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Microarrays represent a powerful tool for studies of diet–gene interactions. Their use is, however, associated with a number of technical challenges and

potential pitfalls. The cost of microarrays continues to drop but is still comparatively high. This, coupled with the complex logistical issues associated

with performing nutritional microarray studies, often means that compromises have to be made in the number and type of samples analysed. Additionally,

technical variations between array platforms and analytical procedures will almost inevitably lead to differences in the transcriptional responses observed.

Consequently, conflicting data may be produced, important effects may be missed and/or false leads generated (e.g. apparent patterns of differential gene

regulation that ultimately prove to be incorrect or not significant). This is likely to be particularly true in the field of nutrition, in which we expect that many

dietary bioactive agents at nutritionally relevant concentrations will elicit subtle changes in gene transcription that may be critically important in biological

terms but will be difficult to detect reliably. Thus, great care should always be taken in designing and executing microarray studies. This article seeks to

provide an overview of both the main practical and theoretical considerations in microarray use that represent potential sources of technical variation and

error. Wherever possible, recommendations are made on what we propose to be the best approach. The overall aims are to provide a basic framework of

advice for researchers who are new to the use of microarrays and to promote a discussion of standardisation and best practice in the field.

Microarrays: Standardisation: Statistical analysis: Experimental design

Microarray technology has been available for several years.

Expression profiling using microarrays offers a powerful tool to

gain a comprehensive view of biological systems by measuring

the expression of thousands of genes simultaneously. The increas-

ing interest in microarrays in recent years has led to a few

attempts to standardise aspects of the protocols used (Duggan

et al. 1999; Hedge et al. 2002). However, even though production

capabilities and the use of microarrays are becoming increasingly

well established and widespread, variation still arises due to the

overall complexity of the experimental approach. Significant

differences exist with regard to fabrication techniques and user

protocols. Such differences make the comparison of results

across platforms very difficult. All parts of the protocol (i.e.

array production, RNA extraction, cDNA labelling and hybridis-

ation, and data analysis techniques) include a multitude of par-

ameters that need to be optimised to reach stable experimental

results. The absence of approaches that are based on ‘best prac-

tices’ for the design, fabrication and end use of microarrays

makes comparative data analysis problematic.

For commercial arrays, the use of the manufacturers’ protocols

already helps to achieve a degree of standardisation, at least in the

labelling, hybridisation and some or all of the analytical steps. For

this reason, in-house arrays form the primary focus of this review.

Reference is, however, also made to a number of issues that are

specific to the widely used Affymetrix GeneChips (Santa Clara,

CA, USA). Furthermore, the discussion of experimental design,

sample preparation and data interpretation is a generic matter

that is largely independent of the platform used.

Practical aspects

RNA extraction

The quality and quantity of RNA are vitally important for assur-

ing the reliability and reproducibility of microarray results. RNA

is the material that is used to generate the labelled extract. The

composition of the different species within the labelled extract

should accurately reflect the gene expression profile in a tissue

or cell sample. Poorly processed or partially degraded samples

may not faithfully represent the true transcription profile (Hedge

et al. 2002).

Important issues related to RNA extraction include variability

in RNA yields from various tissues and states of cell activation,

the processing of different quantities of tissue, and the purity of

the extracted RNA. The end product of a successful RNA iso-

lation procedure is minimally degraded total, or polyA-enriched,

RNA free from contaminating agents such as RNases and other

proteins, and genomic DNA.
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Several conditions have been proposed as crucial for the con-

trol of variability:

1. standardisation of cultures and purification methods to

achieve consistency (Benes & Muckenthaler, 2003; Forster

et al. 2003);

2. the performance of at least three biological replicates (Benes

& Muckenthaler, 2003; Tzu-Ming et al. 2004);

3. the optimisation of purification steps and consistency with

the extraction method (Naderi et al. 2004);

4. rigorous quality control (Naderi et al. 2004; Forster et al.

2003; Ryan & Huffaker, 2004).

To protect RNA from degradation, tissues can be treated in two

different ways: snap-freezing in liquid N2 (particularly suitable

for larger tissue samples, e.g. .50 mg) or immersion in a power-

ful RNase inhibitor (ideal for smaller tissue sections, in which the

solution can penetrate cell membranes rapidly to inactivate cellu-

lar and other contaminating RNases). Reagents such as TRIzol

(Gibco BRL; Paisley, Scotland, UK) or RNA-Later (Ambion;

Huntingdon, Cambridgeshire, UK) buffers are used for this pur-

pose and have been found to be very effective for the preservation

and recovery of cellular RNA (Baker et al. 2004; Tzu-Ming et al.

2004; Ulrich et al. 2004; Waring et al. 2004).

The quality of the RNA isolated should always be assessed.

This can be achieved by spectrophotometry and gel electrophor-

esis, but a more thorough analysis is recommended by using a

system such as the Agilent Bioanalyser (Palo Alto, CA, USA).

This gives accurate information about sample concentration,

constituents, possible contaminants and degree of degradation.

RNA amplification

In situations in which the quantity of RNA available is limiting,

the options for enabling accurate expression profiling are (1) to

pool RNA samples from different sources within the same treat-

ment group, (2) to increase cDNA labelling and hybridisation effi-

ciency, and (3) to use an RNA/cDNA amplification strategy. At

present, there are two main approaches for RNA amplification

in vitro based on the use of T7 RNA polymerase and PCR.

RNA amplification with T7 RNA polymerase is, unlike PCR,

linear and not biased by the size of the template (under optimal

conditions). Consequently, most microarray amplifications are

based on this method (Van Gelder et al. 1990). In this strategy,

polyA RNA is primed for cDNA synthesis by a polyT oligonu-

cleotide containing the 17 Bp sequence for the T7 RNA polymer-

ase promoter at or near its 50 end. After second-strand synthesis

has been completed, the template is then transcribed by a

highly concentrated T7 polymerase, resulting in a 1000-fold

amplification of RNA that can be used for hybridisation analysis.

If necessary, a second round of amplification can be performed

simply by repeating the procedure (Baugh et al. 2001). Sub-

sequent cycles of aRNA amplification can be successfully per-

formed, and the products can be used as labelled extracts on

microarrays (Xiang et al. 2003).

The PCR-based strategy has been applied to evaluate the gene

expression profile of single cells (Chiang & Melton, 2003).

Through sequential reverse transcription and PCR amplification

of the whole-cell transcriptome, the authors typically generated

10–20mg single-cell cDNA, demonstrating that although some

distortion of the original single-cell transcript distribution cannot

be excluded, a high degree of confidence can be granted to the

comparison of single-cell profiles (Chiang & Melton, 2003).

RNA amplification can be used as an effective tool in microarray

analysis, but it is recommend that the degree

of amplification should be kept to a minimum. The possibility

that amplification may introduce some skewing of the

RNA or cDNA population should be compensated for by ensuring

that all samples under study are processed in the same manner.

Labelling methods

The reproducibility, sensitivity and accuracy of a selection

of different labelling methods in cDNA microarray

hybridisation have been compared (Manduchi et al. 2002; Badiee

et al. 2003). For Affymetrix GeneChips, there are two standard lab-

elling protocols: one-cycle; and two-cycle target labelling assays

(www.affymetrix.com) with robust performance for 1–15mg and

10–100 ng total RNA as starting material, respectively. Addition-

ally, the control of cRNA fragmentation is a critical step of the

Affymetrix labelling protocol. Failing to perform this step consist-

ently results in an inconsistent hybridisation signal.

For other array formats, there are three common labelling

methods adopted by most scientists: direct labelling, indirect lab-

elling and dendrimer labelling. The direct labelling method incor-

porates a deoxyribonucleoside triphosphate fluorescently labelled

with a bulky dye adduct (Cy3 or Cy5) during reverse transcrip-

tion. The indirect labelling method incorporates a reactive

amine derivative of 5-(3-aminoallyl)-20- deoxyuridine 50-tripho-

sphate during reverse transcription. Subsequent to the reverse

transcriptase reaction, succinimidyl esters of Cy3 or Cy5 are

covalently coupled to the amino-allyl-labelled cDNAs. Both of

these methods are dependent upon the efficiency of the incorpor-

ation of modified dNTPs and the sequence of the clone itself for

the amount of label incorporated.

In contrast, the dendrimer labelling method is entirely depen-

dent upon nucleic acid hybridisation kinetics. The initial reverse

transcriptase reaction is primed with an oligonucleotide contain-

ing a specific dendrimer ‘capture’ sequence. The cDNAs contain-

ing the ‘capture’ sequences are first hybridised to fluorescently

labelled dendrimers and then to the array. A dendrimer is a com-

plex nucleic acid structure created by hybridising nucleotide oli-

gomers to specifically promote the formation of a complex

branched structure (Nilsen et al. 1997). Dendrimer labelling has

the advantages of requiring less starting material and exhibiting

minimal sequence or length dependency (Badiee et al. 2003).

The disadvantage is presented by the cost.

The direct incorporation method has the advantage of being

easy and quick to perform, but some researchers believe that it

might introduce sequence-specific artefacts (Baugh et al. 2001;

Kerr et al. 2001; Taniguchi et al. 2001), probably caused by the

variable and differing rates with which these bulky nucleotide

analogues are incorporated into the synthesised DNA molecules

by reverse transcriptase (the direct incorporation protocol

having a somewhat higher incorporation rate for the Cy3 dye).

The indirect labelling technique, despite being laborious and

time-consuming, is still popular for several reasons:

1. The yield of cDNA is higher with the post-labelling method

than with direct incorporation.

2. Indirect incorporation of the reactive dyes of Cy3 and Cy5 is

greater than direct CyDye-labelled nucleotide incorporation.
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3. The post-labelling method is less prone to the production of

artefacts caused by the size of Cy dye-nucleotides (e.g. chain

termination, proximity quenching, sequence-specific bias).

4. Post-labelling produces longer cDNAs, which is beneficial

when array targets have been derived from the 50 ends of

cDNAs.

Indirect labelling is proposed as a preferable option by Wurmbach

et al. (2003) and Benes & Muckenthaler (2003). When the

amount of RNA available is limited and the RNA amplification

is not feasible, the dendrimer labelling method is recommended

(Badiee et al. 2003).

Microarray construction

Microarray slides can contain either oligonucleotides or cDNAs

corresponding to the genes to be studied. Recent studies (Cao

et al. 2003; Tan et al. 2003) report the results of the comparison

between different microarray platforms, including the Affymetrix

GeneChip, custom cDNA arrays and custom oligo arrays. They

evaluated the internal consistency within each of the platforms

and compared the results across the platforms. Replicate analyses

on the same platforms proved highly reproducible, with correlations

of 0·93–0·99. However, direct comparisons between different plat-

forms revealed a marked lack of agreement, making it difficult to

establish which kind of platform gives the best performance.

The Affymetrix method is considered by most authors to pro-

vide the most reliable and reproducible results, but the high

cost induces many laboratories to prefer the printed arrays

option, which, if performed carefully, also can give a satisfactory

performance. The choice of home-made microarrays has led

researchers to focus on the development of strategies seeking to

ensure manufacture of high-quality microarrays.

Part of the variation in microarray experiments is introduced

systematically during the spotting, or deposition, of the DNA

on to the slide surface. The printing method is a very important

issue in maintaining consistent spot morphology from array to

array and in minimising variation between signal intensities.

Rickman et al. (2003) and Wrobel et al. (2003) investigated the

effect of a variety of detergent additives used in the printing pro-

cess on spot morphology and size, signal intensity and reproduci-

bility. Other works describe optimised methods for the fabrication

of high-quality cDNA microarrays, on the basis of key factors

including printing device, spotting pins, surface chemistry (Van

Hal et al. 2002), spotting solution, temperature and humidity

(Taylor et al. 2003; Park et al. 2004).

DNA oligonucleotide microarrays have become increasingly

popular. Some reports have focused on the sensitivity and speci-

ficity of different oligonucleotide-based microarray platforms,

demonstrating the advantages of oligonucleotide arrays compared

with cDNA arrays (Kane et al. 2000; Wang et al. 2003). The

source of oligonucleotides is another important factor. Differ-

ences in reliability have been observed, suggesting that the

design and possibly the quality of synthesised oligonucleotides

or methods used to create them are crucial for obtaining accurate

transcript profiles (Cao et al. 2003; Tolstrup et al. 2003).

Although it is true that shorter oligonucleotides (15–20 mers)

promise more specific binding with labelled extracts, some reports

indicate that 50–70 mers provide improved sensitivity while

maintaining the excellent specificity of shorter sequences

(Kane et al. 2000).

Classic microarrays are based on the deposition of representa-

tive sequences deduced from genome assemblies. These array

designs, therefore, are plagued with decay as an increasing

number of reporter sequences are determined to be inaccurate.

In order to circumvent this problem, researchers have recently

reported the validation of a universal array that is species and/

or genome independent (Roth et al. 2004). The technology

relies on a combination of enzymatic methods to digest and

treat the transcriptome before running it on the universal microar-

rays. Such a method is able to survey gene expression without

a priori knowledge of the sequence. Data can therefore be reana-

lysed and yield additional results as genome annotation evolves

without having to print a new array design and perform new

experiments. If proven scalable and effective in spite of the exten-

sive liquid-handling steps required by the method, the universal

array may well supersede current arrays in its ability to generate

data that can be reprocessed easily.

Gene focus v. genome arrays

Moving away from full (or near full) genome coverage arrays, a

growing number of biologists are favouring ‘focused arrays’,

devised to follow a selected number of genes involved in a path-

way of interest. The main advantage of such an approach is the

ability to retain the power of microarray technology for monitor-

ing a set of genes selected for their involvement in a specific path-

way, but with higher throughput capacity and at a fraction of the

cost of regular microarray experiments. However, users of such

arrays should be aware of the pitfalls and limitations of the

methods. The main issue when using focused arrays is that of

determining a reliable baseline signal. This can be achieved

only by providing significant technical replications of the genes

of interest on the arrays and including a large number of external

controls. Using spiked-in controls has proven to be an efficient

way of monitoring signal variations in microarrays and assessing

the overall quality of the experiment (van de Peppel et al. 2003).

Theoretical aspects

Scanning

This procedure can have a significant effect on data analysis and

interpretation. Once an array has been scanned, all data, whether

high or poor quality, are essentially fixed. The choice of scanning

settings is very important. The major scanner settings for deter-

mining the spot intensities are the laser power and the voltage

of the photomultiplier tube. A low laser power minimises

photo-bleaching. Forster et al. (2003) describe a procedure for

identifying scanner settings that provide the best representation

of signal distribution on the array. Such a procedure involves

the collection of a representative series of scatter plots and the

selection of the scanner setting producing the optimal signal

distribution.

Lyng et al. (2004) have investigated the relationship between

the photomultiplier tube voltage, spot intensities and expression

ratios for three different scanners, in order to define an optimal

scanning procedure. All the scanners used showed an almost

log-linear relationship between intensity and photomultiplier

tube voltage within the intensity range 200–50 000 (mean spot

intensity). The use of spot and background intensities outside

this range led to errors in the ratios. At intensities above
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50 000, error occurs due to the saturation of pixel intensities

within the spots.

This usable intensity range, present in most commercial scan-

ners, is considerably less than the maximum detection range of

the photomultiplier tubes and is not suitable for an accurate and

complete analysis. In fact, scanning performed by adjusting the

photomultiplier tube voltage to avoid saturation may not be the

optimal strategy due to the risk of achieving spot and background

intensities below the usable range. In order to increase the accu-

racy of the data as well as the number of data points retained in

each experiment, a procedure has been proposed in which two

scans are obtained for each of the red and green channels. The pri-

mary scan is set up so that the lowest feature signal intensities are

within the usable range of the scanner, while the secondary scan

is set up so that the intensities of the brightest spots are just below

the saturation level. The primary scan forms the basis of the ana-

lysis, while the secondary scan is used to correct the intensities of

spots with saturation in the primary scan (Lyng et al. 2004).

Image analysis

Many current image analysis software packages offer automatic

image-processing and spot-finding. Although useful, such soft-

ware processes are not entirely accurate and can introduce

errors via misalignment for spotted arrays. A common example

is misplacement of the grids by full-row or column offsets.

Since annotations are tracked by grid coordinates, this kind of

error can lead to incorrect annotations for a large number of

array features. Consequently, it is necessary to perform visual

inspections and, if necessary, a manual correction of grid place-

ment on each microarray image.

Regardless of the software package used, the accuracy of image

analysis depends ultimately on the combination of two processes:

segmentation and background subtraction. Segmentation is a pro-

cess used to differentiate the foreground pixels (i.e. the true

signal) in a spot grid from the background pixels. This is a

tricky computational problem because the spot morphology in a

poor-quality image can vary substantially and the background

can be very high. Furthermore, array images often contain other

imperfections.

There are several segmentation methods: fixed circle, adaptive

circle, adaptive shape and histogram segmentation (Yang et al.

2001a,b). Whatever segmentation method is used, it is crucial

to produce high-quality microarrays and collect high-quality

images: when the image quality is high, the algorithm can predict

the size of the spots and segment their signal accurately. If there is

dust contamination or a high background signal, the algorithm not

only rejects poor-quality spots, but might also incorrectly assign

contaminating particles as spots. In this case, both the true

signal and the background signals will be erroneously estimated

(Ahmed et al. 2004).

After the segmentation process, the pixel intensities within the

foreground and background masks (i.e. the areas in the image

defined as foreground and background by the software, respect-

ively) are averaged separately to give foreground and background

intensities, respectively. Median or other extraction methods can

be used when there are extreme values in the spots that skew

the distribution of the pixel intensities. Subtracting the back-

ground intensity from the foreground intensity in each channel

gives the spot intensity for calculating the expression ratio

between the two channels. The most commonly used background

subtraction methods are local background, morphological opening

and constant background. A fourth option is not to correct for

background at all.

Comparisons between image analysis procedures (Yang et al.

2001a) found that the choice of background correction method

has a large impact on the log-intensity ratios. It is suggested

that the morphological opening method provides a better estimate

of background than other methods (Yang et al. 2001b). This

method is an intermediate adjustment that provides less variable

estimates than local background methods and more accurate esti-

mates than intensities calculated with background subtraction.

However, in software packages in which morphological opening

is unavailable, calculating log-ratios without background subtrac-

tion is suggested to be better than subtraction of a local back-

ground (Yang et al. 2001b).

Data analysis

Data normalisation

Extracting biological information from microarray requires two

important steps: normalisation and statistical analysis. The first

step after data acquisition aims to determine the significance of

the data and to normalise the data. It is important to be able to

determine the quality of every single spot and to normalise the

signal. There are many sources of systematic variation in micro-

array experiments that affect the measured gene expression levels.

The main source of variation, if the array is printed and hybri-

dised properly, is accounted for by differences in labelling effi-

ciency between the two fluorescent dyes. A fundamental

assumption is that the amount of cDNA used to hybridise to the

array was the same. According to this, the overall signal for the

Cy3 and Cy5 should be the same.

The normalisation process aims to balance many of the sys-

tematic variations present in an array experiment (Quackenbush,

2002). In recent years, several normalisation techniques have

been developed (Kroll & Wolfl, 2002). The underlying principle

behind the different methods requires the identification of genes

that are not affected by experimental conditions and thus show

a ratio between the reference and the experimental sample

equal to 1. To compare measurements from gene expression

array experiments, quantitative data can be normalised using

reference genes or global normalisation methods based on mean

or median values. These methods are based on the assumption

that (1) selected reference genes are expressed at a standard

level in all experiments, or (2) that the mean or median signal

of expression will give a quantitative reference for each individ-

ual experiment (Quackenbush, 2001).

In addition to these methods, there are a number of alternative

approaches, including linear regression analysis, log-centering,

rank invariant methods and Chen’s ratio statistics, among

others. However, none of these approaches takes into account sys-

tematic biases that may appear in the data. Several reports have

indicated that the log2(ratio) values can have a systematic depen-

dence on intensity. Lowess normalisation uses locally weighted

linear regression to smooth the data. The smoothing process is

considered local because each smoothed value is determined by

neighbouring data points defined within the span. The process is

weighted because a regression weight function is defined for the

data points contained within the span. In addition to the regression

P. Garosi et al.428

https://doi.org/10.1079/BJN
20041385  Published online by Cam

bridge U
niversity Press

https://doi.org/10.1079/BJN20041385


weight function, one can use a robust weight function, which

makes the process resistant to outliers.

The use of a normalisation reference has a very important effect

on the entire process. Housekeeping genes whose expression is

expected to be constant across samples are often adopted as

internal controls. However, recent studies have demonstrated that

genes that do not change their expression levels in response to a

variety of experimental conditions simply do not exist. Another

approach to control variability in microarray experiments is to

spot genomic DNA in multiple dilutions on the array and to use

the signal obtained after hybridisation for normalisation purposes

(Benes & Muckenthaler, 2003).

A universal approach to normalising gene expression data is the

application of exogenous control genes. External controls can be

used as negative controls if no corresponding mRNA is present in

the RNA samples to be analysed; negative controls help to deter-

mine the ‘noise’ of a microarray experiment. In some cases,

internal controls are a used as positive or ‘spike-in’ controls:

exogenous RNAs are added to the reference and the experimental

samples in predetermined concentrations before the synthesis of

fluorescent-labelled cDNAs. Spike-in controls need to be titrated

to cover the entire range of signal intensities obtained in a micro-

array experiment to be representative for all detectable genes.

Spike-in RNAs added in equal amounts to the reference and

experimental sample can serve as normalisation controls (Benes

& Muckenthaler, 2003).

Statistical analysis

Replication of a microarray experiment is essential to define the

variation in gene expression for statistical calculation. Every

microarray experiment should be performed in at least triplicate

to increase data reliability. There are two types of replication: bio-

logical and technical. Biological replication refers to the analysis

of multiple independent biological samples (e.g. one tissue type

obtained from different patients with the same disease, or individ-

ual samples of a particular cell line under the same treatment),

whereas technical replication refers to the repetition of microarray

experiment using the same extracted RNA samples. Technical

replication provides a precise measurement of gene expression

for a particular sample and eliminates many technical variations

introduced during the experiment. Unfortunately, merely obtain-

ing a precise expression measurement of a tissue by technical

replication will not resolve the problem of biological variation.

It is therefore usually preferable to have biological replication.

In the end, an average fold change will be calculated for each

gene. By applying a cut-off value to the fold change, a set of dif-

ferentially expressed genes can be selected. However, this method

does not take into account the variance of expression of each gene

between replicate arrays.

When comparing two conditions, Student’s t test can be used to

find significantly differentially expressed genes (Cui & Churchill,

2003). By using Student’s t test, only genes showing a large

change in gene expression relative to the within-treatment var-

iance are considered to be significantly differentially expressed.

Student’s t test would perform well in the case of highly repli-

cated experiments since such replication would allow accurate

estimates of the variance within experimental treatments.

In microarray studies, however, samples are often available in

limited supply, and thus the level of replication is low, resulting

in poor estimates of variance. Furthermore, the performance of

thousands of t tests (since microarrays usually consist of

thousands of genes) will lead to a large number of false positives

among the genes detected as significantly differentially expressed.

This multiple testing problem can be approached by calculating or

estimating the false discovery rate, i.e. the proportion of false

positives in the total set of differentially expressed genes (Cui

& Churchill, 2003; Reiner et al. 2003). Certain statistical methods

that attempt to correct for the false-discovery rate can be used

(e.g. Benjamini and Hochberg, Bonferroni and Bonferroni

step-down [Holm]). However, none of these provides a perfect

solution as they overcompensate, leading to truly differentially

regulated genes being overlooked. Nevertheless, a statistical

method that takes into account the false-discovery rate, by

either attempting to correct for it or estimating its magnitude,

is advisable.

Use of a Bayesian statistical approach is another method to

improve confidence in the interpretation of DNA microarray data

with a low number of replicates. This approach is closely related

to the false-discovery rate approach (Efron et al. 2001). The Baye-

sian statistical approach incorporates prior information of within-

treatment measurements by assuming that genes of similar

expression levels have similar measurement errors. Thus, the var-

iance of a single gene can be estimated from the variance from a

number of genes with a similar expression level (Long et al. 2001).

The ANOVA approach (Kerr & Churchill, 2001; Kerr et al.

2001) is a generalisation of the t test that can be used when com-

paring more than two conditions. The idea behind ANOVA is to

build a model that takes into account the sources of variance that

affect measurements, and then to use the data to estimate the

variance of each individual variable in the model. By using this

approach, one can distinguish between interesting variations,

such as gene regulation, and side-effects, such as variations

caused by different dyes or arrays (Draghici, 2002).

As far as data analysis is concerned, independently developed

methods have been reported to outperform Affymetrix default

software in term of sensitivity and specificity. Robust Multichip

Analysis (Affymetrix, Santa Clara, CA, USA; Bolstad et al.

2003) and Match-only Integral Distribution (Novartis Research

Foundation, San Diego, CA, USA; Zhou & Abagyan, 2002)

have become the methods most broadly applied by Affymetrix

users for processing and normalising data. These methods have

now been incorporated in Affymetrix GREX software, but open

source packages written in R, as bioconductor modules are still

available (Ihaka & Gentleman, 1996).

Data interpretation

Selecting (groups of) differentially expressed genes from a micro-

array experiment should be followed by the interpretation of the

data in a biological context. For successful data interpretation,

it is important regularly to update information on the genes pre-

sent on the arrays, like gene names and annotations. A number

of Internet databases are available for this purpose. Information

on function of genes can be derived from the Gene Ontology data-

base (http://www.geneontology.org), which provides a structured

annotation of genes with respect to molecular function, biological

process and cellular component.

Principal component analysis can be used to reduce the high-

dimensional microarray data to two or three dimensions, in which

the data can then be visualised (Misra et al. 2002; Slonim, 2002).

This analysis can be used to assess the similarity or dissimilarity
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of expression profiles between samples, and it facilitates the selec-

tion of (groups of) relevant genes from the data.

Another interesting approach in data interpretation is pathway

analysis. The visualisation of gene expression changes in (meta-

bolic) pathways can help to evaluate which pathways are most

affected in the experiment. Tools for pathway analysis include

GenMAPP (Dahlquist et al. 2002; http://www.genmapp.org),

Pathway Miner (Pandey et al. 2004; http://www.biorag.org/

pathway.html) and Pathway Processor (Grosu et al. 2002; http://

cgr.harvard.edu/cavalieri/pp.html).

Probably the largest amount of information on genes that could

be useful for data interpretation is present in the literature.

Searching information on genes and protein in literature, such

as PubMed abstracts, will be facilitated by so called text-mining

tools, for example iHOP (Hoffmann & Valencia, 2004; http://

www.pdg.cnb.uam.es/UniPub/iHOP/).

Experimental design

Two basic types of microarray experimental designs exist: loop

and reference designs (Kerr & Churchill, 2001; Hwa Yang &

Speed, 2002; Kerr, 2003; Fig. 1). In the loop design, each

sample is compared directly with other samples in a circular

or multiple-pairwise (interwoven loop) fashion. This approach

has greater statistical power than the reference design (described

below) so the ability to detect differences is maximised. Also, all

of the data produced in a loop design experiment are derived

from test samples and are therefore useful experimental infor-

mation, whereas half the data produced in a reference design

experiment are redundant. The loop design may be very useful

when small numbers of samples are compared, but it can

become difficult to correctly design and execute loop studies

for a large number of samples. Another disadvantage of this

method is that ratios observed across different pairwise compari-

sons are not immediately comparable, and visualisation of the

results in a form that is easy to interpret is made more difficult

(Townsend, 2003).

When a large number of samples are analysed, the reference

design is preferable. In this method, each sample is compared

with a common RNA reference sample, serving as a common

denominator between different microarray hybridisations

(Kim et al. 2002; Novoradovskaya et al. 2004). Reference RNA

can be used for time course experiments in which the response

of cells to drugs or other perturbations to the biological system

is monitored over time. In addition, comparing microarray data-

sets produced in different laboratories will be made more reliable

by employing the use of reproducible common reference RNA

and can also be used to normalise data from one set of Affymetrix

experiments to another.

In studies evaluating expression differences in perturbed and

non-perturbed systems that are otherwise identical, RNA isolated

from the non-perturbed state generally serves as an excellent

reference as one can easily see changes in the perturbed state

in pairwise comparisons. However, when microarray studies

involve complex sets of comparisons between large numbers

of samples, the identification of a single reference RNA source

can be difficult. One solution that has been widely used is to

create an RNA pool derived either from all the samples

under study or from independent collections of samples

selected to achieve the widest possible representation of gene

expression. Yang et al. (2002) showed that RNA pools from

cell lines can be used to make efficient reference samples.

A problem is the difficulty in identifying samples that provide

complete coverage for all of the genes represented on the

array. Also, should the initial RNA reference sample be

exhausted, it is often difficult to precisely reconstruct a new

supply. The use of a universal commercial reference may

solve the problem and provide a solution for the standardisation

and cross-referencing of microarray experiments by offering a

high-quality standard for accurate and consistent data compari-

son (Novoradovskaya et al. 2004).

Recently, the External RNA Control Consortium (http://www.

cstl.nist.gov/biotech/biotech/workshops.html), an industry-led

consortium, has evolved from a meeting sponsored by the US

National Institute of Standards and Technology. The goal of the

External RNA Control Consortium is to develop a universal (plat-

form-independent) set of RNA spike-in control materials for per-

formance evaluation and monitoring of gene expression

experiments (using microarray and/or RT-PCR).

Cross-site comparisons of gene expression data

The issues described above demonstrate that microarray assays

are complex, multistep procedures involving array fabrication,

RNA extraction, cDNA labelling, hybridisation and data ana-

lysis. Laboratories around the world have developed a variety

of protocols for each of these steps. It is obvious that this

range of available methodology results in data variability

between laboratories. However, the many different technologies

available may all be valid, and it would be unrealistic to

impose on users any particular platform, software or methods

of data analysis.

Fig. 1. Common strategies for microarray experimental design. (A) Refer-

ence design: (1) Each sample is tested against a single, common standard.

This standard can be a commercial or in-house reference, a pooled sample

made up of equal parts of all the text samples, or (2) one of the test samples.

(B) Loop design: (1) Simple loop and (2, 3) interwoven loop design. Each

sample is compared head-to-head with the other samples in a circular

fashion. Each comparison is performed with a dye swap.
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The standardisation of microarray experiment reporting has

been proposed by the Microarray Gene Expression Data Society

(www.mged.org) with the creation of the Minimum Information

About a Microarray Experiment (MIAME) project, which

describes the minimum information required to ensure that micro-

array data can be easily interpreted and that results derived from

its analysis can be independently verified (Brazma et al. 2001).

The aim of this project is to facilitate the integration of microar-

ray data generated by different research groups on different array

platforms. Several journals have already followed the Microarray

Gene Expression Data Society call for the standardisation of

microarray data publications in that, upon submission, datasets

must be MIAME compliant and made publicly available in one

of the main public repositories (Array Express: www.ebi.ac.uk/

microarray/ArrayExpress; National Center for Biotechnology

Information Gene Expression Omnibus: www.ncbi.nlm.nih.gov/

geo). Currently, the minimal information includes six parts:

1. experiment goals and design;

2. array design and manufacture;

3. biological materials used and a description of their creation;

4. hybridisation and wash procedure;

5. scan information and image analysis;

6. normalisation controls.

It is clear that, without this information, the meaningful compari-

son and integration of data generated in different laboratories on

different platforms will be impaired, and errors or misunderstand-

ing could go undetected. A detailed description of each part and

convenient checklist are available on the MIAME website

(www.mged.org/Worksgroups/MIAME/miame.html).

Another project promoted by Measurements for Biotechnology

(www.mfbprog.org.uk) is evaluating the normalisation strategies

currently in use with the aim of setting up recommendations for

best practice in array normalisation. Data from this project will

be publicly available in Array Express.

The Hepatotoxicity Working Group of the International Life

Sciences Institute recently developed a collaborative scientific pro-

gramme consisting of a cross-site microarray study aiming at eval-

uating the consistency of data generated across multiple sites (Baker

et al. 2004; Chu et al. 2004; Ulrich et al. 2004; Waring et al. 2004).

The goal of this project was to evaluate and compare biological and

gene expression responses in rats to two well-studied hepatotoxins

(clofibrate and methapyrilene), using a standard experimental proto-

col, and to address the following issues: (1) how comparable are the

biological and gene expression data from different laboratories run-

ning identical in vivo studies; (b) how reproducible are the data gen-

erated across laboratories using the same microarray platform; and

(c) how do data compare using different platforms? In the study con-

ducted by Waring et al. (2004), a single platform was used at differ-

ent sites, while Ulrich et al. (2004) described a comparison between

different array platforms (membrane and glass). The results showed

a generally high level of concordance, although with some variabil-

ity, which appears to be due largely to differences in the experimen-

tal and data analysis procedures used in each laboratory and

platform differences.

Conclusion

DNA microarray technology is a powerful technique for

monitoring changes in gene expression on a global scale in differ-

ent systems. Microarray assays are complex, multistep

procedures for which different laboratories have developed a var-

iety of protocols. This range of available methodologies results in

data variability between laboratories and, in order to make the

results comparable across laboratories, great effort will be

needed in the careful planning, experimental design, analysis of

data and interpretation of microarray experiments.
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