PERFECT SETS OF UNIQUENESS ON THE GROUP 2^ω

KAORU YONEDA

1. Introduction. Let w_0, w_1, \ldots denote the Walsh-Paley functions and let G denote the dyadic group introduced by Fine [3]. Recall that a subset E of G is said to be a *set of uniqueness* if the zero series is the only Walsh series $\sum a_k w_k$ which satisfies

$$\lim_{N\to\infty}\sum_{k=0}^{N-1}a_kw_k(x) = 0, \quad x\in G\sim E.$$

A subset E of G which is not a set of uniqueness is called a *set of multiplicity*.

It is known that any subset of G of positive Haar measure is a set of multiplicity [5] and that any countable subset of G is a set of uniqueness [2]. As far as uncountable subsets of Haar measure zero are concerned, both possibilities present themselves. Indeed, among perfect subsets of G of Haar measure zero there are sets of multiplicity [1] and there are sets of uniqueness [5].

There is a natural identification between the group G with its Haar measure and the unit interval [0, 1] with Lebesgue measure. Moreover, Cantor sets $C(\xi)$ with constant ratio of dissection [7, p. 196], which can be described by

(1)
$$C(\xi) = \left\{ x \in [0, 1] : x = (1 - \xi) \cdot \sum_{k=1}^{\infty} \epsilon_k \xi^{k-1} \right.$$

where $\epsilon_k = 0$ or $1, k = 1, 2, \ldots \right\}$,

form an important class of perfect subsets of [0, 1]. Consequently, it is tempting to look at preimages of $C(\xi)$ in G and try to determine which of these are sets of uniqueness and which are sets of multiplicity. Šneider [5] did this in the case when $\xi = 2^{-n}$ for $n = 1, 2, \ldots$, showing that such Cantor sets are sets of uniqueness for G. It is still not known whether any other set of the form (1) is a set of uniqueness for G (see [6]).

The purpose of this paper is to show that if perfect sets $S(\xi)$ are defined analogously to (1) but with group operations replacing the sum $\sum_{k=1}^{\infty}$ and the products $\epsilon_k \cdot \xi^{k-1}$, then $S(\xi)$ is a set of uniqueness for G for all $\xi =$ $(0, \xi_1, \xi_2, \ldots) \in G$. This is in sharp contrast to the trigonometric case where $C(\xi)$ is a set of uniqueness if and only if $1/\xi$ is a Pisot number [4].

Received April 23, 1981 and in revised form September 22, 1981.

Our method of proof is to show that all Dirichlet sets are \mathring{H} -sets and that all closed subgroups of G of Haar measure are Dirichlet sets. It will follow that a certain class of perfect subsets with variable ratios of dissection which includes the sets $S(\xi)$, $\xi = (0, \xi_1, \xi_2, \ldots)$, contains only \mathring{H} -sets. Since Wade [6] has shown that all \mathring{H} -sets are sets of uniqueness for G, it will follow that $S(\xi)$ is a set of uniqueness for G when $\xi = (0, \xi_1, \xi_2, \ldots)$.

2. Dirichlet sets. Analogous to the trigonometric case, a subset E of G is called a *Dirichlet set* if

(2) $\lim \inf_{n \to \infty} \sup_{x \in E} |1 - w_n(\mathbf{x})| = 0.$

760

In this section we shall show that every Dirichlet set is an \mathring{H} -set.

Recall [6] that given a non-negative integer $m = \sum_{k=0}^{\infty} \alpha_k 2^k (\alpha_k = 0 \text{ or } 1)$ and a point *x* which either belongs to *G* or to the set $\{1, 2, ...\}$, the *product* of *m* with *x* is defined by

 $m \otimes x = (\alpha_0 \otimes x) \stackrel{\cdot}{+} (\alpha_1 2 \otimes x) \stackrel{\cdot}{+} (\alpha_2 4 \otimes x) \stackrel{\cdot}{+} \dots$

where the symbols $\alpha 2^{l} \otimes x$ are defined as follows. If $x = (x_{0}, x_{1}, ...)$ is a point in the group G then

 $\alpha 2^{l} \otimes x \equiv (y_0, y_1, \ldots) \in G$

where $y_j = 0$ for j < l and $y_j = \alpha x_j$ for $j \ge l$. If $x = \sum_{j=0}^{\infty} \beta_j 2^j$ ($\beta_j = 0$ or 1) is a non-negative integer, then

$$\alpha 2^{l} \otimes x = \sum_{j=0}^{\infty} \alpha \beta_{j} 2^{j+l}$$

The important fact to remember is that if $x \in G$ and if m and k are non-negative integers then

(3) $w_k(m \otimes x) = w_{m \otimes k}(x).$

Motivated by the association of the group G and the interval [0, 1], for each non-negative integer n and each integer $0 \leq p < 2^n$, we shall denote those elements $x = (x_0, x_1, \ldots)$ of G which satisfy

$$p/2^n = \sum_{j=0}^{n-1} x_j/2^{j+1}$$

by $[p/2^n, (p + 1)/2^n]$. We observe that these sets are both open and closed in G, and that for each integer n,

$$G = \bigcup_{p=0}^{2^{n-1}} [p/2^{n}, (p+1)/2^{n}].$$

THEOREM 1. A necessary and sufficient condition for a set $E \subset G$ to be a Dirichlet set is that there exist integers $m_1 < m_2 < \ldots$ such that $m_k \otimes x \in$ [0, 1/2], that is to say $w_{m_k}(x) = 1$, for $k = 1, 2, \ldots$ and for $x \in E$. To prove Theorem 1, we observe that (2) holds if and only if there exist integers $n_1 < n_2 < \ldots$ such that $1 - w_{n_k}(x) \to 0$ uniformly for $x \in E$, as $k \to \infty$. But the Walsh functions assume only the values ± 1 . Hence (2) holds if and only if there exist integers $m_1 < m_2 < \ldots$ such that $w_{m_k}(x) = 1$ for $x \in E$ and for $k = 1, 2, \ldots$ By (3), this condition is equivalent to $w_1(m_k \otimes x) = 1$ for $x \in E$ and for $k = 1, 2, \ldots$ By (3), this condition only takes the value ± 1 on [0, 1/2], it follows that (2) holds if and only if there exist integers $m_1 < m_2 < \ldots$ such that $m_k \otimes x \in [0, 1/2]$ for $k = 1, 2, \ldots$ and for $x \in E$. The theorem is proved.

Recall [6] that a subset E of G is an \mathring{H} -set if there exist integers $m_1 < m_2 < \ldots$ and an open connected set Δ of real numbers such that if $(y_0, y_1, \ldots) \equiv m_k \otimes x$ for some $x \in G$ and some integer k, then

$$\sum_{j=0}^{\infty} y_j 2^{-j-1} \notin \Delta.$$

If we use $\Delta = \{t \in [0, 1]: 1/2 < t < 1\}$, it follows from Theorem 1 that every Dirichlet set is an \mathring{H} -set. Since \mathring{H} -sets are sets of uniqueness [6], we have also established the following result.

COROLLARY 1. If E is a Dirichlet set then E is a set of uniqueness.

3. Closed subgroups and symmetric sets. Throughout this section let $I_n(x) = G$ when n = 0 and $x \in G$, and if n is a positive integer and $x = (x_0, x_1, \ldots)$ is a point in G, let

$$I_n(x) = [p/2^n, (p+1)/2^n]$$
 where
 $\sum_{j=0}^{n-1} x_j/2^{j+1} = p/2^n$.

Given a closed subgroup H of G, set

(4)
$$H_n = \bigcup_{x \in H} I_n(x), \quad n = 0, 1, \ldots$$

It is clear that for each positive integer n, H_n is a subgroup of H_{n-1} , and $H \subset H_n$. Moreover, each H_n can be expressed as a finite union of $I_n(x)$'s. Specifically for an integer $n \ge 0$ there exist integers $0 < p_1 < \ldots < p_s < 2^n$ (depending upon n) such that

(5)
$$H_n = [0, 1/2^l] \cup [p_1/2^n, (p_1+1)/2^n] \cup \ldots \cup [p_s/2^n, (p_s+1)/2^n].$$

We shall call the sequence $\{H_n\}_{n=0}^{\infty}$ the tower of subgroups associated with H.

The main task of this section is to indicate a proof of the following:

THEOREM 2. If H is a closed subgroup of G of Haar measure zero, then H is a Dirichlet set.

To prove this result let $\{H_n\}_{n=0}^{\infty}$ be the tower of subgroups associated with H. It is our aim to show that there exist integers m_1, m_2, \ldots such that $\limsup_{n\to\infty} m_n = \infty$ and such that $w_{m_n}(x) \equiv 1$ for $x \in H_n$. Since $H \subset H_n$ it will follow that $w_{m_n}(x) \equiv 1$ for $x \in H$, for $n = 1, 2, \ldots$. Since $\{m_n\}_{n=0}^{\infty}$ is unbounded we will have verified that (2) holds with Hin place of E. In particular, H is a Dirichlet set.

Before indicating how to choose the integers $\{m_n\}_{n=0}^{\infty}$ it is necessary to look at the structure of each H_n more closely. Fix n > 0 and let p_1, p_2, \ldots, p_s be determined by (5). Consider the collection $\Gamma_n = \{0, p_1, p_2, \ldots, p_s\}$. Recall that the dual group of G is the set of non-negative integers Γ where addition is binary addition with no carrying: if

$$t = \sum_{k=0}^{\infty} \alpha_k 2^k$$
 and $u = \sum_{k=0}^{\infty} \beta_k 2^k$

then

$$t \dotplus u = \sum_{k=0}^{\infty} |\alpha_k - \beta_k| 2^k.$$

Since H_n is a subgroup of G it is clear that Γ_n is a subgroup of $\tilde{\Gamma}_n = \{0, 1, \ldots, 2^n - 1\}$ which in turn is a subgroup of Γ . Moreover, since the order of $\tilde{\Gamma}_n$ is 2^n , the order of its subgroup Γ_n must be 2^k for some $0 \leq k \leq n$. Therefore Γ_n can be written as a direct sum of k cyclic subgroups of order 2, say

(6)
$$\Gamma_n \equiv \{0, q_1\} \dotplus \{0, q_2\} \dotplus \dots \dotplus \{0, q_k\}.$$

Without loss of generality we suppose that $q_1 < q_2 < \ldots < q_k$. Let $N_1 < N_2 < \ldots < N_k$ be integers determined by

$$2^{N_j} \leq q_j < 2^{N_{j+1}}$$
 for $1 \leq j \leq k$.

Set

$$\begin{split} I_{j} &= \{ x : w_{q_{j}}(x) = 1 \} \text{ and } \\ J_{j} &= [\tilde{p}_{j}/2^{N_{j+1}}, \, (\tilde{p}_{j} + 1)/2^{N_{j+1}}] \text{ for } 1 \leq j \leq k \end{split}$$

where

$$\begin{split} \tilde{p}_1 &= \max \; \{ p : [p/2^{N_1+1}, \, (p+1)/2^{N_1+1}] \subset I_1 \} \quad \text{and} \\ \tilde{p}_j &= \max \; \{ p : [p/2^{N_j+1}, \, (p+1)/2^{N_j+1}] \subset J_{j-1} \cap I_j \} \quad \text{for} \; 1 < j \leq k. \end{split}$$

Since $J_1 \supseteq J_2 \supseteq \ldots \supseteq J_k$ and $N_k + 1 \ge n$, there exists an integer $m_n < 2^n$ such that

(7)
$$[m_n/2^n, (m_n+1)/2^n] \subset J_k.$$

In particular, the following identity holds for all $1 \leq j \leq k$:

(8)
$$w_{q_i}(m_n/2^n) = 1.$$

We are now prepared to show that $w_{m_n} \equiv 1$ on H_n and that

 $\limsup_{n\to\infty}m_n=\infty.$

To show that $w_{m_n} \equiv 1$ on H_n , return to (6) to see that given $p \in \Gamma_n$ there exist numbers $\alpha_j = 0$ or 1 such that

$$p = \alpha_1 \cdot q_1 \dotplus \ldots \dotplus \alpha_k \cdot q_k.$$

Hence given $x \in H_n \cap [p/2^n, (p+1)/2^n]$ (see (5)) it is the case that

$$x = \alpha_1(q_1/2^n) + \alpha_2(q_2/2^n) + \ldots + \alpha_k(q_k/2^n) + \theta/2^n$$

where $0 \leq \theta < 1$. Since $m_n < 2^n$ we have that

$$w_{mn}(x) = w_{mn}^{\alpha_1}(q_1/2^n) \dots w_{mn}^{\alpha_k}(q_k/2^n) \cdot 1.$$

But $w_{m_n}(q_j/2^n) \equiv w_{q_j}(m_n/2^n)$ so from (7) we conclude that $w_{m_n}(x) \equiv 1$ for all $x \in H_n$.

To show that $\limsup_{n\to\infty} m_n = \infty$ we first observe that since H is closed, it is the case that $H = \bigcap_{n=1}^{\infty} H_n$. Indeed, if $x \in H_n$ for all integers n > 0then by (5) x belongs to a shrinking family of sets of the form $[p/2^n, (p+1)/2^n]$, which contains points $x^{(n)} \in H$ for $n = 1, 2, \ldots$. Since such a family of sets shrinks to the point x, it follows that $x^{(n)} \to x$ as $n \to \infty$. Since H is closed we have verified that $x \in H$.

Let $k_n = k$, n = 1, 2, ... where k and n are related by the identity (6), $N_j^{(n)} = N_j$ and $q_j^{(n)} = q_j$. Since m(H) = 0, we can choose integers $n_1 < n_2 < ...$ such that $m(H_{n_i-1}) = 2 \cdot m(H_{n_i})$, so that

$$N_{j}^{(n_{i})} = N_{j}^{(n_{i}-1)} + 1.$$

There happen three cases: (i) $2 \leq q_1^{(n_i)}$, (ii) $q_1^{(n_i-1)} + 1$, $q_2^{(n_i-1)} \geq 2$ and $q_1^{(n_i)} = 1$ and (iii) $\Gamma_{n_i-1} = \{0, 1\}$ for all *i*. In the case (i), from (7) we have

$$1/2 \leq m_{n_i}/2^{n_i}$$

In the case (ii), since

$$\Gamma_{n_i} = \{0, 1\} + \{0, q_2^{(n_i)}\} + \dots$$

and $q_2^{(n_i)} \ge 4$, we have $1/4 \le m_{n_i}/2^{n_i}$. Therefore in the cases (i) and (ii), we have $2^{n_i}/4 \le m_{n_i}$. In the case (iii), then, $H = \{0\}$ which is obviously a Dirichlet set. This completes the proof of Theorem 2.

The symmetric set $S(\xi_1, \xi_2, ...)$ associated with a sequence $\xi_1, \xi_2, ...$ of points in *G* is defined to be those points $x \in G$ which have the form

(9)
$$x = \epsilon_1 \otimes \xi_1 + \epsilon_2 \otimes \xi_2 + \ldots$$

where $\epsilon_k = 0$ or 1 for k = 1, 2, ... If $\xi \in G$ is fixed, then the symmetric set $S(\xi)$ of constant ratio of dissection ξ is the set $S(\xi_1, \xi_2, ...)$ where $\xi_1 = \xi$ and $\xi_k = \xi \otimes \xi_{k-1}$ for k > 1. Clearly, $S(\xi)$ is the group analogue of the Cantor set described by (1).

COROLLARY 2. Let $k_1 < k_2 < \ldots$ be a sequence of integers for which there exists a sequence $n_1 < n_2 < \ldots$ such that

 $k_{n_j+1} < k_{n_j+1}$ $j = 1, 2, \ldots$

Suppose further that for each integer n > 0, ξ_n is a point in G whose first n - 1 coordinates are zero and whose nth coordinate is 1. Then $S(\xi_1, \xi_2, ...)$ is a set of uniqueness.

Indeed, under the imposed conditions, $S(\xi_1, \xi_2, ...)$ is a closed subgroup of Haar measure zero. Thus we need only apply Theorem 2, Corollary 1 and the previously cited result in [6].

Observe that the conditions of Corollary 2 are surely met by $S(\xi)$, when $\xi \in [0, 1/2]$. Hence we have proved the following result.

COROLLARY 3. If $\xi \in [0, 1/2]$ then $S(\xi)$ is a set of uniqueness.

We close by noting that if $\xi \in [1/2, 1]$ (i.e., if the first component of ξ is 1), then $S(\xi) \equiv G$. In particular, $S(\xi)$ is not a set of uniqueness.

References

- J. E. Coury, A class of Walsh M-sets of measure zero, J. Appl. 31 (1970), 318–320, 52 (1975), 669–671.
- R. B. Crittenden and V. L. Shapiro, Sets of uniqueness on the group 2°, Ann. of Math. 81 (1965), 550-564.
- 3. N. J. Fine, On the Walsh functions, Trans. Amer. Math. Soc. 65 (1949), 372-414.
- 4. R. Salem, Sets of uniqueness and sets of multiplicity, Trans. Amer. Math. Soc. 54 (1943), 218–228, 56 (1944), 32–49.
- 5. A. A. Šneider, Uniqueness of expansions with respect to the Walsh system, Mat. Sbornik 24 (1949), 279-300.
- 6. W. R. Wade, Sets of uniqueness for the group of integers of a p-series field, Can. J. Math. 31 (1979), 858-866.
- 7. A. Zygmund, Trigonometric series (Cambridge University Press, 1959).

University of Osaka Prefecture, Sakai, Osaka, Japan