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Abstract. We investigate the function R�T; ��, which denotes the error term in
the asymptotic formula for

R T
0 j log ��� � it�j2dt. It is shown that R�T; �� is uniformly

bounded for � � 1 and almost periodic in the sense of Bohr for ®xed � � 1; hence
R�T; �� � 
�1� when T!1. In case 1

2 < � < 1 is ®xed we can obtain the bound
R�T; �� �" T

�9ÿ2��=8�".
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It is well known that the logarithm of the zeta-function may be written as the
absolutely convergent Dirichlet series

log ��s� � log
Y
p

�1ÿ pÿs�ÿ1 �
X
p

log�1ÿ pÿs�ÿ1 �
X1
k�1

X
p

1

kpks
; �1�

where henceforth p denotes a prime number. This expansion is valid in the half-
plane Res > 1, and therefore log ��s� is almost periodic in this region. In particular,
for � � 1 and ÿ1 < T < �1, letZ T

0

j log ��� � it�j2dt � T
X1
k�1

1

k2

X
p

1

p2k�
� R�T; ��: �2�

The function R�T; �� may be thought of as the error term in the asymptotic
formula (2), and it is classical that R�T; �� � o�T� as jTj grows to in®nity, for every
®xed � > 1.

The behaviour of log � is much more mysterious when s lies to the left of the
vertical line Res � 1. For instance, the Riemann hypothesis is obviously equivalent
to log � being holomorphic in the quarter-plane Res > 1

2, Ims > 0, and it is an
important task to investigate this function there. A natural question is: does log �
retain some kind of almost-periodicity in the half-plane Res > 1

2, in spite of possible
singularities due to zeros of � (and of course the pole s � 1)? This is, for instance,
dealt with in an important paper by Borchsenius and Jessen [4]. Our contribution to
this topic is the study of the mean-square of log � on vertical lines in this half-plane.

We may consider only the values T > 0, since log ��s� � log ��s�. Curiously we
were not able to ®nd anything relevant in the literature concerning the estimation of
R�T; ��; (nevertheless, see A. Selberg [13], where the mean square of arg ��12� it� is
evaluated as well as moments of even order, A. Fujii [6], where the mean square of
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arg ��� � i�t� h�� ÿ arg ��� � it� is evaluated for 1
2 < � � 1 and F.T. Wang [16] for a

related problem). Our most precise result concerns the behaviour of R�T; �� in the
case in which � � 1 is ®xed, and is contained in the following theorem.

Theorem 1. The function R�T; �� is uniformly bounded for � � 1 and
ÿ1 < T < �1. Moreover, if � � 1 is ®xed, then the function R�T; �� is almost peri-
odic in the sense of H. Bohr.

Corollary. If � � 1 is ®xed, then the function R�T; �� has no limit when
T!1; hence R�T; �� � 
�1�.

The corollary is an easy consequence of the theorem and the fact that R�T; �� is
not a constant (because j log ��� � it�j is not a constant). For the theory of almost
periodic functions, we refer the reader to the book of H. Bohr [3]. One may wonder
if R�T; �� is uniformly almost periodic with respect to � � 1. We cannot answer this
question.

As we shall see, the proof of Theorem 1 follows from an application of Hilbert's
inequality (in the version of Montgomery-Vaughan [12]) and the convergence of the
series X1

n�1

1

pn�pn�1 ÿ pn� ; �3�

where pn is the n-th prime.
Let us note that the de®nition of R�T; �� makes sense also if 1

2 < � < 1. The
double series in (2) is clearly convergent in this range. Furthermore log ��s� is ana-
lytic in the complex plane from which the countable union of half-lines �sk ÿ1; sk�
has been removed, where sk runs through the zeros of ��s�, or sk � 1. Further, when
� is ®xed, the function log ��� � it� has discontinuities of the ®rst kind or, at worst,
logarithmic singularities, and so R�T; �� is a well de®ned function of T for � > 1

2

®xed. However, if 1
2 < � < 1 we are unable to obtain results as sharp as when � � 1,

and in this case we shall prove a weaker result, given by the following theorem.

Theorem 2. Let 1
2 < � < 1 be a ®xed number. For every positive ", we have

R�T; �� �" T
9ÿ2�
8 �": �4�

We remark that our theorems could be generalized to the mean square of
logF�s� for suitable Dirichlet series in the ranges � � �a and � > �, respectively,
where �a is the abscissa of absolute convergence of F�s�, and Res � � is the ``critical
line'' for F�s�. An example of such a class of Dirichlet series is given by A. Selberg
[14]. His Theorem 1 on p. 373, specialised to the case F�s� � ��s�, leads to the
asymptotic formulaZ T

0

j log ��12� it�j2dt � T log logT�O T
������������������
log logT

p� �
:

Finally if one wishes to evaluate the left-hand side of (2) for � < 1
2, then this case can

be reduced to the case � > 1
2 by the use of the functional equation
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��s� � ��s���1ÿ s�; ��s� � 2s�sÿ1 sin
�s

2

� �
ÿ�1ÿ s�:

Proof of Theorem 1. We begin by proving that R�T; �� is uniformly bounded for
� � 1 and ÿ1 < T < �1. Simple continuity and parity arguments show that it is
enough to consider the case � > 1 and T � 0. By (1) we have

log ��� � it� �
X1
k�1

X
p

1

kpk���it�
:

In order to evaluate the integral of j log ��� � it�j2, we use the following lemma, due
to Montgomery and Vaughan (see [11, (28) p. 140] and [12]).

Lemma 1. Let fang1n�1 be a sequence of complex numbers and f�ng1n�1 a sequence

of real numbers such that
P1
n�1
janj < �1 and �n :� inf

m 6�n
j�m ÿ �nj > 0, for every n. ThenZ T

0

���X1
n�1

ane
i�nt
���2dt � T

X1
n�1
janj2 �O

X1
n�1

janj2
�n

 !
;

where the O±constant is absolute.
We remark that the theorem of Montgomery and Vaughan is formulated for

®nite sums, but the hypotheses made in Lemma 1 permit this straightforward gen-
eralization. Hence

R�T; �� �
X1
k�1

X
p

1

k2p2k��p; k� ; �5�

where (p; q denote primes)

��p; k� � min
q` 6�pk
j log q` ÿ log pkj: �6�

On the right-hand side of (5) the terms with k � 2 will be obviously convergent.
When k � 1, (6) gives (p � pn, the n-th prime)

��pn; 1� � min
q`;`�1

j log q` ÿ log pnj

� min
q`;`�1

��� log
�q` ÿ pn� � pn

pn

��� � jrn ÿ pnj
pn

;

where rn � q` is the prime power closest to pn. Hence we have to estimate

X1
n�1

1

pnjrn ÿ pnj : �7�

Observing that pnjrn ÿ pnj � rn, we see that the portion of the sum in (7) for which
rn is not a prime is clearly convergent, and the remaining portion is convergent by
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the convergence of (3). In fact the convergence of (3) follows from the upper bound
in the following estimate:

x

log2 x
� S�x� :�

X
pn�x

1

pn�1 ÿ pn
� x log log x

log2 x
: �8�

The lower bound in (8) follows easily from the Cauchy-Schwarz inequality; namely

x

log x
�

X
pn�x

1 �
X
pn�x
�pn�1 ÿ pn� � S�x�

 !1=2

� �xS�x��1=2:

For the upper bound we need a sieve estimate (see e.g. Halberstam±Richert [6]). We
have that

X
p�x;pÿh�p0

1 �
Y
pjh

1ÿ 1

p

� �ÿ1
x

log2 x
:

Thus, using this estimate we have

S�x� �
X
h�H

1

h

X
pn�x;pn�1ÿpn�h

1�
X
h>H

1

h

X
pn�x;pn�1ÿpn�h

1

�
X
h�H

1

h

X
p�x;pÿh�p0

1� x

H log x

�
X
h�H

1

h
Q

pjh�1ÿ 1
p�
� x

log2 x
� x

H log x

�
X
h�H

1

'�h� �
x

log2 x
� x

H log x
� x logH

log2 x
� x

H log x
� x log log x

log2 x

with the choice H � log x. The bounds in (8) are given as (38)±(39) on p. 123 of
ErdoÈ s±ReÂ nyi [5], but our proof is di�erent from theirs. Nothing better than (8)
seems to be known, and so improving (8) seems to be another interesting problem,
which is indirectly related to the mean square of log ��� � it�.

Now we turn to the proof of the second part of the theorem. We consider
separately the cases � > 1 and � � 1. In the ®rst case, the function R�T; �� is the
primitive of a function almost periodic in the sense of Bohr, and the fact that it is
bounded ensures its Bohr almost-periodicity, according to a well known theorem of
Bohr (see [2, p. 123]). In the second case, the function j log ��1� it�j2 is no longer
Bohr almost-periodic (in fact, it is not even bounded). Nevertheless this function is
almost periodic in the sense of Stepano� (L1) and the theorem of Bohr mentioned
above is still valid in this case, as is easily seen by inspection of the proof; (for the
de®nition and main properties of almost periodicity in the sense of Stepano�, see
[15]; Bochner [1] is also relevant, especially p. 251). To see that j log ��1� it�j2 is
almost periodic in the sense of Stepano� (L1), it su�ces to prove that log ��1� it� is
almost periodic in the sense of Stepano� (L2). This last fact is a consequence of the
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following lemma, essentially due to Wiener and Wintner (cf. [17]) and suggested to
us by the reading of a recent paper of J.-P. Kahane [10].

Lemma 2. Let F�s� �P1n�1 annÿs be a Dirichlet series with nonnegative coe�-
cients (an � 0) and abscissa of convergence 1. Let � > 0 be such that F�� � it� has a
limit in L2�ÿ�; �� when �! 1. Then F�� � it� has a limit in the Stepano� L2-metric
when �! 1.

Proof of Lemma 2. Recall that the Stepano� L2-norm of a function f is given by

jj f jj2S � sup
ÿ1<x<�1

Z x�1

x

jf�t�j2dt:

Suppose ®rst that � � 1
2. By the completeness of the Stepano� norm, it is enough to

prove that Z x� 1
2

xÿ 1
2

���F��1 � it� ÿ F��2 � it�
���2dt

can be made arbitrarily small if 1 < �1 < �2 < 1� �, where � is small enough,
uniformly in x. Due to the nonnegativity of the an's and an estimate of H.L. Mont-
gomery ([11, Theorem 3, p. 131]), this integral is less than

3

Z 1
2

ÿ 1
2

���F��1 � it� ÿ F��2 � it�
���2dt;

and the result follows immediately. If � 6� 1
2, we obtain the same result for the metric

jj f jj2S;� � sup
ÿ1<x<�1

�2��ÿ1
Z x��

xÿ�
j f �t�j2dt;

which is known to be equivalent to the one with � � 1
2.

Now the fact that log ��� � it� converges in L2�ÿ 1
2 ;

1
2�, say, follows by the ana-

lyticity of ��s� and the Lebesgue dominated convergence theorem. The function
log ��1� it� is thus almost periodic in the sense of Stepano� (L2), as a Stepano�-
limit of Bohr almost-periodic functions, as was to be shown.

Proof of Theorem 2. The method that we shall use bears analogies to the one
employed in [9] to investigate large values of ��s� near the line � � 1. Suppose that
1
2 < � < 1 is ®xed and T � T0 > 0. Choose � such that 1

2 < � < �, and let

�T; 2T� � A�T� [ B�T�;

where A�T� consists of t 2 �T; 2T� such that ��w� 6� 0 for Rew � �;
jImwÿ tj � log2 T. We start from the Mellin inversion integral (see (A.7) of [8])

eÿx � 1

2�i

Z c�i1

cÿi1
xÿsÿ�s�ds �c; x > 0�
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and the Dirichlet series representation (1). For T � t � 2T ; s � � � it and X � TA

with suitable A > 0 we have that

1

2�i

Z 2�i1

2ÿi1
log ��s� w�Xwÿ�w�dw �

X1
k�1

X
p

1

kpks
exp ÿ pk

X

� �
: �9�

Let t 2 A�T�, choose � such that � < � < �, and replace the line of integration
in (9) by the contour L consisting of ��ÿ � ÿ i

2 log2 T; �ÿ � � i
2 log2 T�,

��ÿ � � i
2 log2 T; 2� i

2 log2 T�; �2� i
2 log2 T; 2� i1�. Then the integrand will be reg-

ular on L, and the only pole of the integrand that is passed is w � 0, which is a
simple pole with residue log ��s�. Note that the singularity w � 1ÿ s lies to the left of
L, and thus need not be considered. We have

log ��s� w� � logT �w 2 L�: �10�

This follows by integration from the formula (see (1.52) of [8] or (2.9) of [9])

�0�s�
��s� �

X
�;jIm�ÿtj�1

1

sÿ ��O�log t�; �11�

where ���� � 0; s � � � it;ÿ1 � � � 2; t � t0 > 0: Thus using (10) and Stirling's
formula for the gamma-function we obtain

1

2�i

Z
L

log ��s� w�Xwÿ�w�dw� X �ÿ� logT:

It then follows from (9) and the residue theorem that

log ��s� �
X1
n�1

ann
ÿit �O�X �ÿ� logT� �t 2 A�T��; �12�

where an � 1
k p
ÿk� exp ÿ pk

X

� �
if n � pk, and an � 0 otherwise. We have

Z 2T

T

j log ��� � it�j2dt �
Z
A�T�
�
Z
B�T�

� �
j log ��� � it�j2dt � I1 � I2;

say. To evaluate I1 we shall apply the mean value theorem for Dirichlet polynomials
in the form given by Lemma 1. We obtain

Z 2T

T

���X1
n�1

ann
ÿit
���2dt � T

X1
n�1
janj2 �O

X1
n�1

njanj2
 !

:

We have

162 M. BALAZARD AND A. IVICÂ

https://doi.org/10.1017/S0017089500020012 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500020012


X1
n�1
janj2 �

X1
k�1

1

k2

X
p

pÿ2k� exp ÿ 2pk

X

� �

�
X1
k�1

1

k2

X
p�X 1=�2k�

pÿ2k� exp ÿ 2pk

X

� �
�O�X 1

2ÿ��

�
X1
k�1

1

k2

X
p�X 1=�2k�

pÿ2k� 1�O
pk

X

� �� �
�O�X 1

2ÿ��

�
X1
k�1

1

k2

X
p

pÿ2k� �O�X 1
2ÿ��;

and X1
n�1

njanj2 �
X1
k�1

1

k2

X
p�X logX

pk�1ÿ2�� exp ÿ 2pk

X

� �
�O�1� � X 2ÿ2�:

It follows thatZ 2T

T

���X1
n�1

ann
ÿit
���dt � T

Z 2T

T

���X1
n�1

ann
ÿit
���2dt !1=2

� T� T
1
2X 1ÿ�:

Hence, in view of ja� bj2 � jaj2 � jbj2 � 2Re �ab, (12) yields

I1 �
Z
A�T�

���X1
n�1

ann
ÿit
���2dt�O�TX �ÿ� logT�

�
Z 2T

T

���X1
n�1

ann
ÿit
���2dtÿ Z

B�T�

���X1
n�1

ann
ÿit
���2dt�O�TX �ÿ� logT�;

�13�

provided that

X � T 1=�2ÿ2��: �14�
If N��;T� denotes the number of complex zeros � � �� i of ��s� such that
� � �; jj � T and ���� denotes Lebesgue linear measure, then

��B�T�� � N��;T� log2 T� log2 T� T
3ÿ3�
2ÿ� log7 T� T

3
2ÿ� log7 T; �15�

where we used the classical bound of A.E. Ingham for N��;T�. See (11.26) of [8].
The crucial fact is that the exponent of T in (15) is less than 1. We obtainZ

B�T�

���X1
n�1

ann
ÿit
���2dt � Z

B�T�

��� X
n�X log2 X

ann
ÿit
���2dt�O�1�

�
Z
B�T�

1dt

� �1=2 Z
B�T�

��� X
n�X log2 X

ann
ÿit
���4dt

0@ 1A1=2

�O�1�

� �1=2�B�T��
Z 2T

T

��� X
n�X2 log4 X

cnn
ÿ�ÿit

���2dt
0@ 1A1=2

�1
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with 0 � cn � d�n�, where d�n� is the number of divisors of n. Applying again the
mean value theorem for Dirichlet polynomials we see that the last integral above is

� T�
X

n�X2 log4 X

d2�n�n1ÿ2�

� T� �X2 log4 X�2ÿ2� log3 X� T� X 4ÿ4� log7 T:

Thus we obtain Z
B�T�

���X1
n�1

ann
ÿit
���2dt� T

3
4ÿ�2�T 1

2 � X 2ÿ2�� log7 T: �16�

Consequently from (13) and (16) we obtain, provided that (14) holds,

I1 � T
X1
k�1

1

k2

X
p

pÿ2k�

�O TX
1
2ÿ� � TX �ÿ� logT� T

3
4ÿ�2�T 1

2 � X 2ÿ2�� log7 T
� �

:

�17�

It remains to estimate

I2 �
Z
B�T�
j log ��� � it�j2dt�

Z
B�T�

log2 j��� � it�j � arg2 ��� � it�ÿ �
dt

�
Z
B�T�

log2 j��� � it�jdt� T
3
2ÿ� log9 T;

�18�

since arg ��� � it� � log t. We use the formula

log j��s�j �
X

�;jtÿj�1
log jsÿ �j �O�log t� �� � �� i; s 6� �;ÿ1 � � � 2�: �19�

One obtains (19) by integrating (11) over �� � it; 2� it� and then taking real parts
of the resulting expression. Moreover the contribution of � � �� i in (19) such
that � < � is � log t. Then the last integral in (18) is, by the Cauchy-Schwarz
inequality,

� I3 logT� T
3
2ÿ� log9 T

with

I3 :�
Z
B�T�

X
jtÿj�1;���

log2 jsÿ �jdt

�
X

Tÿ1��2T�1;���

Z
B�T�\�ÿ1;�1�

log2 jtÿ jdt

� N��; 2T� 1�
Z 1

ÿ1
log2 jujdu � T

3
2ÿ� log5 T:
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Therefore it follows that

I2 � T
3
2ÿ� log9 T: �20�

Finally from (17) and (20), given that 1
2 < � < � < � < 1 we have

R�2T; �� ÿ R�T; ��
� TX �ÿ� � T

5
4ÿ�2 � T

3
4ÿ�2X 2ÿ2�

� �
log9 T�" T

9ÿ2�
8 �2";

if we choose X � T 1=2 (so that (14) holds), � � �
2 � 1

4ÿ 2", � � �
2 � 1

4� 2". Replacing
T by T=2;T=22; . . ., " by 1

2 and adding the resulting estimates we obtain the assertion
of the theorem.

The optimal value of the exponent of T in Theorem 2 is not easy to determine,
since it depends on bounds for the zero-density function N��;T� (see Chapter 11 of
[8] for a discussion concerning bounds for N��;T�). If the Riemann hypothesis (that
all complex zeros of ��s� have real parts equal to 1

2) holds, then the above discussion
may be considerably simpli®ed. Taking � � 1�"

2 �0 < " < 2� ÿ 1� we obtain

R�2T; �� ÿ R�T; �� �" T
"�TX 1

2ÿ� � T
1
2X

3
2ÿ2� � X 2ÿ2��:

Hence choosing X � T 2=�3ÿ2�� we obtain, on the Riemann hypothesis,

R�T; �� �" T
4ÿ4�
3ÿ2��":

Note that we have shown that R�T; �� � 
�1� as T!1 for � � 1 ®xed. It
would be interesting to obtain an 
±result for R�T; �� when 1

2 < � < 1 is ®xed, which
would perhaps give some indication as to what the true order of magnitude of
R�T; �� might be.
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