound
in real applications. Data set A is from two CORS stations (‘UNSW’ and ‘CHIP’) in
Sydney, Australia, and data set B is from two NGS-CORS stations (‘CHAB and
P235’) in California, America. Both of these data sets are processed epoch by epoch by
a modified version of GNSS software RTKLIB, (Takasu and Yasuada, 2009), with
single-frequency only and dual-frequency respectively. During the data processing, an
elevation dependent stochastic model was applied. In each data set, several epochs
were eliminated due to their inadequate quality, and there are 5747 epochs and 2879
epochs for data set A and B. A summary of the data sets can be found in Table 1.
To perform an ambiguity validation procedure by the pre-defined IA fail-rate, the

users should then choose the fail-rate they preferred. However, a meaningful chosen of
the IA fail-rate should be based on the upper bound. As shown for data sets A and B in
Figures 8 and 9, the blue lines are the ILS fail-rates, which were calculated with the
knowledge of approximation of the ILS success-rate by the ADOP. Providing the ILS
fail-rate as the upper bound, it can be shown that the upper bound varies with the
epoch number, and for the user’s benefits, the knowledge of the upper bound for the
IA fail-rate allows the user to choose a reasonable fail-rate at the designing stage. For
example, the dual-frequency upper bound (the upper figures) can help the user to
choose different fail-rates to obtain relevant success-rates for different epochs, even
before they conduct a GNSS survey. In addition, it should be noted that the smaller
(or larger) the IA fail-rate upper bound, the stronger (or poorer) the ambiguity
geometrical strength is, especially when the IA fail-rate upper bound is 0, the geometry

Table 1. Static data summary.

Data
set No. SVs

Data
Span (h) Obs. Type

Cut-off
Angle Interval (s)

Baseline
Length Remarks

A 5–10 24 L1+L2 10° 15 4·4 km 10th, June, 2012,
Sydney

B 5–10 24 L1+L2 10° 30 5·5 km 1st, June, 2012,
California
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Figure 8. Upper bounds and lower bounds for IA fail-rate in case of single-frequency and dual-
frequency for data set A.
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is strong enough to theoretically guarantee the resolved ambiguities are correct. So,
for the dual-frequency scenario, in epochs around 1000, 2500, 3500 for data set A and
epochs around 1300, 2500 for data set B, the user is advised of enough confidence to
choose the IA fail-rate close to the upper bound, so as to allow more correct
acceptances.
For the single-frequency scenario, the user has been informed a large range for the

chosen IA fail-rate. The larger of the IA fail-rate ranges indicates the poorer of the
ambiguity geometrical strength. Therefore, a wise decision is to narrow down the
acceptance region to exclude more incorrect acceptances.
In Figures 10 and 11, the upper bounds for the Wa-ratio statistics are plotted for

both data sets. There are upper bounds for different scenarios. The dash red lines show
the dual-frequency upper bounds for the Wa-ratio tests and the solid blue lines show
the upper bounds for single-frequency. As a result, if the user is going to validate the
resolved integer ambiguities by WIA, the chosen critical value in each epoch has to be
smaller than that of the upper bound in the corresponding epoch. Otherwise, no
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Figure 9. Upper bounds and lower bounds for IA fail-rate in case of single-frequency and dual-
frequency for data set B.
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Figure 10. Upper bounds for Wa-ratio in case of single-frequency (solid blue) and dual-frequency
(dash red) for data set A.
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integer outcomes can be obtained. The same holds true for the difference test and the
projector test, for which the user should be reminded of the upper bound for the
selection of critical values.

5. CONCLUSION. Ambiguity validation is an important step for precise
GNSS positioning and the IA estimation has been established to provide a framework
for the ambiguity validation methods. Consequently, using the pre-defined fail-rate to
validate the resolved ambiguities is more user-specific than choosing the critical value.
Due to the importance of the IA fail-rate, in this contribution, we have analysed the
upper bound and the lower bound for the determination of the IA fail-rate. It has been
shown that a chosen IA fail-rate should be within the upper bound and the lower
bound, and since the IA fail-rate and the critical value are connected according to
simulation, these bounds for the fail-rate also imply there are upper bound and lower
bound for the critical values of the normally used ambiguity validation methods. Two
dimensional simulations have been performed to illustrate the benefits of the upper
bound and the lower bound for the IA fail-rate. In addition, in cases where the ILS
fail-rate comes extremely close to 0, as an upper bound, the IA’s fail-rate should be
chosen also as extremely close to 0, and this indicates that under such a strong
geometry, all the float solutions can be accepted with an extremely small fail-rate.
In terms of practical implications, the approximation based on the ADOP value for

evaluating the ILS success-rate is suggested, and then the upper bound for the IA fail-
rate can be determined. Therefore, the user can acquire the knowledge of the range for
the purpose of choosing the reasonable fail-rate they preferred. Real GNSS data sets
have been processed to reveal the procedure of determining the IA fail-rate in a
reasonable range, and also the implicated upper bound for the critical values has been
presented. It turns out that users should be aware of the useful upper bound and the
lower bound on the basis of the IA estimation.
It is worth mentioning that neither the traditional ambiguity validation tests nor the

IA based method considers the influence of the biased float solution. Future research
will be focused on the formula derivation for the bounds of the critical values as well
as analysing how large a bias can cause a wrong ambiguity validation decision.
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Figure 11. Upper bounds for Wa-ratio in case of single-frequency (solid blue) and dual-frequency
(dash red) for data set B.
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