PERFECT SETS OF UNIQUENESS ON THE GROUP 2^{ω}

KAORU YONEDA

1. Introduction. Let w_{0}, w_{1}, \ldots denote the Walsh-Paley functions and let G denote the dyadic group introduced by Fine [3]. Recall that a subset E of G is said to be a set of uniqueness if the zero series is the only Walsh series $\sum a_{k} w_{k}$ which satisfies

$$
\lim _{N \rightarrow \infty} \sum_{k=0}^{N-1} a_{k} w_{k}(x)=0, \quad x \in G \sim E .
$$

A subset E of G which is not a set of uniqueness is called a set of multiplicity.

It is known that any subset of G of positive Haar measure is a set of multiplicity [5] and that any countable subset of G is a set of uniqueness [2]. As far as uncountable subsets of Haar measure zero are concerned, both possibilities present themselves. Indeed, among perfect subsets of G of Haar measure zero there are sets of multiplicity [1] and there are sets of uniqueness [5].

There is a natural identification between the group G with its Haar measure and the unit interval $[0,1]$ with Lebesgue measure. Moreover, Cantor sets $C(\xi)$ with constant ratio of dissection [7, p. 196], which can be described by

$$
\begin{align*}
C(\xi)=\{x \in[0,1]: x=(1-\xi) \cdot & \sum_{k=1}^{\infty} \epsilon_{k} \xi^{k-1} \tag{1}\\
& \text { where } \left.\epsilon_{k}=0 \text { or } 1, k=1,2, \ldots\right\}
\end{align*}
$$

form an important class of perfect subsets of $[0,1]$. Consequently, it is tempting to look at preimages of $C(\xi)$ in G and try to determine which of these are sets of uniqueness and which are sets of multiplicity. Šneider [5] did this in the case when $\xi=2^{-n}$ for $n=1,2, \ldots$, showing that such Cantor sets are sets of uniqueness for G. It is still not known whether any other set of the form (1) is a set of uniqueness for G (see [6]).

The purpose of this paper is to show that if perfect sets $S(\xi)$ are defined analogously to (1) but with group operations replacing the sum $\sum_{k=1}^{\infty}$ and the products $\epsilon_{k} \cdot \xi^{k-1}$, then $S(\xi)$ is a set of uniqueness for G for all $\xi=$ $\left(0, \xi_{1}, \xi_{2}, \ldots\right) \in G$. This is in sharp contrast to the trigonometric case where $C(\xi)$ is a set of uniqueness if and only if $1 / \xi$ is a Pisot number [4].

Received April 23, 1981 and in revised form September 22, 1981.

Our method of proof is to show that all Dirichlet sets are $\stackrel{\circ}{H}$-sets and that all closed subgroups of G of Haar measure are Dirichlet sets. It will follow that a certain class of perfect subsets with variable ratios of dissection which includes the sets $S(\xi), \xi=\left(0, \xi_{1}, \xi_{2}, \ldots\right)$, contains only $\stackrel{\circ}{H}$-sets. Since Wade [6] has shown that all $\stackrel{\circ}{H}$-sets are sets of uniqueness for G, it will follow that $S(\xi)$ is a set of uniqueness for G when $\xi=$ $\left(0, \xi_{1}, \xi_{2}, \ldots\right)$.
2. Dirichlet sets. Analogous to the trigonometric case, a subset E of G is called a Dirichlet set if
(2) $\quad \lim \inf _{n \rightarrow \infty} \sup _{x \in E}\left|1-w_{n}(\mathrm{x})\right|=0$.

In this section we shall show that every Dirichlet set is an ${ }^{\circ}$-set.
Recall [6] that given a non-negative integer $m=\sum_{k=0}^{\infty} \alpha_{k} 2^{k}\left(\alpha_{k}=0\right.$ or 1) and a point x which either belongs to G or to the set $\{1,2, \ldots\}$, the product of m with x is defined by

$$
m \otimes x=\left(\alpha_{0} \otimes x\right) \dot{+}\left(\alpha_{1} 2 \otimes x\right) \dot{+}\left(\alpha_{2} 4 \otimes x\right) \dot{+} \ldots
$$

where the symbols $\alpha 2^{l} \otimes x$ are defined as follows. If $x=\left(x_{0}, x_{1}, \ldots\right)$ is a point in the group G then

$$
\alpha 2^{l} \otimes x \equiv\left(y_{0}, y_{1}, \ldots\right) \in G
$$

where $y_{j}=0$ for $j<l$ and $y_{j}=\alpha x_{j}$ for $j \geqq l$. If $x=\sum_{j=0}^{\infty} \beta_{j} 2^{j}\left(\beta_{j}=0\right.$ or 1) is a non-negative integer, then

$$
\alpha 2^{l} \otimes x=\sum_{j=0}^{\infty} \alpha \beta_{j} 2^{j+l} .
$$

The important fact to remember is that if $x \in G$ and if m and k are nonnegative integers then
(3) $w_{k}(m \otimes x)=w_{m \otimes k}(x)$.

Motivated by the association of the group G and the interval $[0,1]$, for each non-negative integer n and each integer $0 \leqq p<2^{n}$, we shall denote those elements $x=\left(x_{0}, x_{1}, \ldots\right)$ of G which satisfy

$$
p / 2^{n}=\sum_{j=0}^{n-1} x_{j} / 2^{j+1}
$$

by $\left[p / 2^{n},(p+1) / 2^{n}\right]$. We observe that these sets are both open and closed in G, and that for each integer n,

$$
G=\bigcup_{p=0}^{2^{n}-1}\left[p / 2^{n},(p+1) / 2^{n}\right] .
$$

Theorem 1. A necessary and sufficient condition for a set $E \subset G$ to be a Dirichlet set is that there exist integers $m_{1}<m_{2}<\ldots$ such that $m_{k} \otimes x \in$ $[0,1 / 2]$, that is to say $w_{m_{k}}(x)=1$, for $k=1,2, \ldots$ and for $x \in E$.

To prove Theorem 1, we observe that (2) holds if and only if there exist integers $n_{1}<n_{2}<\ldots$ such that $1-w_{n_{k}}(x) \rightarrow 0$ uniformly for $x \in E$, as $k \rightarrow \infty$. But the Walsh functions assume only the values ± 1. Hence (2) holds if and only if there exist integers $m_{1}<m_{2}<\ldots$ such that $w_{m_{k}}(x)=1$ for $x \in E$ and for $k=1,2, \ldots$ By (3), this condition is equivalent to $w_{1}\left(m_{k} \otimes x\right)=1$ for $x \in E$ and for $k=1,2, \ldots$ Since w_{1} only takes the value +1 on $[0,1 / 2]$, it follows that (2) holds if and only if there exist integers $m_{1}<m_{2}<\ldots$ such that $m_{k} \otimes x \in[0,1 / 2]$ for $k=1,2, \ldots$ and for $x \in E$. The theorem is proved.

Recall [6] that a subset E of G is an $\stackrel{\circ}{H}$-set if there exist integers $m_{1}<$ $m_{2}<\ldots$ and an open connected set Δ of real numbers such that if $\left(y_{0}, y_{1}, \ldots\right) \equiv m_{k} \otimes x$ for some $x \in G$ and some integer k, then

$$
\sum_{j=0}^{\infty} y_{j} 2^{-j-1} \notin \Delta .
$$

If we use $\Delta=\{t \in[0,1]: 1 / 2<t<1\}$, it follows from Theorem 1 that every Dirichlet set is an $\stackrel{\circ}{H}$-set. Since $\stackrel{\circ}{H}$-sets are sets of uniqueness [6], we have also established the following result.
Corollary 1. If E is a Dirichlet set then E is a set of uniqueness.
3. Closed subgroups and symmetric sets. Throughout this section let $I_{n}(x)=G$ when $n=0$ and $x \in G$, and if n is a positive integer and $x=\left(x_{0}, x_{1}, \ldots\right)$ is a point in G, let

$$
\begin{aligned}
& I_{n}(x)=\left[p / 2^{n},(p+1) / 2^{n}\right] \text { where } \\
& \sum_{j=0}^{n-1} x_{j} / 2^{j+1}=p / 2^{n} .
\end{aligned}
$$

Given a closed subgroup H of G, set

$$
\begin{equation*}
H_{n}=\bigcup_{x \in H} I_{n}(x), \quad n=0,1, \ldots \tag{4}
\end{equation*}
$$

It is clear that for each positive integer n, H_{n} is a subgroup of H_{n-1}, and $H \subset H_{n}$. Moreover, each H_{n} can be expressed as a finite union of $I_{n}(x)$'s. Specifically for an integer $n \geqq 0$ there exist integers $0<p_{1}<\ldots<p_{s}$ $<2^{n}$ (depending upon n) such that

$$
\begin{equation*}
H_{n}=\left[0,1 / 2^{l}\right] \cup\left[p_{1} / 2^{n},\left(p_{1}+1\right) / 2^{n}\right] \cup \ldots \cup\left[p_{s} / 2^{n},\left(p_{s}+1\right) / 2^{n}\right] . \tag{5}
\end{equation*}
$$

We shall call the sequence $\left\{H_{n}\right\}_{n=0}^{\infty}$ the tower of subgroups associated with H.

The main task of this section is to indicate a proof of the following:
Theorem 2. If H is a closed subgroup of G of Haar measure zero, then H is a Dirichlet set.

To prove this result let $\left\{H_{n}\right\}_{n=0}^{\infty}$ be the tower of subgroups associated with H. It is our aim to show that there exist integers m_{1}, m_{2}, \ldots such that $\lim _{\sup _{n \rightarrow \infty}} m_{n}=\infty$ and such that $w_{m_{n}}(x) \equiv 1$ for $x \in H_{n}$. Since $H \subset H_{n}$ it will follow that $w_{m_{n}}(x) \equiv 1$ for $x \in H$, for $n=1,2, \ldots$. Since $\left\{m_{n}\right\}_{n=0}^{\infty}$ is unbounded we will have verified that (2) holds with H in place of E. In particular, H is a Dirichlet set.

Before indicating how to choose the integers $\left\{m_{n}\right\}_{n=0}^{\infty}$ it is necessary to look at the structure of each H_{n} more closely. Fix $n>0$ and let p_{1}, p_{2}, \ldots, p_{s} be determined by (5). Consider the collection $\Gamma_{n}=\left\{0, p_{1}, p_{2}, \ldots, p_{s}\right\}$. Recall that the dual group of G is the set of non-negative integers Γ where addition is binary addition with no carrying: if

$$
t=\sum_{k=0}^{\infty} \alpha_{k} 2^{k} \quad \text { and } \quad u=\sum_{k=0}^{\infty} \beta_{k} 2^{k}
$$

then

$$
t \dot{+} u=\sum_{k=0}^{\infty}\left|\alpha_{k}-\beta_{k}\right| 2^{k} .
$$

Since H_{n} is a subgroup of G it is clear that Γ_{n} is a subgroup of $\tilde{\Gamma}_{n}=$ $\left\{0,1, \ldots, 2^{n}-1\right\}$ which in turn is a subgroup of Γ. Moreover, since the order of $\tilde{\Gamma}_{n}$ is 2^{n}, the order of its subgroup Γ_{n} must be 2^{k} for some $0 \leqq$ $k \leqq n$. Therefore Γ_{n} can be written as a direct sum of k cyclic subgroups of order 2 , say

$$
\begin{equation*}
\Gamma_{n} \equiv\left\{0, q_{1}\right\} \dot{+}\left\{0, q_{2}\right\} \dot{+} \ldots \dot{+}\left\{0, q_{k}\right\} . \tag{6}
\end{equation*}
$$

Without loss of generality we suppose that $q_{1}<q_{2}<\ldots<q_{k}$.
Let $N_{1}<N_{2}<\ldots<N_{k}$ be integers determined by

$$
2^{N_{j}} \leqq q_{j}<2^{N_{j}+1} \quad \text { for } 1 \leqq j \leqq k .
$$

Set

$$
\begin{aligned}
& I_{j}=\left\{x: w_{q_{j}}(x)=1\right\} \text { and } \\
& J_{j}=\left[\tilde{p}_{j} / 2^{N_{j}+1},\left(\tilde{p}_{j}+1\right) / 2^{N_{j}+1}\right] \quad \text { for } 1 \leqq j \leqq k
\end{aligned}
$$

where

$$
\begin{aligned}
& \tilde{p}_{1}=\max \left\{p:\left[p / 2^{N_{1}+1},(p+1) / 2^{N_{1}+1}\right] \subset I_{1}\right\} \text { and } \\
& \tilde{p}_{j}=\max \left\{p:\left[p / 2^{N_{j}+1},(p+1) / 2^{N_{j}+1}\right] \subset J_{j-1} \cap I_{j}\right\} \text { for } 1<j \leqq k .
\end{aligned}
$$

Since $J_{1} \supsetneq J_{2} \supsetneq \ldots \supsetneq J_{k}$ and $N_{k}+1 \geqq n$, there exists an integer $m_{n}<2^{n}$ such that
(7) $\left[m_{n} / 2^{n},\left(m_{n}+1\right) / 2^{n}\right] \subset J_{k}$.

In particular, the following identity holds for all $1 \leqq j \leqq k$:
(8) $w_{q_{j}}\left(m_{n} / 2^{n}\right)=1$.

We are now prepared to show that $w_{m_{n}} \equiv 1$ on H_{n} and that

$$
\lim \sup _{n \rightarrow \infty} m_{n}=\infty .
$$

To show that $w_{m_{n}} \equiv 1$ on H_{n}, return to (6) to see that given $p \in \Gamma_{n}$ there exist numbers $\alpha_{j}=0$ or 1 such that

$$
p=\alpha_{1} \cdot q_{1} \dot{+} \ldots \dot{+} \alpha_{k} \cdot q_{k}
$$

Hence given $x \in H_{n} \cap\left[p / 2^{n},(p+1) / 2^{n}\right]$ (see (5)) it is the case that

$$
x=\alpha_{1}\left(q_{1} / 2^{n}\right) \dot{+} \alpha_{2}\left(q_{2} / 2^{n}\right) \dot{+} \ldots \dot{+} \alpha_{k}\left(q_{k} / 2^{n}\right) \dot{+} \theta / 2^{n}
$$

where $0 \leqq \theta<1$. Since $m_{n}<2^{n}$ we have that

$$
w_{m_{n}}(x)=w_{m_{n}}{ }^{\alpha_{1}}\left(q_{1} / 2^{n}\right) \ldots w_{m_{n}}{ }^{\alpha_{k}}\left(q_{k} / 2^{n}\right) \cdot 1 .
$$

But $w_{m_{n}}\left(q_{j} / 2^{n}\right) \equiv w_{q_{j}}\left(m_{n} / 2^{n}\right)$ so from (7) we conclude that $w_{m_{n}}(x) \equiv 1$ for all $x \in H_{n}$.

To show that $\lim \sup _{n \rightarrow \infty} m_{n}=\infty$ we first observe that since H is closed, it is the case that $H=\bigcap_{n=1}^{\infty} H_{n}$. Indeed, if $x \in H_{n}$ for all integers $n>0$ then by (5) x belongs to a shrinking family of sets of the form $\left[p / 2^{n}\right.$, $\left.(p+1) / 2^{n}\right]$, which contains points $x^{(n)} \in H$ for $n=1,2, \ldots$. Since such a family of sets shrinks to the point x, it follows that $x^{(n)} \rightarrow x$ as $n \rightarrow \infty$. Since H is closed we have verified that $x \in H$.

Let $k_{n}=k, n=1,2, \ldots$ where k and n are related by the identity (6), $N_{j}{ }^{(n)}=N_{j}$ and $q_{j}{ }^{(n)}=q_{j}$. Since $m(H)=0$, we can choose integers $n_{1}<n_{2}<\ldots$ such that $m\left(H_{n_{i}-1}\right)=2 \cdot m\left(H_{n_{i}}\right)$, so that

$$
N_{j}^{\left(n_{i}\right)}=N_{j}^{\left(n_{i}-1\right)}+1 .
$$

There happen three cases: (i) $2 \leqq q_{1}{ }^{\left(n_{i}\right)}$, (ii) $q_{1}{ }^{\left(n_{i}-1\right)}+1, q_{2}{ }^{\left(n_{i}-1\right)} \geqq 2$ and $q_{1}{ }^{\left(n_{i}\right)}=1$ and (iii) $\Gamma_{n_{i-1}}=\{0,1\}$ for all i. In the case (i), from (7) we have

$$
1 / 2 \leqq m_{n_{i}} / 2^{n_{i}}
$$

In the case (ii), since

$$
\Gamma_{n_{i}}=\{0,1\} \dot{+}\left\{0, q_{2}^{\left(n_{i}\right)}\right\} \dot{+} \ldots
$$

and $q_{2}{ }^{\left(n_{i}\right)} \geqq 4$, we have $1 / 4 \leqq m_{n i} / 2^{n_{i}}$. Therefore in the cases (i) and (ii), we have $2^{n_{i}} / 4 \leqq m_{n i}$. In the case (iii), then, $H=\{0\}$ which is obviously a Dirichlet set. This completes the proof of Theorem 2.

The symmetric set $S\left(\xi_{1}, \xi_{2}, \ldots\right)$ associated with a sequence ξ_{1}, ξ_{2}, \ldots of points in G is defined to be those points $x \in G$ which have the form
(9) $x=\epsilon_{1} \otimes \xi_{1} \dot{+} \epsilon_{2} \otimes \xi_{2} \dot{+} \ldots$
where $\epsilon_{k}=0$ or 1 for $k=1,2, \ldots$ If $\xi \in G$ is fixed, then the symmetric set $S(\xi)$ of constant ratio of dissection ξ is the set $S\left(\xi_{1}, \xi_{2}, \ldots\right)$ where $\xi_{1}=\xi$ and $\xi_{k}=\xi \otimes \xi_{k-1}$ for $k>1$. Clearly, $S(\xi)$ is the group analogue of the Cantor set described by (1).

Corollary 2. Let $k_{1}<k_{2}<\ldots$ be a sequence of integers for which there exists a sequence $n_{1}<n_{2}<\ldots$ such that

$$
k_{n_{j}+1}<k_{n_{j+1}} \quad j=1,2, \ldots
$$

Suppose further that for each integer $n>0, \xi_{n}$ is a point in G whose first $n-1$ coordinates are zero and whose nth coordinate is 1 . Then $S\left(\xi_{1}, \xi_{2}, \ldots\right)$ is a set of uniqueness.

Indeed, under the imposed conditions, $S\left(\xi_{1}, \xi_{2}, \ldots\right)$ is a closed subgroup of Haar measure zero. Thus we need only apply Theorem 2, Corollary 1 and the previously cited result in [6].

Observe that the conditions of Corollary 2 are surely met by $S(\xi)$, when $\xi \in[0,1 / 2]$. Hence we have proved the following result.

Corollary 3. If $\xi \in[0,1 / 2]$ then $S(\xi)$ is a set of uniqueness.
We close by noting that if $\xi \in[1 / 2,1]$ (i.e., if the first component of ξ is 1), then $S(\xi) \equiv G$. In particular, $S(\xi)$ is not a set of uniqueness.

References

1. J. E. Coury, A class of Walsh M-sets of measure zero, J. Appl. 31 (1970), 318-320, 52 (1975), 669-671.
2. R. B. Crittenden and V. L. Shapiro, Sets of uniqueness on the group 2^{ω}, Ann. of Math. 81 (1965), 550-564.
3. N. J. Fine, On the Walsh functions, Trans. Amer. Math. Soc. 65 (1949), 372-414.
4. R. Salem, Sets of uniqueness and sets of multiplicity, Trans. Amer. Math. Soc. 54 (1943), 218-228, 56 (1944), 32-49.
5. A. A. Šneider, Uniqueness of expansions with respect to the Walsh system, Mat. Sbornik 24 (1949), 279-300.
6. W. R. Wade, Sets of uniqueness for the group of integers of a p-series field, Can. J. Math. 31 (1979), 858-866.
7. A. Zygmund, Trigonometric series (Cambridge University Press, 1959).

University of Osaka Prefecture,
Sakai, Osaka, Japan

