
Glasgow Math. J. 48 (2006) 1–10. C© 2006 Glasgow Mathematical Journal Trust.
doi:10.1017/S0017089505002818. Printed in the United Kingdom

RIGIDITY RESULTS FOR SUBMANIFOLDS WITH PARALLEL
MEAN CURVATURE VECTOR IN THE DE SITTER SPACE

A. BRASIL JR
Departamento de Matemática-UFC
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e-mail: colares@mat.ufc.br
URL: http://www.mat.ufc.br

(Received 11 November, 2004; revised 11 November, 2005)

Abstract. In this work we consider a complete spacelike submanifold Mn

immersed in the De Sitter space Sn+p
p (1) with parallel mean curvature vector. We

use a Simons type inequality to obtain some rigidity results characterizing umbilical
submanifolds and hyperbolic cylinders in Sn+p

p (1).

2000 Mathematics Subject Classification. 53C42, 53A10.

1. Introduction. Let Qn+p
p (c) be an (n + p)-dimensional connected semi-

Riemannian manifold of index p and of constant curvature c, which is called an
indefinite space form of index p. If c = 1, we call it the De Sitter space of index p
and denote it by Sn+p

p (1). Let Mn be an n-dimensional Riemannian manifold and
ψ : Mn → Sn+p

p (1) be an immersion. The immersion is said to be spacelike if the induced
metric on Mn from the metric of Sn+p

p (1) is positive definite. In 1977 Goddard [7]
conjectured that the only complete constant mean curvature spacelike hypersurfaces
in the De Sitter space were the umbilical ones. In 1987 Akutagawa [1] proved the
Goddard conjecture when H2 < 1 if n = 2 and H2 < 4(n − 1)/n2, if n > 2. He also
showed that when n = 2, for any constant H2 > c2 there exists a non-umbilical surface
of mean curvature H in the De Sitter space S3

1(c) of constant curvature c > 0. (This
result was generalized by Cheng in 1991 [3] to general submanifolds in the De Sitter
space.) One year later S. Montiel [12] solved Goddard’s problem in the compact case in
Sn+1

1 without restriction over the range of H. He also gave examples of non-umbilical
complete spacelike hypersurfaces in Sn+1

1 with constant mean curvature H satisfying
H2 ≥ 4(n − 1)/n2, including the so-called hyperbolic cylinders. In [13], Montiel proved
that the only complete spacelike hypersurface in Sn+1

1 with constant mean curvature
H = 2

√
n − 1/n with more than one topological end is a hyperbolic cylinder. This result

was extended by Li [11] in 1997. He proved that a complete spacelike submanifold
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with parallel mean curvature vector with more than one topological end is a hyperbolic
cylinder. In 1991, Ki, Kim, Nakagawa [9] obtained an upper bound for the norm of
the second fundamental form of the hypersurface in terms of the (constant) mean
curvature of the given submanifold and the ambient curvature of the space form and
showed that the upper bound is realized by the hyperbolic cylinder. X. Liu ([10])
characterized, in 2001, the complete spacelike submanifolds Mn with parallel mean
curvature vector satisfying H2 = 4(n − 1)c/n2 (c > 0) in the De Sitter space Sn+p

p (c).
He showed that Mn is totally umbilical, or Mn is the hyperbolic cylinder in Sn+p

p (c) or
Mn has unbounded volume and positive Ricci curvature.

Recently, Brasil, Colares and Palmas obtained in [2] an interesting gap theorem.
More precisely, they considered an immersion ψ : Mn → Sn+1

1 (1) with mean curvature
vector h, mean curvature H = |h| and the traceless tensor � = A − HI, where I stands
for the identity operator. First they used a Simons type inequality for the tensor �

and applied that formula to get some results characterizing umbilical hypersurfaces
and hyperbolic cylinders in Sn+1

1 (1). In order to state their result let us first introduce
totally umbilical hypersurfaces and also hyperbolic cylinders in Sn+1

1 (1).
The totally umbilical hypersurfaces are given by the intersection of Sn+1

1 and affine
hyperplanes

Pn = {
x ∈ Sn+1

1 ; 〈x, a〉 = τ
} ⊂ Ln+2,

where a ∈ Ln+2, |a|2 = σ = 1, 0,−1 and τ 2 > σ. If σ = 1 , Mn is isometric to a
hyperbolic space Hn, with sectional curvature k = − 1

τ 2 − 1 and mean curvature H =
τ

τ 2 − 1 . If σ = 0 , Mn is isometric to Rn, with sectional curvature k = 0 and mean
curvature H = 1. If σ = −1 , Mn is isometric to the sphere Sn, with sectional curvature
k = 1

τ 2 − 1 and mean curvature H = − τ 2

τ 2 − 1 .

Let us denote by H1 × Sn−1 the hyperbolic cylinders H1(sinh r) × Sn−1(cosh r).
For more details we refer to Ki, Kim and Nakagawa [9]. It is possible to show
that these hypersurfaces have one principal curvature equal to coth r and (n − 1)
principal curvatures equal to tanh r. Thus the mean curvature is given by nH = coth r +
(n − 1) tanh r and |�|2 = (n − 1)

n (coth r − tanh r)2.

Now we are ready to state the mentioned result due to Brasil, Colares and Palmas.
See [2, Theorem 1.2, p. 849].

THEOREM 1.1. Let Mn, n ≥ 3 be a complete spacelike hypersurface in Sn+1
1 with

constant mean curvature H > 0. Then sup |�|2 < ∞ and either

(a) |�| ≡ 0 and Mn is totally umbilical; or
(b) B−

H ≤
√

sup |�|2 ≤ B+
H, where B−

H ≤ B+
H are the roots of the polynomial

PH(x) = x2 − n(n − 2)√
n(n − 1)

Hx + n(1 − H2). (1.1)

In this work we generalize the result above for higher codimensions and apply it
to characterize umbilical submanifolds and hyperbolic cylinders in Sn+p

p (1).
Take an immersion ψ : Mn → Sn+p

p (1) and choose a suitable pseudo-orthonormal
frame field {e1, e2, . . . , en+1, en+2, . . . , en+p} adapted to the immersion ψ and its
associated coframe {ω1, ω2, . . . , ωn+1, ωn+2, . . . , ωn+p}. Now recall the symmetric
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traceless tensor introduced by Cheng and Yau in [5], given by

� =
∑
i,j,α

�α
ij ωi ⊗ ωj ⊗ eα, (1.2)

where i, j = 1, 2, . . . , n, α = n + 1, n + 2, . . . , n + p,�α
ij = hα

ij − 1
n trHαI , Hα = (hα

ij )
and hα

ij are the coeficients of the second fundamental form in the direction eα.
Our main results can be stated as follows.

THEOREM 1.2. Let Mn (n ≥ 3) be a complete spacelike submanifold in the De Sitter
space Sn+p

p (1) with parallel mean curvature vector. Then either
(a) H2 <

4(n − 1)
n2 and Mn is totally umbilical or

(b) H2 ≥ 4(n − 1)
n2 and max{0, α−(n, H, p)} ≤ sup |�| ≤ α+(n, H, p),

where α−(n, H, p) and α+(n, H, p) are the real roots of the quadratic polynomial

PH(x) = x2

p
− n(n − 2)√

n(n − 1)
Hx + n(1 − H2).

Moreover if the equality holds and Mn is not totally umbilical then p = 1.

The result above lets us reduce codimension and characterize umbilical
hypersurfaces and hyperbolic cylinders in Sn+1

1 (1) ⊂ Sn+p
p (1).

COROLLARY 1.3. Let Mn (n ≥ 3) be a complete spacelike submanifold in Sn+p
p (1)

with parallel mean curvature vector and H2 ≥ 4(n − 1)
n2 . If sup |�| ≤ max{0, α−(n, H, p)}

or sup |�| ≥ α+(n, H, p), then either
(a) Mn is totally umbilical or
(b) sup |�| = α−(n, H, p) > 0 or sup |�| = α+(n, H, p).
Furthermore, if sup |�| = α−(n, H, p) > 0 and this supremum is attained on Mn,

then Mn is isometric to a hyperbolic cylinder H1 × Sn−1.

COROLLARY 1.4. Let Mn (n ≥ 3) be a complete spacelike submanifold in Sn+p
p (1)

with parallel mean curvature vector and H2 ≥ 4(n − 1)
n2 . If Mn has constant scalar curvature

and sup |�| ≤ max{0, α−(n, H, p)} or sup |�| ≥ α+(n, H, p), then either Mn is totally
umbilical or Mn is isometric to a hyperbolic cylinder H1 × Sn−1.

2. Preliminaries. Throughout this section we shall introduce some basic facts
and notation that will appear in this paper. Now let Mn be a complete spacelike
submanifold immersed in the De Sitter space Sn+p

p (1). Choose a pseudo-orthonormal
frame field {e1, e2, . . . , en+p} in Sn+p

p (1) such that, at each point of Mn, {e1, e2, . . . , en}
is an orthonormal frame that spans the tangent space of Mn. We use the following
standard convention of the range of indices:

1 ≤ A, B, C, . . . ,≤ n + p, 1 ≤ i, j, k, . . . ,≤ n, n + 1 ≤ α, β, γ, . . . ,≤ n + p. (2.1)

Let {ω1, ω2, . . . ωn+p} be its dual frame field so that the semi-Riemannian metric
of Sn+p

p (1) is given by ds2 = ∑
i ω

2
i − ∑

α ω2
α = ∑

A εAω2
A, εi = 1 and εα = −1.

Then the structure equations of Sn+p
p (1) are given by

dωA = −
∑

B

ωAB ∧ ωB, ωAB + ωBA = 0, (2.2)
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dωAB = −
∑

C

εCωAC ∧ ωCB − 1
2

∑
C,D

εCεDKABCD ωC ∧ ωD,

(2.3)
KABCD = εAεB(δACδBD − δADδBC).

Next, we restrict those forms to Mn. First of all ωα = 0. Then

0 = dωα = −
∑

i

ωαi ∧ ωi (2.4)

and, from Cartan’s Lemma, we can write

ωαi =
∑

j

hα
ij ωj, hα

ij = hα
ji. (2.5)

We call B = ∑
α,i,j hα

ij ωiωjeα,

h = 1
n

∑
i,α

hα
iieα (2.6)

and

H = |h| = 1
n

√√√√∑
α

(∑
i

hα
ii

)2

, (2.7)

respectively, the second fundamental form, the mean curvature vector and the mean
curvature of Mn.

The structure equations of Mn are given by

dωi = −
∑

j

ωij ∧ ωj, ωij + ωji = 0, (2.8)

dωij = −
∑

k

ωik ∧ ωkj − 1
2

∑
k,l

Rijkl ωk ∧ ωl. (2.9)

If Rijkl and Rαβkl stand for the tensor of curvature and normal curvature, then the
Gauss equation can be read as follows:

Rijkl = δikδjl − δilδjk −
∑

α

(
hα

ikhα
jl − hα

ilh
α
jk

)
. (2.10)

The components of the Ricci curvature tensor Ric and the scalar curvature R are
given, respectively, by

Rjk = (n − 1)δjk −
∑
α,i

(
hα

iih
α
jk + hα

ikhα
ji

)
, (2.11)

R = n(n − 1) − n2H2 + S, (2.12)

where S = ∑
α,i,j(h

α
ij )

2 is the squared norm of B.
We state also the structure equations of the normal bundle of Mn

dωα = −
∑

β

ωαβ ∧ ωβ, ωαβ + ωβα = 0, (2.13)
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dωαβ = −
∑

γ

ωαγ ∧ ωγβ − 1
2

∑
i,j

Rαβij ωi ∧ ωj, (2.14)

Rαβij = −
∑

l

(
hα

ilh
β

jl − hα
jlh

β

il

)
. (2.15)

The covariant derivatives of hα
ijk of hα

ij satisfy

∑
k

hα
ijkωk = dhα

ij −
∑

k

hα
kiωkj −

∑
k

hα
jkωki −

∑
β

hβ

ij ωβα.

Then, by the exterior differentiation of (2.5), we obtain the Codazzi equation

hα
ijk = hα

ikj = hα
jik. (2.16)

Similarly, we have the second covariant derivatives hα
ijkl of hα

ij so that

∑
l

hijklωl = dhα
ijk −

∑
l

hα
ljkωli −

∑
l

hα
ilkωlj −

∑
l

hα
ijlωlk −

∑
β

hβ

ijkωβα,

and it is easy to get the following Ricci formula

hα
ijkl − hα

ijlk = −
∑

m

hα
imRmjkl −

∑
m

hα
jmRmikl −

∑
β

hβ

ij Rαβkl. (2.17)

The Laplacian �hα
ij of hα

ij is defined by �hα
ij = ∑

k hα
ijkk. From (2.17) we have

�hα
ij =

∑
k

hα
kkij −

∑
k,m

hα
kmRmijk −

∑
k,m

hα
miRmkjk −

∑
β,k

hβ

kiRαβjk. (2.18)

We recall that Mn is a submanifold with parallel mean curvature vector if ∇⊥h = 0
on Mn, where ∇⊥ is the normal connection of Mn in Sn+p

p (1). From now on we assume
that Mn is a complete spacelike submanifold in Sn+p

p (1) with parallel mean curvature
vector, which implies that the mean curvature H is constant. If H = 0, Mn is maximal
and from [8] we know that Mn is totally geodesic. If H �= 0, we choose en+1 = h

H . Thus

trHn+1 = nH, trHα = 0, α ≥ n + 2, (2.19)

where Hα denotes the matrix (hα
ij ),∑

k

hα
kki = 0, ∀i, α (2.20)

and

ωα,n+1 = 0, HαHn+1 = Hn+1Hα, Rn+1αij = 0. (2.21)

By replacing (2.10), (2.15), (2.20) and (2.21) in (2.18), we get

�hn+1
ij = nhn+1

ij − nHδij +
∑
β,k,m

hn+1
km hβ

mkhβ

ij − 2
∑
β,k,m

hn+1
km hβ

mjh
β

ik +
∑
β,k,m

hn+1
mi hβ

mkhβ

kj

− nH
∑

m

hn+1
mi hn+1

mj +
∑
β,k,m

hn+1
jm hβ

mkhβ

ki, (2.22)
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and for α ≥ n + 2, we have

�hα
ij = nhα

ij +
∑
β,k,m

hα
kmhβ

mkhβ

ij − 2
∑
β,k,m

hα
kmhβ

mjh
β

ik

+
∑
β,k,m

hα
mih

β

mkhβ

kj − nH
∑

m

hα
mih

n+1
mj +

∑
β,k,m

hα
jmhβ

mkhβ

ki. (2.23)

Since

1
2
�S =

∑
α,i,j,k

(
hα

ijk

)2 = 1
2

∑
α,i,j

(
�hα

ij

)2 =
∑
α,i,j

hα
ij �hα

ij +
∑
α,i,j,k

(
hα

ijk

)2
,

by using (2.21), (2.22) and (2.23) it is straightforward to verify that

1
2�S =

∑
α,i,j,k

(
hα

ijk

)2 + nS − n2H2 − nH
∑

α

tr(Hn+1(Hα)2)

+
∑
α,β

[tr(HαHβ)]2 +
∑
α,β

N(HαHβ − HβHα), (2.24)

where N(A) = tr(AAt), for each matrix A = (aij).
In the next section we shall need also the following lemma due to Omori [15] and

Yau [19].

LEMMA 2.1. Let Mn be an n-dimensional complete Riemannian manifold whose
Ricci curvature is bounded from below. Let f be a C2-function bounded from below on
Mn. Then for each ε > 0 there exists a point pε ∈ Mn such that |∇f |(pε) < ε, �f (pε) >

−ε and inf f ≤ f (pε) < inf f + ε.

We also need the following algebraic lemma, due to Santos. See [17, p. 407].

LEMMA 2.2. Let A, B : Rn → Rn be symmetric linear maps such that AB − BA = 0
and trA = trB = 0. Then

− n − 2√
n (n − 1)

(trA2)(trB2)
1
2 ≤ trA2B ≤ n − 2√

n (n − 1)
(trA2)(trB2)

1
2 (2.25)

and the equality holds on the right hand (resp. left hand) side if and only if n − 1 of the
eigenvalues xi of A and the corresponding eigenvalues yi of B satisfy

|xi| = (trA2)
1
2√

n(n − 1)
, xixj ≥ 0,

yi = (trB2)
1
2√

n(n − 1)

(
resp. yi = − (trB2)

1
2√

n(n − 1)

)
.

3. Proofs of the rigidity results. In this section we are going to use a version of
Simons’ inequality for submanifolds in the De Sitter space Sn+p

p (1) to prove the first
rigidity result. That inequality was recently obtained by Chaves and Sousa in [4] and
the authors kindly let us present their proof here, in order to clarify our own proof.
H. Li, [11] already obtained some related formulae, estimating separately |�|2 in the
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directions en+1 and the remaining ones. Chaves and Sousa’s result can be stated as
follows.

THEOREM 3.1 (A Simons type inequality). Let Mn be a complete spacelike sub-
manifold in the De Sitter space Sn+p

p (1) with parallel mean curvature vector. Then the
following inequality holds:

1
2
�|�|2 ≥ |�|2

(
|�|2

p
− n (n − 2)√

n (n − 1)
H|�| + n(1 − H2)

)
. (3.1)

Proof. Since ∇⊥h = 0, the mean curvature H is constant. If H ≡ 0, Mn is called
maximal. In this case

∑
i hα

ii = 0 for all α which, together with (2.24) imply that

1
2�|�|2 = 1

2�S =
∑
α,i,j,k

(hα
ijk)2 + nS +

∑
α,β

(trHαHβ)2

+
∑
α,β

N(HβHβ − HβHβ) ≥ nS +
∑

α

N2(Hα)

= n|�|2 +
∑

α

N2(Hα) ≥ |�|2
( |�|2

p
+ n

)
. (3.2)

If H �= 0, we choose the adapted orthonormal frame such that en+1 = h
H . Since

en+1 is a parallel direction, it is easy to verify that

�n+1
ij = Hn+1

ij − Hδij, �α
ij = Hα

ij , α ≥ n + 2,

�n+1 = Hn+1 − HI, �α = Hα, α ≥ n + 2,

N(�n+1) = tr(�n+1)2 = tr(Hn+1)2 − nH2,

(3.3)

where �α and Hα denote, respectively, the matrices (�α
ij ) and (hα

ij ). Moreover

tr(Hn+1)3 = tr(�n+1)3 + 3Htr(�n+1)2 + nH3. (3.4)

By replacing (3.3) and (3.4) in (2.24) we get

1
2�|�|2 =

∑
α,i,j,k

(
�α

ijk

)2 + n(1 − H2)|�|2 − nH
∑

α

tr(�n+1(�α)2)

+
∑
α,β

(tr�α�β)2 +
∑
α,β

N(�α�β − �β�α). (3.5)

By applying Lemma 2.2 to �α and �n+1 we get

|tr(�n+1(�α)2)| ≤ n − 2√
n(n − 1)

√
N(�n+1)N(�α). (3.6)

By definition

N(�α) =
∑

i,j

(
�α

ij

)2
,

|�|2 =
∑

α

N(�α) =
∑
α,i,j

(
�α

ij

)2 = S − nH2. (3.7)
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Now taking the summand for all α �= n + 1 on the right side of inequality (3.6)
and using (3.7) we get

∑
α

tr(�n+1(�α)2) ≤ n − 2√
n(n − 1)

√
N(�n+1)

∑
α

N(�α)

≤ n − 2√
n(n − 1)

|�|3. (3.8)

Using the Cauchy-Schwarz inequality, it is easy to prove that

|�|4 ≤ p
∑

α

N2(�α) ≤ p
∑
α,β

(tr�α�β)2. (3.9)

It follows from (3.5), (3.8) and (3.9) that formula (3.1) holds. This completes the
proof of the Simons type inequality.

Now we are ready to prove our main theorem.

Proof of Theorem 1.2. If H2 <
4(n − 1)

n2 it follows from Cheng’s Theorem (see [3])
that Mn is totally umbilical. Let us suppose H2 ≥ 4(n − 1)

n2 . In this case it is easy to see
that PH(x) has two real roots α−(n, H, p) ≤ α+(n, H, p). Consider the positive smooth
function F on Mn defined by F = 1√

1 + |�|2
. By a simple calculation we obtain

|∇F |2 = |∇|�|2|2
4(1 + |�|2)3

and F�F = −�|�|2
2(1 + |�|2)2

+ 3|∇F |2. (3.10)

Now, from (3.1) and (3.10) we obtain

F�F ≤ −|�|2
2(1 + |�|2)2

( |�|2
p

− n(n − 2)√
n(n − 1)

H|�| + n(1 − H2)
)

+ 3|∇F |2. (3.11)

Assume that the second fundamental form of Mn with respect to en+1 has been
diagonalized so that the eigenvalues are λn+1

i . From (2.11) we have

Ric(ei) ≥ (n − 1) − nHhn+1
ii +

∑
k

(
hn+1

ik

)2 =
(

λn+1
i − nH

2

)2

+ (n − 1) − n2H2

4
. (3.12)

Hence the Ricci curvature of Mn is bounded from below. Since Mn is spacelike and
F > 0, we can apply Lemma 2.1 to the function F . Thus we can obtain a sequence of
points {pk} in Mn such that

lim
k→∞

F(pk) = inf(F);

lim
k→∞

|�|2(pk) = sup |�|2 = (sup |�|)2; (3.13)

lim
k→∞

|∇F(pk)| = 0; lim
k→∞

inf �F(pk) ≥ 0.

By replacing (3.13) in (3.11) we get

sup |�|2
(1 + sup |�|2)2

(
sup |�|2

p
− n(n − 2)√

n (n − 1)
H sup |�| + n(1 − H2)

)
≤ 0. (3.14)
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Inequality (3.14) shows that sup |�| < ∞. Moreover it implies that sup |�| = 0 or
max{0, α−(n, H, p)} ≤ sup |�| ≤ α+(n, H, p).

Let us assume that sup |�| = α−(n, H, p) > 0 or sup |�| = α+(n, H, p). In
particular these assumptions imply that Mn is not totally umbilical. Assuming further
that p ≥ 2 we shall derive a contradiction.

Since |�|2 = ∑
α N(�α) is a smooth function bounded from above on Mn, we

can apply again Lemma 2.1 to the function |�|2. Therefore, taking subsequences if
necessary, we can obtain a sequence (pk) in Mn such that

lim
k→∞

|�|2(pk) = sup |�|2 = (sup |�|)2,

lim
k→∞

N(�α)(pk) = C2
α, α = n + 1, . . . , n + p,

(3.15)
lim

k→∞
|∇|�|2(pk)| = 0,

lim
k→∞

sup(�|�|2)(pk) ≤ 0,

where Cα are constants.
Remember that in order to prove inequality (3.1) we used inequalities (3.8) and

(3.9). Then equality holds in (3.1) if and only if it holds in formulae (3.8) and (3.9).
By applying inequalities (3.1), (3.8) and (3.9) at (pk), approaching the limit and using
(3.15) we get

0 ≥ 1
2

lim
k→∞

sup(�|�|2)(pk)

≥ sup |�|2
(

sup |�|2
p

− n(n − 2)√
n(n − 1)

H sup |�| + n(1 − H2)

)
; (3.16)

Cn+1 sup |�|2 ≤ sup |�|3; (3.17)

(sup |�|2)2 ≤ p
∑

α

C4
α. (3.18)

As we are assuming that sup |�| = α−(n, H, p) > 0 or sup |�| = α+(n, H, p), both
sides of inequality (3.16) are actually equal to zero. As before, equality holds in (3.16)
if and only if it holds in (3.17) and (3.18). More precisely, (3.17) and (3.18) can be
rewritten as the following equalities

Cn+1(sup |�|)2 = Cn+1 sup |�|2 = sup |�|3 = (sup |�|)3,

(sup |�|2)2 = p
∑

α

C4
α. (3.19)

Since Mn is not totally umbilical, (3.19) implies Cn+1 = sup |�| > 0 and so the
second formula of (3.19) yields (p − 1)C4

n+1 + p
∑n+p

α=n+2 C4
α = 0. Hence, if p ≥ 2, as all

the constants Cα are non-negative, we infer that 0 = Cn+1 = sup |�| and Mn is totally
umbilical. This contradiction shows that p = 1 and finishes our proof.

Proof of Corollary 1.3. From Theorem 1.2 we conclude that p = 1 and the proof
then follows from Proposition 1.1 of [2]. Observe that the hypothesis H < 1 in the
cited proposition just appeared to ensure that α−(n, H, 1) was positive. (See formula
(12) of [2].) But we already have this assured by assumption.
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Proof of Corollary 1.4. The hypothesis and Corollary 1.3 imply that either Mn

is totally umbilical or sup |�| = α−(n, H, p) or sup |�| = α+(n, H, p). If sup |�| =
α+(n, H, p) from Theorem 2 of [9] we conclude that Mn is isometric to a hyperbolic
cylinder. If sup |�| = α−(n, H, p), as we are assuming constant scalar curvature, by
(2.12) we get that S is constant and then |�| is also constant. Consequently, sup |�|
is attained on Mn and the last assertion of Corollary 1.3 implies again that Mn is
isometric to a hyperbolic cylinder.
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