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ABSTRACT 
Automating modelling activities in computer-aided design (CAD) systems is no exception within design 
automation, one of the current research endeavours aiming to use and transform design-related data in 
design decision-making processes and the generation and evaluation facilitation of new design solutions. 
The paper explores the differences between CAD models based on their feature-based CAD modelling 
sequences that lead to the final models' design. The dataset collected and structured for the study 
contains more than 1400 CAD models clustered on two levels by using an unsupervised K-means 
clustering algorithm. The algorithm is performed on the number (total and unique) and the first-order 
Markov model transition matrices of the CAD modelling operations and their sequential order, 
respectively. Therefore, three and ten groups (clusters) of CAD models are obtained regarding the level 
of clustering. The results show that most of the obtained groups are specified by the dominant transition 
between particular modelling operations. In addition, the study also provides insight into the potential 
of using feature-based CAD modelling operations' sequences as a first step toward automating the user 
interaction with the CAD system. 
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1 INTRODUCTION  

Design automation (DA) is one of the current research endeavours in using and transforming design-

related data to suit design decision-making processes and extract knowledge valuable for the 

generation and evaluation of new design solutions (Cantamessa et al., 2020). Data mining techniques 

(e.g., cluster analysis, conjoint analysis), artificial intelligence (AI) tools (e.g., neural networks, 

generic algorithms) and machine learning algorithms (supervised and unsupervised learning) are 

thereat widely applied (Tao et al., 2018). Computer-Aided Design (CAD) systems are no exception 

here, intending to automate several CAD modelling activities identified as routine-like. Hence, among 

many, researchers have increasingly acknowledged DA as an approach toward reducing the 

repetitiveness of mundane design tasks in CAD systems, with the constant aim to improve the efficacy 

and precision of user interaction with the tool (Machchhar and Bertoni, 2021). Given their expanded 

support for the design process as facilitators of model-based engineering, CAD systems are now 

generally recognized in various industries. In general, CAD systems allow the user to perform the 

activity of solid modelling, a field that covers a wide area of activity directed toward the solid physical 

objects' representation and basic operations on them (Hoffmann, 1989). Therefore, the fundamental 

representation of designs within a CAD system is the solid object or model, with its geometric and 

topological representations (Regli, 1995). A solid object or model can be built using design features, a 

CAD paradigm known as design-by-features or feature-based modelling (Salomons et al., 1993). In a 

most modern CAD systems, the latter offers the user a library of predefined features that can be 

instantiated to build a CAD model (Pedley, 1997). Features are parts of components that constitute the 

CAD model (Salomons et al., 1993), or generic shapes with characteristics defined by attributes that 

define the geometry of a model and have knowledge associated with them. When interacting with the 

CAD tool, users choose the features from the library while creating the model, simultaneously 

recording CAD modelling operations or the history of chosen features that lead to the final model 

(Regli, 1995). Regarding CAD systems and DA, data mining tools and machine learning is integrated 

into the design research to predict geometries and reconstruct the CAD models. However, the great 

potential of automating the CAD modelling process is the prediction of the next user's feature-based 

operation, inspired by text editors' predictions, e.g., their anticipation and suggestions of words or 

phrases while typing. This research is motivated by the desire to automate and predict users' CAD 

feature-based modelling operations. It is, therefore, important to determine the different groups of 

feature-based CAD models and the main differences in their modelling operations transitions or 

changes from one feature to another while performing feature-based modelling. Thus, the overall 

objective of this study to categorize CAD models based on numbers and transitions between CAD 

modelling operations as one of the very first steps toward CAD modelling automation and predictions, 

motivated by the following two research questions: 

• What are the groups of feature-based CAD models regarding the total and unique number of 

CAD modelling operations? 

• What are the main differences within the groups from the first research question in the domain of 

transitions of feature-based CAD modelling operations? 

This paper first discusses the related work employing CAD modelling sequences and clustering the 

CAD models and databases. That is followed by the methodology description, including the dataset 

collection and structuring, as well as the clustering methods applied in the study. Statistics of the 

dataset and the results of clustering CAD models are then presented to understand the differences 

among sequences of CAD modelling operations within obtained CAD models' clusters, followed by a 

discussion of whether the valuable insights can be inferred from the CAD models' clustering analysis. 

2 RELATED WORK 

2.1 CAD action sequences 

Recording designer actions in CAD systems is a common design analysis approach for design 

behaviour and decision-making research. Thus many researchers extensively obtain log or time series 

data sequences to better understand CAD modelling patterns from various perspectives, such as 

studying iterative CAD modelling cycles with the aim of data-driven decision making (Rahman et al., 

2019), inferring behaviour differences of designers' with different CAD skill levels (Chen et al., 2021), 
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or differentiate designers' CAD actions on individual and team level (Celjak et al., 2022) . However, 

CAD systems also offer valuable information on the CAD modelling design history. It is beneficial 

since CAD models have become the standard shape representation in almost every industrial 

production sector (Wu et al., 2021). Therefore, more recent work on CAD modelling sequences could 

be classified into three categories: (a) works on 3D shape generation, (b) CAD models reconstruction 

and (c) automating the CAD modelling process. All the categories are challengeable due to the diverse 

ways of CAD models' design. Current work on the learning-based 3D shape generation uses CAD 

datasets and machine learning to predict the 3D geometries from various geometry representations 

such as boundary representations (B-reps) (Jayaraman et al., 2022), 2D sketches (Li et al., 2020), 

point-clouds (Uy et al., 2021) or triangle meshes. Furthermore, CAD reconstruction (e.g., feature 

recognition) is the detection of geometric primitives and the correspondence of primitives holistically 

modelled as a modelling sequence. The learning-based approaches are also mainly applied to 

potentially learn the rules that can automate scenarios requiring user input and generalize when 

confronted with unfamiliar geometry (Willis et al., 2021), both being compared with the traditional 

methods that cannot completely rebuild the model operation sequences, such as rule-based or 

grammar-based. Thus, Fusion 360 Gallery (Willis et al., 2021), Zone Graphs (Xu et al., n.d.), 

DeepCAD (Wu et al., 2021), and CSGNet (Sharma et al., 2017) are the recent research learning-based 

attempts to reconstruct the 3D models from CAD modelling sequences generated from B-reps or 

Constructive Solid Geometry (CSG) representations. 

Additionally, datasets of CAD models used in these studies use large-scale synthetic CAD modelling 

data, whereas only Fusion 360 Galley provides approximately 8600 human-designed CAD modelling 

sequences. Further, the feature-based CAD modelling sequences can undoubtedly be useful data for 

machine-learning applications to predict and suggest the following user modelling operation. The recent 

work on predicting the hole feature by using association rule learning focuses exactly on automating the 

CAD modelling process (Vasantha et al., 2021). In contrast to all these works and despite the research 

progress in using CAD data for learning-based purposes, only a limited number of research focuses on 

sequences of CAD modelling operations. Hence, we focus our research on understanding how the CAD 

model's design came about by using a fuller array of human-designed CAD modelling operations beyond 

a sketch and extrude (Willis et al., 2021; Wu et al., 2021), sweep (Li et al., 2020) or boolean operations 

(Xu et al., 2021). As a first step in automating user interaction with CAD systems, the characteristic 

transitions between feature-based operation needs to be understood. Additionally, CAD moved to the 

cloud, thus enabling access to a large amount of user-generated CAD modelling data. Such data is 

subject to various learning-based and statistical methods, including clustering, which could be used to 

determine groups that could answer the study's research questions.  

2.2 CAD models clustering 

Clustering is an unsupervised machine learning technique aiming to group unlabelled data objects 

(Omran et al., 2007). The grouped data called clusters are represented of objects similar to each other 

concerning the surrounding or other clusters. It is mainly used for pattern recognition. Therefore, the 

clustering algorithms are also used for exploratory data mining of CAD models. The existing 

approaches of clustering CAD models can be classified into two categories regarding their geometry 

and topology: (1) segmentation of CAD models and (2) grouping CAD models from databases. Many 

CAD model segmentation research focuses on mesh or point cloud and solid CAD models. For the 

former, hierarchical clustering is widely used for decomposing meshes of 3D objects via finding the 

meaningful components of the mesh and generating the exact boundaries between the components 

(Katz and Tal, 2003; Xiao et al., 2011) or for partitioning a surface of the 3D object into a hierarchy of 

disjoint face clusters (Garland et al., 2001). However, clustering solid 3D models for their 

segmentation or CAD models database partitioning research works is rare. Most of the available work 

on clustering 3D CAD models uses a B-rep descriptor, a form of an internal representation of a 3D 

CAD model that essentially consists of a set of edges and a set of faces used by designer to describe 

the shape of the model in 3-dimensional space. B-reps are, for the clustering analysis, transformed into 

two-dimensional coordinate points corresponding to the nodes of the attributed adjacency graph 

(AAG). For example, Yuan et al. and Li et al. use single-body CAD parts in the form of STEP files to 

divide point sets into several groups to achieve the model's segmentation using k-means, k-medoids 

and spectral clustering techniques. In contrast, Han et al. and Bonino et al. perform spectral clustering 

for CAD assembly segmentation. The latter is defined as connected sets of parts sharing some 
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characteristics (Bonino et al., 2021). CAD assembly model is also described by an AAG where the 

node and its attribute represent respectively part assembled and attributes' information of the part, 

edges, their connection relationship, and assembly constraints between parts (Han et al., 2019). 

Partitioning the CAD repository into subspaces of similar CAD models is another research direction 

with the overall objective of facilitation and automation of design retrieval and reuse. Thus, a model 

signature graph (MSG) and AAG of CAD model parts used as a solid model representation 

constructed from B-Rep are used as input data into the clustering algorithm for CAD models 

recognition (Peabody et al., 2001; Roj et al. H.-B., 2015).  

The related work regarding CAD clustering shows a lack of research on clustering the CAD modelling 

history data. Hence, performing the clustering methods on sequences of CAD modelling operations is 

the overall objective of this study. To get the insight into the clusters' most frequent feature-based 

transitions, the clustering methods are performed on transition probability matrices of features-based 

CAD modelling history. 

3 METHODOLOGY 

This section presents the approach for clustering CAD models performed on CAD design history in 

terms of feature-based modelling operations and their sequential order. Thereat, 3D CAD models and 

their sequences of modelling operations are used as the main raw dataset. Its collection, cleaning, 

structuring and clustering is described in this section. 

3.1 Dataset collection 

The main aim of data collection is to retrieve 3D CAD model parts and their feature-based design history 

to extract the CAD modelling sequences, which were further used to perform unsupervised clustering 

methods. Generally, a CAD model design history lists the feature-based operations used during 3D CAD 

modelling in the order of their creation. Therefore, the dataset used in this study consists of 1737 single-

body Onshape Part Studio 3D models, of which 1273 were created by the 3rd year mechanical 

engineering students at the University of Zagreb. During a design project-based course, students have 

created, by using the feature-based design approach, 3D CAD representation of clamping device 

assemblies and their parts. The rest of the database was obtained by scraping the Onshape public 

database. Once the dataset as collected, sequences of CAD modelling operations were sourced using the 

Get Feature List API described in the official Onshape Developer Documentation (Onshape, n.d.). 

3.2 Dataset cleaning 

Data extracted in the form of CAD modelling operations sequences were cleaned and structured based 

on the following criteria. Although a sketch is the backbone of the solid 3D model, the sketch items 

were removed from the modelling sequences to get insight into transitions exclusively used for the 3D 

CAD shape representation. Also, certain features imply the existence of sketch features, thus implying 

the sequences between 3D features and sketch. Similarly, to use the transition matrices of CAD 

modelling operations, CAD models that consisted of zero (53 models) or only one (256 models) 

operations were removed from the dataset. Thus the final dataset is reduced to 1419 CAD models 

consisting of, cumulatively, 13 unique features. In addition, to reduce the number of feature-based 

operations in the dataset, circular pattern, linear pattern, and mirror features were replaced with an 

operation named "composite feature". In the same manner, the chamfer and fillet features were 

replaced with "edge-cut feature". In conclusion, the following are ten CAD modelling operations, both 

for addition and removal of 3D representation material, considered for this analysis: extrude, revolve, 

sweep, loft, edge cut, composite feature, hole, draft, helix, and shell (Hoffmann, 1989).  

3.3 Dataset structuring 

Once CAD models’ operations and their sequential order were collected and cleaned, the following 

information was extracted: 

• Total number of CAD modelling operations per CAD model, 

• Number of unique CAD modelling operations per CAD model, and 

• Transition probability matrix for every CAD modelling sequence. 

Regarding numbers, total number corresponds to sequence operations' items lead to the final CAD 

model, whereas the unique number counts only the distinct values of feature-based operations. Further, 
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the first-order Markov chain describes transitions from one CAD modelling operation state to another. 

A Markov chain describes a sequence of states where the probability of transitioning from states 

depends only on the current state. Those probabilities are summarized in the transition matrix, an 

approach used in this study to describe the sequences of CAD modelling operations considering ten 

operations in total. Thus, a final transition matrix for each 3D model from the dataset was a square 

(10x10) matrix whose rows and columns correspond to 10 unique feature-based CAD modelling 

operations sorted alphabetically. In the transition matrix: 

• Rows represent the first state, 

• Columns represent the final state and 

• Entry (i, j) is the conditional probability that first state = j, given that final state = i: the 

probability of going from state i to state j. 

To prepare data for the clustering as the next analysis step, data information was converted to vectors. 

Since the clustering was performed on two levels, two types of vectors were extracted. For the first-level 

clustering, each CAD modelling sequence is converted to a 1x2 vector, representing a point in 2-

dimensional space whose elements correspond to the numbers of total and unique operations in a CAD 

modelling sequence. Similarly, the second clustering level requires the conversion of 10x10 transition 

matrix to a 1x100 vector, representing a point in 100-dimensional space, whose columns correspond to 

the states from the feature-based CAD modelling transition matrix. Furthermore, since the clustering 

analysis is carried out on the rows of an array or matrix (Murtagh & Contreras, 2011), 1419 CAD models 

were formed into 1419x2 and 1419x100 matrices, respectively. Driven by the research objective, both 

matrices were used for clustering methods, each corresponding to the order of research questions.  

3.4 Clustering 

Clustering, as method for underlying patterns recognition (Hamerly & Elkan, 2002) is an unsupervised 

algorithm used for grouping data into clusters based on some similarity measure (e.g., Euclidean 

distance) (Oyelade et al., 2019). Furthermore, hierarchical and partitional clustering are the techniques 

on which most clustering algorithms are based. This study adopts hierarchical and K-means clustering 

(as a partitional clustering algorithm) methods for defining cluster numbers and clusters within the 

dataset, respectively. 

The K-means clustering algorithm requires the number of clusters to be specified in advance. Thus, 

hierarchical clustering (the clustering method that doesn't require the cluster number input) and the 

elbow plot method were applied to find the suitable number of clusters. A hierarchical clustering 

method is a bottom-up approach where the first algorithm step corresponds to placing each data object 

in a separate cluster. After that, it finds the nearest data object and merges them, repeatedly executing 

the algorithm until one big cluster is formed (Oyelade et al., 2019). The number of clusters is then 

determined based on the hierarchical tree-like structure of the dendrogram that is created after 

algorithm execution. On the other hand, the method commonly used to determine the suitable number 

of clusters is the elbow plot. The method performs K-means clustering for an arbitrary range of cluster 

numbers (K). In addition, it calculates the distortion score, e.g., the sum of squared distances between 

the data objects in generated clusters and their centroids (Shi et al., 2021). The suitable number of 

clusters suggested by the elbow plot is the inflexion point on the curve. 

The clustering algorithm further used in this study is K-means, which is widely used for unlabelled 

datasets. It partitions the dataset into K clusters represented by its randomly selected or apriori-derived 

centroid values. Then, each data object in the given clusters is assigned to the closest centroid in the 

iterative centroid recalculation process until convergence is achieved (Omran et al., 2007).  

In this study, the K-means clustering was performed on two research levels: 

1. Grouping CAD models according to the total and unique numbers of CAD modelling operations 

2. Grouping the clusters' items from the above statement according to their transition matrices  

The number of clusters was determined using the elbow plot method and substantiated by plotting the 

hierarchical dendrogram for each clustering level. The expected clustering output, thus, was to get the 

insight to: 

1. Average transitions of CAD modelling operations for the clusters of CAD models grouped based 

on the numbers (total and unique) modelling sequences 

2. Average transitions of the CAD modelling operations for the second-level subclusters  

Clusters on both clustering levels are then visualized in 2D scatter plots. Clusters' items from the 

second level represent points in 100-dimensional space. Thus the Principal Component Analysis 
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(PCA) is used to reduce the number of dimensions without much loss of information (Jollife and 

Cadima, 2016). 

4 RESULTS  

4.1 Dataset characterisation 

After dataset cleaning and structuring, CAD models used for the cluster analysis contain a total of 8039 

feature-based CAD modelling operations and 6620 operation transitions. As shown in Figure 1(a)., the 

distribution of the total number of CAD modelling operations per single CAD model is positively 

skewed. That means most CAD models contain between 2 and 6 feature-based operations with a mean 

value of 5.7 and a median of 4 operations per CAD model, with two operations being the shortest 

feature-based design sequence in the dataset (285 or 20% of analysed CAD models). In contrast, the 

models with the longest feature-based CAD modelling sequence has 30 features. Concurrently, seven is 

the maximum number of unique operations per CAD model, whereas one unique operation is a 

minimum. The average and median are 2.3 and 2.0, respectively. Furthermore, the most common 

operation in the dataset is extrude, which appears in 59.2% of CAD models, followed by the edge cut 

operation, whose share is 22.1%. Conversely, the dataset's draft and loft operations are the least 

represented. The dataset operations proportion is shown as a pie chart in Figure 1(b). Furthermore, given 

the transition between operations in CAD modelling sequences, out of 6620 CAD modelling operation 

transitions, 74.5% or 4952 transitions falls on transitions between extrude and edge cut (both directions). 

Additionally, 10% is the share of transitions from extrude to the remaining eight features (composite 

feature, draft, helix, hole, loft, revolve, shell and sweep, respectively). In comparison, the transitions 

from the 8 previously mentioned operations to extrude have a share of 8.8%. 

 

                                 (a)                                                                  (b)                         (b) 

Figure 1. Distribution of CAD modeling operations (a) and their proportion (b) 

4.2 Clustering  

4.2.1 First-level clustering 

Firstly, from the hierarchical agglomerative clustering dendrogram, the elbow plot method was 

performed on the range number of clusters from k=1 to k=9. Hence, for the given data, the optimal 

number of clusters obtained from the elbow plot method is three, annotated with a dashed line and 

shown in Figure 2(b). Also, three clusters are presented in the dendrogram in Figure 2(a). 

Furthermore, the first-level clusters of CAD models correspond to the range of CAD modelling 

operation numbers (total and unique). 

Therefore, the first cluster (Cluster 1) corresponds to CAD models containing 2 to 5, while the second 

cluster (Cluster 2) groups CAD models with 6 to 12 operations, thus implying the third cluster (Cluster 

3) of CAD models with equal to and more than 13 CAD modelling operations in a sequence. 

Furthermore, CAD models had been modelled on average using 3.2, 7.9 and 17.4 feature-based 

operations, whereas using only 1.9, 2.8 and 3.2 unique operations for cluster order, respectively. The 

number of CAD models in each cluster is 890, 426 and 103.  
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Figure 2. Dendrogram (a) and elbow plot for k=1 to k=9 (b) 

To further analyse the patterns of CAD modelling sequences, the average first-order Markov chain 

transition matrices for each cluster are calculated and visualized as transition diagrams in Figure 3. 

Each cluster shares the highest probability between extrude operations. Thus, the transition probability 

between extrude operations is 0.47, 0.55, and 0.62, respectively, for the cluster number order. 

Although diagrams reveal a significant equivalence level among clusters by sharing a high probability 

of transitions between extrude and edge-cut operations, this transition probability also increases as the 

cluster number increases. Moreover, as the number of operations appearing in the CAD model 

sequences increases, the average transitions between operations other than exclusively extrude and 

edge-cut increases. Thus, the following highest probabilities are 0.08 from extrude to hole operation 

(Cluster 1), 0.13 from sweep to extrude operation (Cluster 2) and 0.2 for the transition from composite 

feature to extrude (Cluster 3).    

  
                    (a)                                        (b)                                        (c)                     (b)                    (c) 

Figure 3. Characteristic transitions between operations for clusters 1 (a), 2 (b) and 3 (c) 

4.2.2 Second-level clustering 

Further clustering was performed on the transition matrices for the three datasets corresponding to the 

clusters obtained from the first-level K-means clustering analysis. For the optimal number of 

subclusters, the elbow plot method and hierarchical dendrogram were used: 3 clusters for Cluster 1 

and 3, respectively, and 4 clusters for Cluster 2. The resulting subclusters shown in Figure 4. represent 

the final groups of CAD models obtained by unsupervised clustering based on transitions of feature-

based CAD modelling operations. From the average transition matrices for each subcluster, it can be 

inferred that clusters share similarities among subclusters but significant differences as well. 

Regarding the similarity between subclusters, each has groups of CAD modelling sequences with 

dominant transitions between extrude and combinations of extrude and edge-cut operations 

(subclusters 1.2, 1.3, 2.1, 2.2, 3.2 and 3.3). On the other hand, regarding differences, there are 

subclusters with a high value for the average transitions from composite feature to extrude (0.96, 

subcluster 2.3) and transitions from sweep to extrude (0.84, subcluster 2.4), respectively. Similarly, 

subcluster 3.1 has a dominant transition between shell and extrude (0.97). Interestingly, the transitions 

between extrude features follow the mentined transitions according to their value. Finally, in 

subcluster 1.1, no dominations in terms of transitions of CAD modelling operations can be inferred. 
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Subclusters 1.1, 1.2, 1.3 

  
Subclusters 2.1, 2.2, 2.3. 2.4 

   
Subclusters 3.1, 3.2, 3.3 

Figure 4. K-means clustering plot for ten subclusters (clusters 1, 2 and 3) 

5 DISCUSSION  

The presented results provide insights into the differences between the characteristic transitions of 

CAD modelling operations for the obtained clusters of 3D models. 

With the help of clustering algorithms, the answer to the first research question has been provided. 

Namely, three groups of CAD models are obtained using a clustering unsupervised learning algorithm 

based on the number of operations in CAD modelling sequences. Results suggest that regardless of the 

modelling sequence length, only a few unique CAD modelling operations are used for building most 

of the feature-based 3D CAD models. This finding is in line with the statement of Willis et al. that the 

sketch and extrude are the two most common modelling operations used in approximately 80% of 

CAD models from their dataset of CAD models created by human designers. Indeed, the here 

presented data show that if only models with at least two CAD modelling operations are considered, 

the proportion of the models containing the extrusion feature increases to approximately 88%. They 

also claim the modelling operations the most used after the sketch and extrude are - fillet and chamfer 

(edge cut operations) (Willis et al., 2021), which our study has confirmed with the share of 26.8% of 

the total number of operations used in the dataset. 

Furthermore, second-level clustering analysis has answered the second research question. Among the 

high similarity among groups generated when addressing the first research question, the second-level 

clustering provided a more thorough analysis that facilitated the differentiation of groups of CAD models 

with dominant transitions that could not have been noticed in three main clusters. For example, the 

subcluster with a dominant transition from sweep to extrude operation has emerged (subcluster 2.4), 

suggesting groups of CAD models with curved geometry segments. Furthermore, transitions from 

composite feature to extrude (subcluster 2.3) and shell to extrude (subcluster 3.1) also emerged after the 

second-level clustering. Moreover, the second-level clustering analysis shows a significant difference 

comparing the transitions of CAD modelling operations between CAD models with a small and larger 

number of operations. While the subclusters (1.2 and 1.3, respectively) of CAD models with a small 

number of operations are entirely dominated by transitions from extrude to extrude and edge cut, in the 

subclusters of CAD models containing more than five operations per model, new transition patterns have 
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emerged. Thus, subcluster 2.3 is dominated by transitions from composite feature to extrude, whereas the 

transition from sweep operation to extrusion is dominant in subcluster 2.4. 

In contrast, despite not dominating any subcluster, the composite feature is exclusively followed by 

extrude or edge cut operations, suggesting that CAD models within these transitions are created using 

individual extrude or edge cut operations and then multiplying or mirroring them. By further analysing 

CAD models with the largest number of operations, the domination of transition from shell operation 

to extrude is specific for cluster 3 only (subcluster 3.1). Additionally, the specificity of subcluster 3.1., 

but also the other subclusters, albeit in a smaller proportion, is domination of transition from edge cut 

to extrude. Simply put, CAD users create the whole model, and then modify the necessary filleted and 

bevelled edges. Furthermore, the helix to sweep transitions exclusively have the mentioned direction, 

suggesting that subclusters 1.1 and 2.4 have the CAD models representing spring elements. To 

summarise the analysis of the transitions, it can be concluded that, although some of the transitions 

among operations have been expected or assumed (extrude to extrude, extrude to edge cut or helix to 

sweep), the study has empirically confirmed the assumptions on a larger number of CAD models. 

Furthermore, the study has also provided insight into the potential of using sequences of feature-based 

CAD modelling operations. The insights for using CAD modelling operations beyond extrude, sketch, 

and sweep is scant; hence, this study has proven that the fuller array of operations can be used for 

research work that aims to automate the CAD modelling process. Compared to the work using the 

association rule learning to predict the hole feature by Vasantha et al. (Vasantha et al. 2021), 

performing the clustering unsupervised learning methods on the first-order Markov model transition 

matrices of the CAD modelling operations has also shown the potential of being the first step toward 

automating the user interaction with the CAD system. Indeed, the three identified groups (clusters) of 

models with a different number of total and unique modelling operations, as well as the ten identified 

subgroups (subclusters) show that there exist characteristic sets of sequences for different target 

geometries when 3D modelling. The sequences imply rules on which the automation of the user 

interaction with CAD can be based. 

6 CONCLUSION 

The study has attempted to provide insight to different groups of 1419 CAD models containing ten 

unique modelling operations by using the unsupervised learning technique of clustering. The CAD 

models have been clustered on two levels, performing the algorithm on a total and a unique number of 

CAD modelling operations and first-order Markov model transition probability matrices for sequences 

of CAD modelling operation. As a result, three CAD groups (clusters) emerged in the first clustering 

level, corresponding to the number of CAD modelling sequences, whereas the second clustering level 

refined the clusters and provided ten subclusters. The obtained clusters and subclusters have given 

insight into the characteristic average transitions between CAD modelling operations. 

However, the next steps need to be defined due to the study's limitations, which are also guidelines for 

future work. First, despite the fuller array of feature-based operations used in the study analysis, sketch 

features and the removal and addition of the 3D shape representation material need to be included in 

future analyses. In addition, the first-order Markov model states depend only on the present state but not 

the preceding states in the sequence of CAD modelling operations. Thus, the further implementation of 

statistical models used to describe the evolution of observable events depending on internal factors (e.g., 

the Hidden Markov model or deep learning techniques) needs to be considered as the study's extension. 

Furthermore, despite more than 1000 CAD models humans have created, we aim to broaden their 

number and scope (e.g., using data provided by the professionals) with the overall objective of accurately 

predicting the next CAD user's step while performing feature-based CAD modelling.  
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