ON SOME DIOPHANTINE INEQUALITIES INVOLVING
THE EXPONENTIAL FUNCTION

A. BAKER

1. Introduction. It is well known that for any real number 8 there are
infinitely many positive integers # such that

n||nf]| < 1.

Here ||a|| denotes the distance of a from the nearest integer, taken positively.
Indeed, since ||| < 1, this implies more generally that if 64,0, ..., 6, are
any real numbers, then there are infinitely many positive integers # such that

nllnd| [n6e)| . . . [|n8:]] < 1.

It is also well known that if 8 is a positive number other than 1 and log 6 is
rational, then for every ¢ > 0 there are only a finite number of positive integers
n satisfying the inequality

nite||ng|| < 1.

In fact sharper results of this type have been obtained, with e replaced by a
function of #» which decreases to zero as n approaches infinity. (The work of
Mabhler (9) includes a result of this type in the case 8 = ¢, and the technique is
easily modified to apply to the more general 8. Also, in certain cases, for
example when 6 = ¢!/? where g is a positive integer, such results can be deduced
from the known continued f{raction for 6.) Nothing in this direction has hitherto
been proved, however, about products containing more than two factors, and
it is the object of the present paper to deduce such a generalization. Accord-
ingly we shall prove the following:

TuEOREM. Suppose that k is a positive integer, that 01, 02, . . . , 0, are positive
numbers other than 1, and that log 64, log 0., . .., log 0, are distinct rational
numbers. Then there are only a finite number of positive integers n for which

¢y ntte®||ndy|| |[ns]] . .. |[nfi]| <1,
where e(n) = c(log log n)~* and ¢ > 0 depends only on k, 0y, 0, . . ., 0.

For the proof we use essentially the methods of Siegel (13), as applied in his
famous investigations on E-functions. (For further expositions, cf. (8;12;14).)
By this means we are able to prove that only a finite number of sets of non-zero
integers x1, &s, . . . , &3 exist such that

(2) le Xo ... xk(xl 61+ x4 05 + oo+ X Bk)] < xl"(”,
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where x = max|x,| and e(x) is of order (log log x)~*. We then show, by modify-
ing a well-known transference principle (10), that this implies the assertion of
the theorem. It may be observed that (2) includes, as a special case, a measure
of transcendence for the number e. However, putting this in the more usual
form, with the product x; xs . . . x; replaced by x¥, we see that the result is then
slightly weaker than the best so far established, the value of e(x) in the latter
being of order (log log x)~! (9 and 11).

Finally we remark that the case & = 2 of the theorem provides explicit
examples of transcendental numbers 6y, 6, such that

nt < [nfy|[ ||nfs]] > 1

for all but a finite number of 7. Spencer (15; see also 7) has proved that almost
all pairs of real numbers 6y, 0;, in the sense of Lebesgue measure, have this
property, and indeed the same is true even with e(z) of order log log #/log #,
but little appears to be known about the exact nature of the pairs 6, 0s.
(Spencer’s result applies more generally with 2 real numbers 6, £ > 2. We
have in mind, however, a well-known problem of Littlewood on Diophantine
approximation (see 4, 5, and for analogues 1, 6), and thus we refer only to the
special case.) For example it would be interesting to ascertain whether there
are also algebraic numbers 6,, 0, satisfying an inequality of the above type.

I should like to express my thanks to the referee for several helpful
suggestions.

2. Lemmas. In the following lemmas we shall suppose that &, 64, 6, . .., 6
satisfy the hypotheses of the theorem stated above, except that we allow the
possibility that one of the 6; is 1, and we shall denote by ¢, ¢s, . . . positive
numbers which depend only on &, 8y, 6., . .., 8, We use f¥(x) to denote the
sth derivative of f(x) with respect to x, or f’(x) in the case of the first derivative.

LEMMA 1. Let m, n be positive integers with n > m. Suppose that a;(t = 1, 2,

coo,m; g =1,2,...,n) are integers with absolute values at most A. Then there
are integers X1, Xs, . . . , X, 1ot all zero, with absolute values at most (nA)™®*—m 42,
such that

Za“xj=0 (i=1,2,...,m).
=1

Proof. See (12, p. 140, Hilfssatz 29). The lemma is deduced easily by means
of a box argument.

LEMMA 2. Let 7y, 79, ..., 7, be positive integers and let r > 1 denote their
maximum. Then there are polynomials P,(x) (i = 1,2, ..., k), not all identically
zero, with the following properties:

(i) For each i, P;(x) has degree at most v, a zero at x = 0 of order at least
r — vy, and integer coefficients with absolute values at most

¢ 7Clog N}
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(ii) The following holds:

k [ee]
where
(4) 1’;’1,=7’1'|‘7’2‘|‘...—l-f’k‘f‘k—1_[7,(10gr)_%]Y
and, for each h,
(5) Iphl < 7! (h!)_'162h+7(10g 7)5'

Proof. We denote by L the maximum of the absolute values of log 6;, log 65,
..., log 6; and by / the least common multiple of their denominators. Let # be
given by (4) and let n = r; + 7o+ ... + 7, + k. We take p,; to be 0 for all
integral values of 7, j other than the z pairsgivenby 1 <1 < kv — 7, <j < 7,
and then define the p;; for these remaining values as integers, not all zero,
satisfying the system of m equations

h

(6) Z=)l 2 <§”> (log 6.)" I'pyy = (h=01...,m—1).

=0

Such integers exist in virtue of Lemma 1, and indeed with absolute values at
most

M = {n(IL)m}m/e=m 4 2,

We now prove that the polynomials given by

Pix) =7 20 pu(G)7% (G=1,2...,k)
j=0

have the required properties.
In part (i) we need only confirm the last estimate. Furthermore, it is easily
verified, by expanding the 0.,* as power series in x, that

k ©
> Pix)6F =1 Y o),
i=1 h=0

where, for each £, I*q, is given by the left-hand side of (6). Hence (3) holds
with p, = 7! (k)= 1oy,

To estimate the coefficients of the polynomials P;(x) we note that
m < n < 2kr and that n — m > r(log r)~*. Then clearly

™) M < {2kr (L) y2008 0} 4 o o o8 DY

Since p;; = 0 for j < r — 7y, it follows that the coefficients of the P;(x) have
absolute values at most

GQKﬁ=C)Mvm<TMMW

and this together with (7) gives the last part of (i).
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Now, using the estimate (7) again, we see that the o, with & > m, have
absolute values at most

k(h + 1)(21[4)"‘7‘/[ < CZ)H—T(!OE 1‘)‘)’
and hence (5) is satisfied. This completes the proof of the lemma.

LemMMA 3. Suppose the hypotheses of Lemma 2 hold, and let P;(x (1 = 1,2,
..., k) be the polynomials given by the lemma. Let

® s = [rlog N + (& — 1)?,

and suppose that ry > 2s for all 1. Let the polynomials P;(x) 1 =1,2,...,k;
7 =1,2,...) be defined inductively by the equations

Py (x) =Pi(x)1

© Puyx) = Pyl a(x) + Pips(0)log 0.,

Then the determinant A(x) with P;;(x) in the ith row and jth column (i, =
1,2,..., k) cannot have a zero at x = 1 of order greater than s.

Proof. We shall first prove the lemma on the supposition that none of the
P ;(x) is identically zero and later show that this supposition is valid. Each of
the P;(x) has then a non-zero leading coefficient and we shall denote this by p,.

It is clear from the recurrence relations (9) that P;;(x) has degree at most
r and leading coefficient p;(log 6,)’—'. Hence A (x) represents a polynomial of
degree at most kr and with leading coefficient p; p2... pr ¢, where ¢ is a
Vandermonde determinant of order k formed from the powers of the log 6,.
Since, by hypothesis, the 6; are distinct, it follows that A(x) is not identically
zero.

We suppose now, as we may without loss of generality, that » = r;. Let ®(x)
denote the left-hand side of (3). The equations (9) clearly imply that

k
(10) ‘I)(jhl)@c) = E Pij(x)oiry
i=1
and hence, by a linear combination of rows, we obtain
@(x) (b(l) (x) . (b(k—l) (x>
P21(x) Pm(x) cee sz(x)
0,"A(x) = . .
Plcl(x) Pk2(x) cee Pr(x)

On differentiating (3), we see that & (x) has a zero at x = 0 of order at least
m — j. Further, from (i) of Lemma 2 and (9), we deduce that P;,;(x) has a
zero at x = 0 of order at least » — »;, — j + 1. Hence A(x) has a zero at
x = 0 of order at least

k
m—k+14+>, (r—ri—k+1) ="k —s,
=2
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by virtue of (4), (8), and our supposition r = r;. The lemma follows on noting
that A(x) has degree at most kr.

It remains only to prove our original supposition. The argument used is
similar to that just preceding. We suppose that exactly « of the polynomials
P(x) do not vanish identically and, without loss of generality, we take these
to be given by ¢ = 1,2, ..., k. Also we may suppose that » = r; for at least
oneof 1 =,k -+ 1,...,%k We consider the minor E(x) in A(x) formed from
the first k rows and columns. It follows as above that Z(x) is a polynomial,
not identically zero, with degree at most k7. On the other hand, by a linear
combination of rows, we see that = (x) has a zero at x = 0 of order at least

k—1

11¢—K+1+}':_‘,1 (r—ri—«x4+1)
=k—x)+ (k—1r— (k—1)7"— ['r(logr)_%]—l— ; 7

k
>(x-—1)r—s+2n.

Thus, in virtue of the hypothesis r; > 2s for all 4, it follows that x = &, and
the lemma is proved.

LeMMA 4. Suppose the hypotheses of Lemma 3 hold. Then there are k distinct
suffixes J(7) G = 1,2,...,k) between 1 and k + s inclusive such that the
determinant with P, 5 (x) in the ith row and jth column (1,7 =1,2,...,k)
does not vanish at x = 1.

Proof. The proof proceeds on the lines indicated in the introduction to (13)
(see also 12, p. 118, Hilfssatz 22). We define linear forms in w;, s, . . . , w; by
the equations

k
(11) W, = 5_;1 Py@w,  (G=1,2,...).
If A;;(x) denotes the minor in A(x) formed by omitting the ¢th row and jth
column, then for each 7 =1,2,..., %k we have
k
=1

By Lemma 3 we see that there is an integer + < s such that A (1) is not zero,
and we suppose that 7 is the least such non-negative integer. We now regard
the w; as differentiable functions of x and differentiate (12) 7 times, replacing
the w/ (¢t = 1,2,...,k) occurring at each stage by w; log 8, as is possible
since the resulting equations hold identically in the w; and w,’. In this way we
obtain equations of the form

. BT
w,{ ;3 <;> (log ﬁi)T—lA(l)(x)}": ; WFi;(x) (t=1,2,...,k),
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where the terms F,;(x) denote polynomials in x given by linear combinations
of the Ay;(x) and their derivatives. Thus we see that the linear forms W,(j =
1,2,...,%k 4 7) given by (11) with x = 1 include a set of k linearly indepen-
dent forms. The lemma follows with J(j) (j =1,2,...,k) given by the
k associated suffixes.

LeEMMA 5. Suppose the hypotheses of Lemma 3 hold. Then there are k? integers

qi; (0,7 = 1,2,. .., k) with the following properties:
(1) The determinant with q,; in the ith row and jth column (4,7 = 1,2,...,k)
s not zero.
(ii) For each pair 1, j we have
3
(13) lq”[ < 1’1'! c4r(log n .
(iii) For eachj =1,2,...,k we have

(14)

k 1 k -1
3

E qij 01 < 7’! C5r(10g i < | l 7’1!) .

i=1 i=1

Proof. Let L, 1 be given as in the proof of Lemma 2. With the notation of
Lemma 4 we define

qij = lk+sPi:J(j) (1) (1,j = 1) 27 ) k)y

and proceed to prove that the ¢;; have the required properties.

First, in virtue of the recurrence relations (9), it is clear that the g;; are
integers. Also (i) is equivalent to the assertion of Lemma 4. To prove (ii)
we note that, by (i) of Lemma 2, and by (8) and (9), the coefficients of P, (x)
with j < & -+ s have absolute values at most

3 b
(” + L)kﬂ(?'i!)clr(log g < 7’1‘-'66'(1°g n ’

and this clearly implies that (13) is satisfied.

For the proof of inequality (14) we use (ii) of Lemma 2. As in the proof of
Lemma 3, we denote the left-hand side of (3) by ®(x) so that equations (10)
hold. Then by the definition of the ¢,;, the sum on the left of (14) is equal to
F+s®7(D-1(1). Now on differentiating (3) j times, where j < 2+ s — 1, and
using (5) we obtain

89 = | 2 a6 =07 < e S e -y

By removing a factor (m — j)! from the denominator of each term, we see
that the sum on the right is not greater than e®c,™((m — j)!)~1, and, since
j < k+s—1,it follows from (4) that this is less than

k 1
e (it rat -+ — 29D < ¢ (kr)® ( 11 m!> .

i=1

Thus, using (8), we deduce that (14) holds, and this completes the proof of the
lemma.
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3. Proof of the principal inequality. Let &, 6, 0, ..., 6 satisfy the
hypotheses of the preceding section, and let ¢4, ¢5 denote the positive numbers
which appear in Lemma 5. We suppose, as clearly we may, that both ¢4 and
cs exceed 1. Let

Cy = max(ly loll_ly 1021—1’ LR ) !0k|~l)y
put u = (4kcy cs ¢9)'%, and then define v, N\ by the equations
(15) v = 32k log u, log log N\ = 4(log u)*

It is the object of the present section to prove that if x4, xo, . . ., x; are non-
zero integers satisfying (2), where

x = max(|xy|, [xe], - -+, [¥x]) and e(x) = v(log log x) 73,

then x < \. Accordingly we suppose that x > \ and we shall deduce a con-
tradiction.
Let integers #1, us, . . . , 4y, be defined by the equations u; = x,[X], where

X = x64(10g log :c)—g

Clearly u = x[X] is the maximum of the absolute values of these integers.
Further, noting that x < u, that ¢(x) < 1, and that X increases with x if
x > \, we obtain

1-lew
uw o,

[X]Fie® g M0 —1ew
and from (2) it follows that
(16) [y 2 o oo g (g 00 2205 + ... 4w, 0,)] < ul—Fe®,
Also, from the inequalities #* < (xX)* < x, we have
a7) g > X > 0o s 0™ oy

We now take 7 to be the smallest positive integer for which

)
(18) uw < pl s

That the integer r exists and is greater than 1 is clear, for as 7 tends to infinity,
so does the number on the right, which is 1 for » = 1. From the definition of »
it follows that

_ 3 o PN
(7’ _ 1)'# r(log 1) < (T _ 1)'“ (r—1) {log(r—1)} < U
Moreover, in virtue of the inequalities
(19) A"rx<u<rl<r<er,

and the definition of X by (15), we deduce that log » > 2(log u)* Then from
Stirling’s formula it follows that « is certainly greater than

rr—%-e—r#— (log N} > T% r
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On the other hand, (19) gives log log # < 2 log , and hence from (17) we

obtain
3
(20) lug] > '™ 8" foralli.
Also it is easily seen that (16) and (18) imply that
b

(21) |u1 UY o uk(ul 01 + Us 0 + . e + Uy 0]5)‘ <r! “—4kr(log i .

Let now 7y, 79, . . . , 73 be the integers defined by

i

(22) (re — D! Jugw™ ™ <rd (G=1,2, ...,k).
Then clearly 7 is the maximum of 7y, s, . . . , ;. From (20) and the right-hand

inequality of (22) we deduce that
rilog ry > logluy| > 4r(log r)},
and, since r* > log\ and » > r,, it follows that
r: > 4r(log r)~t > 95,

where s is given by (8). Further, from (21) and the left-hand inequality of
(22), we obtain

3 k -1
(23) |6 < rly~"te " (1’1 r,1> ,

i=1

where, for brevity, we put

(S] =u101—l—u202+...—|—uk6‘k.

We have verified that 7y, 7s, ..., 7, and r satisfy all the hypotheses of
Lemma 5, and we denote by ¢,;(4,7 = 1,2,..., k) the corresponding set of
k? integers given by the lemma. We consider the linear forms in 6y, 6., . . ., 6,
given by

k
\I,j=219ij01 G=1,2,...,k).

Since the matrix (g;;) is non-singular, there are 2 — 1 of these forms which
together with the linear form © make up a linearly independent set. Without
loss of generality we can take them to be the last £ — 1 forms. Also without
loss of generality we shall suppose that # = ;. By a linear combination of rows

we have
ur iz o g 0 ¥ --- ¥
U (G2 *** (o U Goa2 *** (%
-1
. . =0 . .
Uy k2 - Gkx U qr2 *°°  Gkx

The determinant on the left is a non-zero integer. Hence, expanding the
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determinant on the right by the first row and estimating the corresponding
co-factors by means of (13), we obtain

k 3
1< |01|—1( I_I2 ril ca’ 8 K ){(k —1!le|

k k
L E=2' S ui | (il s "‘)—1;.
=2 j=2

Then from (14) and (23) it follows that

3 . b &
1 < (k _ 1)!69{ (C4k,u_1)7(l°g ) + (C4L65)r(log ) _2_2 luz‘.(ﬁ')_l} ,

and thus, using the right-hand inequality of (22), we deduce that
. 3 ) R
1< kLol (™)™ 7 + (e csp7") 7).

However, this is impossible, in virtue of the definition of u, and the contra-
diction gives the required result.

4. Proof of the theorem. Suppose that &, 61, 05, . . ., 0 satisfy the hypotheses
of the theorem stated in §1, and let M denote the maximum of the numbers u
defined in §3, corresponding to all the different subsets, not necessarily proper,
of 64,0, ...,0 0,1 = 1. Let », A be defined by (15) with u = M, let ¢ = 2k,
and let ¢ be given by the equation log log § = (vw)?, where w = 4k\y and

n = max(1, |6:], 102, . .., |6:]).

We shall prove that if e(n) = c¢(log log #)~%, then there is no integer n > £
satisfying (1). We suppose the opposite, namely that integers n > £, ny, n,,
..., n; exist for which

nte®|pf, — ny| (0 — no| . .. [nb, — ny < 1,

and we shall deduce a contradiction.
First we put

x = n\ e |ng, — ny [nby — na| . . . |16 — nl,
and note that
(24) X < moEm < gmheCo w' < o
Next let ¢1, ¢2, . . ., ¢, be defined by
(25) ¢ = (xn=FVEne, — n|-t (G =1,2,...,k).

Then clearly ¢16: . . . ¢ = n. We suppose, as we may without loss of generality,
that ¢1 > ¢2 > ... > ¢x, and we take ¥ < k to be the smallest integer for
which the product ¢ui1 duio- .. ¢ is not greater than 1. By Minkowski’s
theorem on linear forms (2, p. 151 or 3, p. 73) there are integers x;, X, . .
X1, not all 0, satisfying the inequalities

(26) lxll<¢1. (i=1v2r'-~y’<—1)v !xﬁr|<¢x¢x+l~--¢kr !X! < ly

L)
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where
X =mx;+n2x2+ ... 40Xy + 0%eq1

Clearly the last inequality implies that X = 0, and the preceding inequality
shows that |x, < ¢, Hence from (25), (26), and the identity

K

X =nY — Z (nb; — ni)xq,

=1
where
Y =210, + 520+ ... + %k 0 + Xit1,

we obtain
(27) [nY| < k(xn T®@)1E

From |X| < 1 it is clear that at least one of the x,(. = 1,2, ..., «) differs
from zero. We now suppose, again without loss of generality, that the first K,
and only these, of the integers xi, X2, . . . , %, are non-zero. (Thus %y, ..., x%
are non-zero, Xgy1, . . . , X, are zero, and x.,; may be zero or non-zero.) Then,
since ¢; > 1 for t =K+ 1,K+2,...,« and since ¢, Ppep1...¢; > 1, it
follows from (26) that
(28) 1 xe ... xx] < .

On the other hand, if x denotes the maximum of all the |x,| forz = 1,2, ...,
k + 1, then [x; x5 . . . x| is greater than (2kn)~, for (24) and (27) imply that
| Y| < 1, and thus

|JCK+1| <1 + |x1 01 + PN -|" X ekl < 2k’l1 max(]xll, leI, ceey [x.‘])

Hence we see that ¥ = 2[\]x is less than wz, and from this and our supposition
n > & we deduce that

ntem < w(wn)_%‘(”) < w(wn)_%‘(“’”) < qu e,
Then from (24), (27), and (28) we obtain
(29) |21 22 . .. x5 V| < b F+1ly—e@/2k)

If now we take v; = 2[N]x; for 2 =1,2,...,k + 1, then, in virtue of the
definitions of @ and ¢, we see that (29) gives

U392 -+ g 9(W1 601+ V202 + -+ + Vg O + Vet1)]
< B(2N) I /e) o 1ovClos log P
However, since » > \ is the maximum of |v,], this contradicts the result of the
previous section, and the contradiction proves the theorem.
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