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Abstract

We observe that a solvability criterion for finite groups, conjectured by Miller [The product of two or
more groups, Trans. Amer. Math. Soc. 12 (1911)] and Hall [A characteristic property of soluble groups,
J. London Math. Soc. 12 (1937)] and proved by Thompson [Nonsolvable finite groups all of whose local
subgroups are solvable, Bull. Amer. Math. Soc. 74(3) (1968)], can be sharpened as follows: a finite group
is nonsolvable if and only if it has a nontrivial 2-element and an odd p-element, such that the order of
their product is not divisible by either 2 or p. We also prove a solvability criterion involving conjugates
of odd p-elements. Finally, we define, via a condition on products of p-elements with p′-elements, a
formation Pp,p′ , for each prime p. We show that P2,2′ (which contains the odd-order groups) is properly
contained in the solvable formation.
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1. Introduction

Using his result on the classification of minimal simple groups [14] (nonabelian simple
groups whose proper subgroups are all solvable), Thompson was able to prove a
solvability criterion for finite groups1 conjectured, independently, by Miller [11] and
by Hall [9].

CRITERION 1 [14, Corollary 3]. A group G is nonsolvable if and only if the following
condition holds:

Condition A. There exist three nontrivial elements, a, b, c ∈ G, whose orders are
coprime in pairs, satisfying abc = 1G .

A closer look at Thompson’s proof enables one to sharpen this solvability criterion
in the following manner.

CRITERION 2. A group G is nonsolvable if and only if the following condition holds:

1All groups considered in this paper are assumed to be finite.
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Condition B. There exist three nontrivial elements, a, b, c ∈ G, such that a is a
2-element, b is a u-element where u is an odd prime, and gcd(o(c), 2u)= 1, satisfying
abc = 1G .

Furthermore, we have the following related observations.

THEOREM 3. Let G be a simple nonabelian group. Then the following condition
holds:

Condition C. There exist two odd primes u 6= v and three elements g2, gu, gv ∈ G such
that o(g2)= 2, o(gu)= u and o(gv)= v, satisfying g2gugv = 1G .

THEOREM 4. A group G is solvable if and only if the following condition holds:

Condition D. For any odd prime p, any p-element x ∈ G and any 2-element y ∈ G,
the group 〈x, x y

〉 is solvable.

We should mention, in relation to Theorem 4, that a similar, though weaker,
solvability criterion was recently, and independently, published in [7, 8]: a finite
group G is solvable if and only if every pair of conjugate elements generates a
solvable subgroup. This criterion can itself be viewed as a stronger version of another
solvability criterion by Thompson [14, Corollary 2]: a finite group G is solvable if and
only if every pair of elements generates a solvable subgroup. We note that Flavell [5]
proved the last criterion without using the classification of the minimal simple groups.

After proving Criterion 2 and Theorems 3 and 4, we define, for every prime p, a
class of groups which we denote Pp,p′ (Definition 9 below). We prove that Pp,p′ is
a formation, and, using Criterion 2, we show that Pp,p′ is contained in the solvable
universe if and only if p = 2. We give some constructions of Pp,p′ groups and we
also show, by way of example, that P2,2′ , which properly contains the formation of
odd-order groups, is properly contained in the solvable universe.

2. Proofs of Criterion 2 and Theorems 3, 4

Clearly Condition B implies Condition A, so that the sufficiency of Condition B
for nonsolvability of G is implied by the sufficiency of Condition A for nonsolvability
of G (whose proof is easy and already appears in papers by Miller [11] and Hall [9]).
We now prove the necessity of Condition B for nonsolvability. Following Thompson,
the proof splits into two steps. First we prove that a minimal counterexample G
(a minimal-order nonsolvable group for which Condition B fails) must be minimal
simple. Then we show that all minimal simple groups satisfy Condition B and hence
there is no counterexample to the claim.

First step. Let G be a minimal counterexample. Since Condition B fails for G, it
fails for all subgroups of G, and hence, by minimality, all proper subgroups of G are
solvable. In other words, G is minimal nonsolvable. It is well known that G is minimal
nonsolvable if and only if G/8(G) is minimal simple, where 8(G) is the Frattini
subgroup of G. Suppose that G is not minimal simple. Then8(G) > {1G}. Let p be a
prime dividing |8(G)|, and let N be the Sylow p-subgroup of 8(G). Let G = G/N .
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The nonsolvability of G implies the nonsolvability of G and hence, by minimality
of G, G satisfies Condition B. For any g ∈ G, let g = gN . By Condition B, there
exist nontrivial a1, b1, c1 ∈ G such that a1 is a 2-element, b1 is a u-element where u
is an odd prime, and gcd(o(c1), 2u)= 1, satisfying a1b1c1 = 1G , and a1,b1,c1 are
nontrivial. It follows that a1b1c1 = f ∈ N . We may assume that a1 is a 2-element, and
that b1 is a u-element. Furthermore, we may assume that gcd(o(c1), 2u)= 1. We have
the following three possibilities.

(1) p = 2. In this case ( f −1a1)b1c1 = 1G . Note that f −1a1 is a nontrivial 2-element
since f ∈ Op(G) and a1 6= 1G . Moreover, ( f −1a1), b1, c1 are nontrivial and
their orders are coprime in pairs. This contradicts the assumption that
Condition B fails in G.

(2) p = u. In this case a1(b1 f −1)c′1 = 1G , where c′1 is a conjugate of c1.
(3) p /∈ {2, u}. In this case a1b1(c1 f −1)= 1G .

In cases (2) and (3) we get a contradiction using the same type of arguments as in
case (1).

Thus the possibility 8(G) > {1G} is ruled out, and G must be minimal simple.

Second step. It remains to show that all of the minimal simple groups satisfy
Condition B. Instead, we will prove that they satisfy the stronger Condition C.

LEMMA 5. Every minimal simple group satisfies Condition C.

PROOF. For any group G let χ (s) be the sth irreducible character of G (1≤ s ≤ k).
Using character theory (see [2, Equation (11.1)]) one can show that a triple (g2, gu, gv)
such that g2gugv = 1G exists if and only if

k∑
s=1

1

χ (s)(1G)
χ (s)(g2)χ

(s)(gu)χ
(s)(gv) > 0. (1)

We now present a choice of (g2, gu, gv), satisfying Condition C, for each minimal
simple group on Thompson’s list [14, Corollary 1]. In each case we give the source of
the relevant character table and use its notations.

(1) L2(q), q = 2p where p is any prime. Character table source: [6, Theorem 4.9].
Here we take u to be a prime divisor of q − 1 and v a prime divisor of q + 1. Since q
is even, u and v are distinct odd primes. We choose g2 = c (an element of order 2),
gu = a(q−1)/u and g = b(q+1)/v . Since a and b are L2(q) elements of order q − 1 and
q + 1 respectively, we have o(gu)= u, o(gv)= v. One can check that

k∑
s=1

1

χ (s)(1G)
χ (s)(g2)χ

(s)(gu)χ
(s)(gv)= 1> 0. (2)

(2) L2(3p), p any odd prime.
(3) L2(p), p any prime exceeding 3 such that p2

+ 1≡ 0 mod 5.
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We consider cases (2) and (3) together as L2(q) with q > 5 odd. Character table
source: [6, Theorem 4.7]. We have q = pn

0 , where p0 is an odd prime, and n a positive
integer. Here, L2(q)∼= SL2(q)/Z(SL2(q)) where Z(SL2(q))= 〈z〉 and o(z)= 2. In
the following, a is an SL2(q) element of order q − 1, b is an SL2(q) element of order
q + 1, and c is an SL2(q) element of order p0. The tables, and consequently our choice
of u, v, and (g2, gu, gv), split according to whether q ≡ 1 mod 4 or q ≡−1 mod 4.
Start with q ≡ 1 mod 4. Since q − 1 is divisible by 4, we choose an integer l so
that al has order 4 and g2 = 〈z〉al has order 2. We choose gu = 〈z〉c (o(gu)= u = p0).
Finally, we choose an integer r and g = 〈z〉br such that o(g) is an odd prime divisor v
of q + 1. Clearly v 6= p0. For q ≡−1 mod 4, we can choose r so that o(br )= 4,
and g2 = 〈z〉br has order 2. We also choose gu = 〈z〉c with o(gu)= u = p0, and
g = 〈z〉al with l such that o(g) is an odd prime divisor v of q − 1 and therefore clearly
v 6= p0. For both q ≡ 1 mod 4 and q ≡−1 mod 4 our choices satisfy Equation (2).

(4) Sz(2p), p any odd prime. Character table source: Suzuki’s paper [12]. Set
q = 2p and r = 2(p+1)/2. We take g2 = d (d is an involution), gu = al for a suitable l
such that o(gu)= u is a prime divisor of q − 1 (a generates a cyclic subgroup of
order q − 1), and g = bm such that o(g) is a prime divisor v of q + r + 1 (b generates
a cyclic subgroup of order q + r + 1). Note that q − 1 and q + r + 1 are odd and
coprime. This choice satisfies Equation (2).

(5) L3(3). Character table source: GAP’s character library [13]. We choose
g2 = 2a, gu = 3a, gv = 13a (these are representatives of conjugacy classes whose
orders are respectively 2, 3, 13). This choice satisfies Equation (2) and thus the second
(final) step of the proof is completed. 2

PROOF OF THEOREM 3. The theorem follows at once from Lemma 5, once we invoke
the result of [1], which states that every simple nonabelian group contains a minimal
simple group. 2

In order to prove Theorem 4, we need the following lemma.

LEMMA 6. Let G be a minimal simple group. Then there exists an odd prime u, an
element gu of order u and an involution g2 such that G = 〈gu, gg2

u 〉.

PROOF. Since G is minimal simple, there exist, by Lemma 5, two odd primes u 6= v
and three elements g2, gu, gv ∈ G such that o(g2)= 2, o(gu)= u and o(gv)= v,
satisfying g2gugv = 1G . Thus gv ∈ 〈g2, gu〉, and, by Criterion 2 (or 1), 〈g2, gu〉

is not solvable. Since G is minimal simple, 〈g2, gu〉 = G. Now, we prove that
〈gu, gg2

u 〉E G. Since G = 〈g2, gu〉, it is sufficient to show that gx
u , (g

g2
u )

x
∈ 〈gu, gg2

u 〉

for x = g2 and x = gu . This is immediate from the fact that g2 is an involution. Since
{1G}< 〈gu, gg2

u 〉E G and G is simple, we get G = 〈gu, gg2
u 〉. 2

PROOF OF THEOREM 4. If G is solvable then every subgroup of G is solvable. In
the other direction, let G be a minimal counterexample to the claim (a minimal-order
nonsolvable group for which Condition D holds). Then, since Condition D is inherited
by subgroups and quotients, G must be a minimal simple group. By Lemma 6, there
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exist an odd prime p and x, y ∈ G such that x is a p-element and y is a 2-element and
G = 〈x, x y

〉. Hence, by Condition D, G is solvable—a contradiction. 2

3. The Pp, p′ formation

DEFINITION 7. Let p and q be two distinct primes. A group G has the p, q-property
(equivalently G ∈ Pp,q ) if for every p-element gp and every q-element gq , it holds
that gpgq is a {p, q}-element.

REMARK 8. In the last definition we do not require that p or q are divisors of |G|.
If, for instance, p - |G| then the p, q-property holds trivially in G. For later purposes,
it is convenient to extend the definition of the p, q-property to the case p = q by
postulating that every finite group G enjoys the p, p-property.

DEFINITION 9. Let G be a group and let p be a prime. We shall say that G satisfies
the p, p′-property if G ∈ Pp,q for every prime q 6= p. Equivalently,

Pp,p′
def
=

⋂
q∈P

Pp,q ,

where P is the set of all primes. We call the 2, 2′-property the two-odd property.

LEMMA 10. Let G be a group. Let p and q be two primes. If G ∈ Pp,q then every
subgroup of G and every quotient group of G are in Pp,q . If G = A × B and A and B
are in Pp,q , then G ∈ Pp,q .

PROOF. Straightforward. 2

COROLLARY 11. Let p and q be two primes. Then Pp,q is a formation.

PROOF. By Lemma 10, Pp,q is closed under the operations of taking homomorphic
images, subgroups and direct products. Hence it is a formation (see [4, Ch. II,
Definition 2.2]). 2

COROLLARY 12. Let p be a prime. Then Pp,p′ is a formation.

PROOF. Pp,p′ is an intersection of formations (see [4, Ch. II, Remark 1.7]). 2

LEMMA 13. Let p be any prime. If G is nilpotent, then G ∈ Pp,p′ .

PROOF. Immediate. 2

THEOREM 14. Let G be a group. If G has the two-odd property then G is solvable.

PROOF. This follows immediately from the definition of the two-odd property and
Criterion 2. 2

REMARK 15. Let p be an odd prime. Then there exists G ∈ Pp,p′ such that G is not
solvable. In order to prove this claim it is sufficient to take a nonsolvable group whose
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order is not divisible by p (see Remark 8). If p > 5 take A5. If p = 5 take L3(3).
If p = 3 take Sz(8). Note that if G ∈ Pp,p′ then, by Lemma 10, G × C p ∈ Pp,p′ ,
where C p is a cyclic group of order p. Hence we can easily produce a (trivial) example
of a nonsolvable Pp,p′ group whose order is divisible by p, where p is an odd prime.

4. Examples of Pp, p′ groups

Let p be a prime. All groups whose order is not divisible by p are (trivially) Pp,p′

by Remark 8, and in particular, odd-order groups are two-odd. All groups whose order
is divisible by exactly two distinct primes are Pp,p′ for any p.

DEFINITION 16. Let p be a prime, G a group and P a Sylow p-subgroup of G.
We shall say that P is p′-permutable in G if for any prime q 6= p and any Sylow
q-subgroup Q of G we have PQ= QP.

Note that if a Sylow p-subgroup of G is p′-permutable in G, then all Sylow p-
subgroups of G are p′-permutable in G, and therefore G ∈ Pp,p′ .

Our next result involves Frobenius groups. The following characterization of Frobe-
nius groups best suits our purpose: G is a Frobenius group if and only if there exists
K E G (the Frobenius kernel) such that for every g ∈ G − K , gcd(o(g), |K |)= 1.
To see that any group that satisfies this condition is indeed a Frobenius group (the other
direction is easy), let x ∈ K − {1G} and let y ∈ CG(x). If y ∈ G − K , then, using the
assumption and gcd(o(x), o(y))= 1, we get o(xy)= o(x)o(y). But xy ∈ G − K , and
since o(x) is a nontrivial divisor of |K |we have gcd(o(xy), |K |) > 1—a contradiction.
Thus y ∈ K and we get CG(x)≤ K for any x ∈ K − {1G}. This proves that G is a
Frobenius group.

THEOREM 17. Let p be a prime. Let G be a Frobenius group, and let K be the
Frobenius kernel. If G = G/K ∈ Pp,p′ then G ∈ Pp,p′ (note that G is isomorphic to a
Frobenius complement of G).

PROOF. We can assume that p divides |G|. Since the Frobenius kernel is always
nilpotent, K ∈ Pp,p′ by Lemma 13. Let q be an arbitrary prime divisor of |G| which
is distinct from p. Let a be a p-element of G and let b be a q-element of G. We have
to show that ab is a {p, q}-element. We have the following possibilities.

(1) p divides |K |. Then a ∈ Op(G) and so ab ∈ Op(G)〈b〉, which is a {p, q}-
subgroup of G.

(2) q divides |K |. We argue as in (1).
(3) Both p and q do not divide |K |, and hence a, b ∈ G − K . For any g ∈ G let

g = gK . Since G ∈ Pp,p′ we get that ab is a {p, q}-element. If ab ∈ K we get
ab = ab = 1G and hence, since a is a p-element and b is a q-element with p 6= q ,
a = b = 1G and a, b ∈ K —a contradiction. Hence ab ∈ G − K . This implies
gcd(o(ab), |K |)= 1. But o(ab) divides o(ab)|K |. Hence o(ab)= o(ab) which
is a {p, q}-number. 2
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The assumptions of Theorem 17 hold, in particular, for a Frobenius group with a
nilpotent Frobenius complement. Thus, such a group is in Pp,p′ for every prime p.
However, as is shown in Proposition 18 below, such a Frobenius group need not have
a Sylow p-subgroup which is p′-permutable in it.

PROPOSITION 18. Let G be a Frobenius group, with a Frobenius kernel K and a
Frobenius complement C. Let u be a prime divisor of |G|. Then a Sylow u-subgroup
of G is u′-permutable in G if and only if either u divides |K | or |C | is a power of u.

PROOF. Let U be a Sylow u-subgroup of G. First suppose that u divides |K |.
Then, since K is nilpotent, we get that U E G and hence it is u′-permutable in G.
Otherwise, u divides |C |. If |C | is a power of u then every Sylow v-subgroup of G,
where v 6= u is a prime, is contained K and hence commutes with U . Consequently, U
is u′-permutable. Now suppose that v 6= u is a prime dividing |C |. Assume to the
contrary that U is u′-permutable in G. Let V be any Sylow v-subgroup of G. Then
UV ≤ G. By [10, 4.1.8(a)], either UV is contained in some Frobenius complement
of G or it is itself a Frobenius group with Frobenius kernel (UV) ∩ K . However
(UV) ∩ K = {1G} since UV is a {u, v}-group, so this possibility is ruled out. Thus, UV
is contained in some Frobenius complement of G which we can assume, without loss
of generality, to be C . In particular, U ≤ C and C is the unique Frobenius complement
containing U . It follows that C is the unique Frobenius complement of G containing
every Sylow v-subgroup of G—a contradiction. 2

Recall [3, Section 2.8] that for a finite field F of order q , AGL1(F) is the group of
order q(q − 1) which consists of all functions tα,β : F→ F , α ∈ F×, β ∈ F , defined
by (ζ )tα,β = αζ + β for all ζ ∈ F . The group AGL1(F) is a Frobenius group whose
kernel is isomorphic to the additive group of F and whose Frobenius complement is
isomorphic to the multiplicative group F× of F and, in particular, nilpotent. Thus, by
Theorem 17, AGL1(F) is in Pu,u′ for any prime u. However, if q − 1 is not a prime
power, then, by Proposition 18, a Sylow u-subgroup of AGL1(F) is not u′-permutable
in AGL1(F), for any prime u dividing q − 1.

We conclude our discussion with an example of a family of solvable groups which
are not two-odd. Let q = pk where p is a prime, and let f be the Frobenius
automorphism ζ 7−→ ζ p of F (note that o( f )= k). Then A = 〈 f 〉 ≤ Sym(F)
normalizes AGL1(F), and a suitable semi-direct product G = AGL1(F)A is defined.
Clearly G is solvable. The proof of the following proposition uses the product rule,
tx,y tz,w = txz,yz+w, of AGL1(F).

PROPOSITION 19. Suppose that p is odd, k is even and pk/2
+ 1 is not a power of 2.

Then G is not two-odd.

PROOF. Let r be an odd prime divisor of pk/2
+ 1 (in particular, r 6= p), and let

α ∈ F× be such that oF×(α)= r (in particular, α 6= −1F ). Set g = f k/2. Then
o(tα,1)= r and o(g)= 2. We shall show that o(gtα,1)= 2p which implies that gtα,1 is
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not a {2, r}-element. For every natural number n,

(gtα,1)
n
= gn(tα,1)

gn−1
(tα,1)

gn−2
· · · (tα,1)

gtα,1.

Since
(tα,1)

gn−1
(tα,1)

gn−2
· · · (tα,1)

gtα,1 ∈ AGL1(F) and gn
∈ A,

it follows that (gtα,1)n = 1G only if gn
= 1G . Hence we can assume that n is even,

and (gtα,1)n = (t
g
α,1tα,1)n/2, where we have used o(g)= 2. By routine computation,

tg
α,1tα,1 = t

α pk/2
,1

tα,1 = t
α pk/2+1,α+1

= t1,α+1,

where we have used the fact that oF×(α)= r divides pk/2
+ 1. Thus,

(gtα,1)
n
= (tg

α,1tα,1)
n/2
= (t1,α+1)

n/2
= t1,n/2(α+1).

Since α 6= −1F , we deduce that o(gtα,1)= 2p as asserted. 2
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