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PERFECT SETS OF UNIQUENESS ON THE GROUP 2« 

KAORU YONEDA 

1. Introduction. Let w0, wh . . . denote the Walsh-Paley functions and 
let G denote the dyadic group introduced by Fine [3]. Recall that a 
subset E of G is said to be a set of uniqueness if the zero series is the only 
Walsh series Y, ak^k which satisfies 

A T - l 

lim 2^ akwk{x) = 0, x £ G ~ E. 
AT-̂ co k=0 

A subset E of G which is not a set of uniqueness is called a set of multi
plicity. 

It is known that any subset of G of positive Haar measure is a set of 
multiplicity [5] and that any countable subset of G is a set of uniqueness 
[2]. As far as uncountable subsets of Haar measure zero are concerned, 
both possibilities present themselves. Indeed, among perfect subsets of 
G of Haar measure zero there are sets of multiplicity [1] and there are 
sets of uniqueness [5]. 

There is a natural identification between the group G with its Haar 
measure and the unit interval [0, 1] with Lebesgue measure. Moreover, 
Cantor sets C(£) with constant ratio of dissection [7, p. 196], which can 
be described by 

(1) C(£) = {* € [0, 1]: * = (1 - f) • £ ek?~X 

where ek = 0 or 1, k = 1, 2, . . .} , 

form an important class of perfect subsets of [0, 1]. Consequently, it is 
tempting to look at preimages of C(£) in G and try to determine which of 
these are sets of uniqueness and which are sets of multiplicity. Sneider [5] 
did this in the case when £ = 2~n for n = 1, 2, . . . , showing that such 
Cantor sets are sets of uniqueness for G. It is still not known whether any 
other set of the form (1) is a set of uniqueness for G (see [6]). 

The purpose of this paper is to show that if perfect sets 5(£) are defined 
analogously to (1) but with group operations replacing the sum / ,%Li and 
the products ek • £*-1, then 5(£) is a set of uniqueness for G for all £ = 
(0, £i, £2, • . •) G G. This is in sharp contrast to the trigonometric case 
where C(£) is a set of uniqueness if and only if l/£ is a Pisot number [4]. 
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Our method of proof is to show that all Dirichlet sets are H-sets and 
that all closed subgroups of G of Haar measure are Dirichlet sets. It will 
follow that a certain class of perfect subsets with variable ratios of 
dissection which includes the sets 5(f), £ = (0, £1, £2, • . .)> contains only 

o o 

i^-sets. Since Wade [6] has shown that all H-sets are sets of uniqueness 
for G, it will follow that 5(f) is a set of uniqueness for G when £ = 
(0, £1, £2, . . .)• 

2. Dirichlet sets. Analogous to the trigonometric case, a subset EoiG 
is called a Dirichlet set if 

(2) lim infn^œ s u p ^ |1 - wn(x)\ = 0. 
o 

In this section we shall show that every Dirichlet set is an H-set. 
Recall [6] that given a non-negative integer m = ̂ £=0 otk2

k (ak = 0 or 1) 
and a point x which either belongs to G or to the set {1, 2, . . .}, the product 
of m with x is defined by 

m <g> x = {pùQ (g) x) -f- («i2 (g) x) + («24 (g) x) + . • • 

where the symbols a2l (g) x are defined as follows. If x = (x0, Xi, . . .) is 
a point in the group G then 

«2* ® x s= (y0,yi, . . .) € G 

where 3^ = 0 for j < l and 3^ = axj for 7 ^ /. If x = X 7̂=o Pj%j (fij = 0 
or 1) is a non-negative integer, then 

a2l ®x = ^a/3j2i+l. 

The important fact to remember is that if x Ç G and if m and & are non-
negative integers then 

(3) wk(m <g> x) = wm<S)k(x). 

Motivated by the association of the group G and the interval [0, 1], 
for each non-negative integer n and each integer 0 S P < 2n, we shall 
denote those elements x = (x0, xx, . . .) of G which satisfy 

by [p/2n, (p + l ) /2 n ] . We observe that these sets are both open and 
closed in G, and that for each integer n, 

G = U [p/2n, (p + l)/2»]. 

THEOREM 1. A necessary and sufficient condition for a set E C G to be 
a Dirichlet set is that there exist integers wx < m2 < . . . such that mk (g) x G 
[0, 1/2], / t o is to say 7fmjfc(x) = 1,/tfr & = 1 , 2 , . . . and for x £ E. 
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To prove Theorem 1, we observe that (2) holds if and only if there 
exist integers n\ < n2 < . . . such that 1 — wnk(x) —> 0 uniformly for 
x Ç E, as k —•> oo . But the Walsh functions assume only the values ± 1 . 
Hence (2) holds if and only if there exist integers mi < m2 < . . • such 
that wmic{%) = 1 for x £ E and for k = 1, 2, . . . . By (3), this condition 
is equivalent to W\(mk ® x) = 1 for x £ E and for k = 1, 2, . . . . Since Wi 
only takes the value + 1 on [0, 1/2], it follows that (2) holds if and only if 
there exist integers wL < w2 < . . . such that mk ® x Ç [0, 1/2] for 
k = 1 , 2 , . . . and for x £ E. The theorem is proved. 

o 

Recall [6] that a subset E of G is an i7-set if there exist integers m\ < 
ra2 < . . . and an open connected set A of real numbers such that if 
(yo> Ju • • •) = ^ ® x for some x £ G and some integer k, then 

Ëy^-^g A. 

If we use A = {/ G [0, 1]: 1/2 < / < 1}, it follows from Theorem 1 that 
every Dirichlet set is an H-set. Since H-sets are sets of uniqueness [6], 
we have also established the following result. 

COROLLARY 1. If E is a Dirichlet set then E is a set of uniqueness. 

3. Closed subgroups and symmetric sets. Throughout this section 
let In(x) = G when n = 0 and x G G, and if n is a positive integer and 
x = (#o, Xi, . . .) is a point in G, let 

Jn(*) = [p/2\ (p + l)/2*] where 

X>,/2'+1 = £/2*. 

Given a closed subgroup H of G, set 

(4) Hn = U /„(*), » = 0, 1, . . . . 

It is clear that for each positive integer n, Hn is a subgroup of #n_i, and 
H C #n- Moreover, each Hn can be expressed as a finite union of In(x)'s. 
Specifically for an integer n ^ 0 there exist integers 0 < pi < . . . < ps 

< 2n (depending upon n) such that 

(5) Hn = [0,1/2'] U [^i/2», (̂ x + l)/2»] U . . . W [^,/2», (^, + l)/2»]. 

We shall call the sequence {Hn}n^o the tower of subgroups associated with 
H. 

The main task of this section is to indicate a proof of the following: 

THEOREM 2. If H is a closed subgroup of G of Haar measure zero, then H 
is a Dirichlet set. 
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To prove this result let {Hn}n=o be the tower of subgroups associated 
with H. It is our aim to show that there exist integers m,\, m2, . . . such 
that lim supn_>œ mn = oo and such that wmn(x) = 1 for x G Hn. Since 
H C Hn it will follow that u>mn(x) = 1 for x £ if, for n = 1, 2, . . . . 
Since {raw}£Lo is unbounded we will have verified that (2) holds with H 
in place of E. In particular, if is a Dirichlet set. 

Before indicating how to choose the integers {tnn}n=o it is necessary to 
look at the structure of each Hn more closely. Fix n > 0 and let pi, p2, . . . , 
ps be determined by (5). Consider the collection Tn = {0, pi, pi, . . . , ps\. 
Recall that the dual group of G is the set of non-negative integers T where 
addition is binary addition with no carrying: if 

oo oo 

t = X «*2* and u = £ &2* 

then 

t + « = £ k - A|2*-
fc=0 

Since ifw is a subgroup of G it is clear that Tn is a subgroup of Yn = 
{0, 1, . . . , 2n — 1} which in turn is a subgroup of T. Moreover, since the 
order of Tn is 2n, the order of its subgroup Tn must be 2k for some 0 ^ 
k S n. Therefore Tn can be written as a direct sum of k cyclic subgroups 
of order 2, say 

(6) Tn= {0,<zi} + {0,q2} + . . . + {0,qk}. 

Without loss of generality we suppose that q\ < q2 < • . . < qk-
Let Ni < N2 < . . . < Nk be integers determined by 

2 ^ ^ ^ < 2 ^ + 1 for 1 ^ j g ife. 

Set 

7j = {x : w^. (x) = 1} and 

/ , = [pi/2Ni+\ (h + l ) / 2^+ i ] for 1 £ j £ fe 

where 

£i = max {£ : [p /2"^ 1 , (p + l ) ^ ^ 1 ] C Ii} and 

Pi = max{p: [p/2»*\ (p + l ) / 2 ^ ] C / H n /,} fori < j ^ £ . 

Since i i 2 i2 2 • • • 2 A and iV* + 1 ^ w, there exists an integer 
mn < 2n such that 

(7) [mn/2\ (mn + l)/2«] C /*. 

In particular, the following identity holds for all 1 ^ j ^ k: 

(8) wff.(mn/2») = 1. 

We are now prepared to show that wmn = 1 on Hn and that 

lim s u p ^ œ mn — co . 
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To show that wmn = 1 on Hn, return to (6) to see that given p Ç Tn 

there exist numbers otj = 0 or 1 such that 

p = ai- qi +•• - + <*k' <lk-

Hence given x £ Hn C\ [p/2n, (p + l)/2n] (see (5)) it is the case that 

x = a^/T) + a2(q2/2
n) + . . . + ak(qk/2

n) + 0/2* 

where 0 g 0 < 1. Since ran < 2W we have that 

Wmn(x) = w^qx/V) . . . w^GZit/Z1) • 1. 

But wmn{qj/2n) == wq.(mn/2
n) so from (7) we conclude that wmn(x) = 1 

for all x G i^n-
To show that lim supw_>œ mn — oo we first observe that since H is closed, 

it is the case that H = Dn=i Hn. Indeed, \ix d Hn for all integers n > 0 
then by (5) x belongs to a shrinking family of sets of the form [p/2n, 
(p + 1)/2W], which contains points x(w) G if for n = 1, 2, . . . . Since such 
a family of sets shrinks to the point x, it follows that x(n) —> x as n —> oo . 
Since if is closed we have verified that x £ H. 

Let kn = fe, w = 1, 2, . . . where fe and n are related by the identity (6), 
Nj(n) = Nj and g/w) = q^ Since m(H) = 0, we can choose integers 
ni < n2 < . . . such that m(ifWt-_i) = 2 • m(Hni), so that 

#/».-> = 7V/^-D + l. 

There happen three cases: (i) 2 g g ^ \ (ii) q^-» + 1, g^»'-" è 2 and 
gi(ni) = 1 and (iii) rn i_i = {0, 1} for all i. In the case (i), from (7) we 
have 

1/2 S mnJ2n\ 

In the case (ii), since 

Tni = {0,1} + {0,q2™} + . . . 

and q2
{ni) ^ 4, we have 1/4 ^ mni/2

n\ Therefore in the cases (i) and (ii), 
we have 2Wi/4 <; mni. In the case (iii), then, H = {0} which is obviously 
a Dirichlet set. This completes the proof of Theorem 2. 

The symmetric set S(£i, £2, • • .) associated with a sequence £1, £2, • • • of 
points in G is defined to be those points x 6 G which have the form 

(9) x = 61 <g> £1 + e2 ® £2 + • • • 

where ê  = 0 or 1 for k = 1, 2, . . . . If £ G G is fixed, then the symmetric 
set 5(£) of constant ratio of dissection £ is the set S(£i, £2, . . .) where 
£1 = £ and £* = £ ® £A-I for & > 1. Clearly, 5(£) is the group analogue 
of the Cantor set described by (1). 
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COROLLARY 2. Let ki < k2 < . . . be a sequence of integers for which there 
exists a sequence n\ < n2 < . . . such that 

kn.+i < kn.+l j = 1, 2, . . . . 

Suppose further that for each integer n > 0, £n is a point in G whose first 
n — 1 coordinates are zero and whose nth coordinate is 1. Then S(£i, £2, • • .) 
û a se/ of uniqueness. 

Indeed, under the imposed conditions, S(£i, £2, • . .) is a closed subgroup 
of Haar measure zero. Thus we need only apply Theorem 2, Corollary 1 
and the previously cited result in [6]. 

Observe that the conditions of Corollary 2 are surely met by 5(£), 
when £ Ç [0, 1/2]. Hence we have proved the following result. 

COROLLARY 3. / / £ G [0, 1/2] then S(£) z's a se£ of uniqueness. 

We close by noting that if £ G [1/2, 1] (i.e., if the first component of £ 
is 1), then S(£) = G. In particular, S(£) is not a set of uniqueness. 
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