J. Austral. Math. Soc. 23 (Series A) (1977), 431-438.

ON FUNCTIONS DERIVED FROM REGULARLY VARYING FUNCTIONS

LAURENS DE HAAN*

(Received 9 October 1975; revised 8 March 1976)

Introduction and notation

A generalization of Karamata's theorem on integrals of regularly varying functions is proved. Using Laplace-Stieltjes transforms it is shown that any regularly varying function with exponent α ($\alpha + 1 \notin N$) is asymptotic to another regularly varying function all of whose derivations are regularly varying.

Suppose U is a positive function on \mathbb{R}^+ . U is regularly varying at ∞ (or 0+) with exponent α , in short α -varying, notation $U \in RV_{\alpha}^{(\infty)}$ (or $RV_{\alpha}^{(0)}$ respectively), if for all x > 0

$$\frac{U(tx)}{U(t)} \to x^{\alpha}$$

as $t \to \infty$ (or $t \downarrow 0$ respectively); cf. Karamata (1930) and (1933), Feller (1971) chapter VIII, 8 and XIII, 5.

If U is non-decreasing and if for suitable functions a(t) > 0 and b(t) and all x > 0

$$\frac{U(tx) - b(t)}{a(t)} \to \log x$$

as $t \to \infty$ we say $U \in \Pi^{(\infty)}$. If U is non-increasing and if for suitable functions a(t) > 0 and b(t) and all x > 0

$$\frac{U(tx) - b(t)}{a(t)} \to \log x$$

as $t \downarrow 0$ we say $U \in \Pi^{(0)}$; cf. de Haan (1970), section I, 4.

^{*} Research supported in part by the Netherlands Organisation for the Advancement of Pure Research (Z.W.O.) and in part by CSIRO, Division of Mathematics and Statistics.

Laurens de Haan

1. Integrals of regularly varying functions

We start from a well known result. Suppose F is a probability distribution function and F(0+) = 0. Then (Feller (1971), VIII, 9 th. 2. cf. Pitman (1968), lemma 3) for $\alpha > 0$, $\beta < 0$, $\alpha + \beta > 0$

$$(\mathbf{P1}) \qquad \int_{0}^{x} t^{\alpha} dF(t) \in RV_{\alpha+\beta}^{(\infty)} \Leftrightarrow \int_{0}^{x} t^{\alpha-1} (1-F(t)) dt \in RV_{\alpha+\beta}^{(\infty)}$$
$$\Leftrightarrow 1 - F(x) \in RV_{\beta}^{(\infty)} \Leftrightarrow \lim_{x \to \infty} \frac{\int_{0}^{x} t^{\alpha-1} (1-F(t)) dt}{x^{\alpha} (1-F(x))} = \frac{1}{\alpha+\beta}$$
$$\Leftrightarrow \lim_{x \to \infty} \frac{\int_{0}^{x} t^{\alpha} dF(t)}{x^{\alpha} (1-F(x))} = \frac{-\beta}{\alpha+\beta}.$$

A variant is the following. Suppose U is non-decreasing, U(0+) = 0, then for $\alpha > 0$, $\beta > 0$

$$(\mathbf{P2}) \qquad \int_{0}^{x} t^{\alpha} dU(t) \in RV_{\alpha+\beta}^{(\infty)} \Leftrightarrow \int_{0}^{x} t^{\alpha-1} U(t) dt \in RV_{\alpha+\beta}^{(\infty)}$$
$$\Leftrightarrow U(x) \in RV_{\beta}^{(\infty)} \qquad \Leftrightarrow \lim_{x \to \infty} \frac{\int_{0}^{x} t^{\alpha-1} U(t) dt}{x^{\alpha} U(x)} = \frac{1}{\alpha+\beta}$$
$$\Leftrightarrow \lim_{x \to \infty} \frac{\int_{0}^{x} t^{\alpha} dU(t)}{x^{\alpha} U(x)} = \frac{\beta}{\alpha+\beta}.$$

We want to present some analogous statements. Proofs are given in the next section. Firstly for probability distributions F and $\alpha > 0$

$$(\mathbf{P3}) \qquad \int_0^x t^{\alpha} dF(t) \in RV_0^{(\infty)} \Leftrightarrow \int_0^x t^{\alpha-1} (1-F(t)) dt \in RV_0^{(\infty)}$$
$$\Leftrightarrow \lim_{x \to \infty} \frac{\int_0^x t^{\alpha-1} (1-F(t)) dt}{x^{\alpha} (1-F(x))} = \infty \Leftrightarrow \lim_{x \to \infty} \frac{\int_0^x t^{\alpha} dF(t)}{x^{\alpha} (1-F(x))} = \infty$$

This is the case $\alpha + \beta = 0$ of (P1). A sufficient (but not necessary) condition is $1 - F(x) \in RV^{(\infty)}_{-\alpha}$.

Next suppose U is as above. For $\alpha > 0$

(P4)
$$U \in \Pi^{(\infty)} \Leftrightarrow \int_0^x t^{\alpha} dU(t) \in RV_{\alpha}^{(\infty)} \Leftrightarrow \int_x^\infty t^{-\alpha} dU(t) \in RV_{-\alpha}^{(\infty)}$$

This is the case $\beta = 0$ of (P2).

Finally suppose U_1 is non-decreasing, U_2 is continuous and strictly increasing, $U_2(0+) = 0$. Suppose $\alpha > 0$, $\beta > 0$.

(P5) Any two of the following statements imply the others.

a.
$$U_1 \in RV_{\alpha}^{(\infty)}$$

b. $U_2 \in RV_{\beta}^{(\infty)}$
c. $\int_0^x U_1(t) dU_2(t) \in RV_{\alpha+\beta}^{(\infty)}$
d. $\lim_{x \to \infty} \frac{\int_0^x U_1(t) dU_2(t)}{U_1(x)U_2(x)} = \frac{\beta}{\alpha+\beta}$

This generalizes (P2). Similarly for functions in $\Pi^{(\infty)}$ we have the following.

(P6) Suppose $U_1 \in RV_{\alpha}^{(\infty)}$ ($\alpha > 0$), U_1 is continuous and strictly increasing, $U_1(0+) = 0$.

$$U_2(x) \in \Pi^{(\infty)} \Leftrightarrow \int_0^x U_1(t) dU_2(t) \in RV_{\alpha}^{(\infty)} \Leftrightarrow \int_x^\infty \frac{dU_2(t)}{U_1(t)} \in RV_{-\alpha}^{(\infty)}$$

This generalizes (P4).

REMARK. Property P5 may be used to generalize a result on convergence of moments for sample extremes, see Pickands (1968).

2. Proofs and remarks

PROOF OF (P3).

$$\int_0^x t^{\alpha} dF(t) \in RV_0^{(\infty)}$$

if and only if

$$\lim_{x\to\infty}\int_0^x t^{\alpha}dF(t)/\{x^{\alpha}(1-F(x))\}=\infty$$

by Feller (1971), VIII, 9 th. 2 (part iii). Now

$$\lim_{x \to \infty} \int_0^x t^{\alpha} dF(t) / \{x^{\alpha} (1 - F(x))\} = \infty$$
$$\Leftrightarrow \lim_{x \to \infty} \int_0^x t^{\alpha - 1} (1 - F(t)) dt / \{x^{\alpha} (1 - F(x))\} = \infty$$

is a matter of partial integration. If

https://doi.org/10.1017/S1446788700019583 Published online by Cambridge University Press

$$\alpha(x) = \int_0^x t^{\alpha^{-1}} (1 - F(t)) dt / \{x^{\alpha} (1 - F(x))\} \to \infty \qquad (x \to \infty)$$

then

$$\int_0^x t^{\alpha-1}(1-F(t))dt = \left\{\int_0^1 t^{\alpha-1}(1-F(t))dt\right\} \exp \int_1^x \{t\alpha(t)\}^{-1}dt$$

and the latter is in $RV_0^{(\infty)}$ by the representation theorem for regularly varying functions. If $\int_0^x t^{\alpha^{-1}}(1-F(t))dt \in RV_0^{(\alpha)}$ then by an obvious extension of the argument in Feller (1971, prop. 8 p. 22)

$$\lim_{x\to\infty}\int_0^x t^{\alpha-1}(1-F(t))dt/\{x^{\alpha}(1-F(t))\}=\infty.$$

REMARK. The statements of (P3) with $\alpha = 1$ are the necessary and sufficient conditions for a weak law of large numbers for positive random variables (Feller (1971), VII, 7 th. 2).

REMARK. The statements of (P3) are implied (Feller (1971), VIII, 9 th. 2) by the set of equivalent statements ($\alpha > 0$, $\beta > \alpha - 1$)

$$1 - F(x) \in RV_{-\alpha}^{(\infty)} \Leftrightarrow \int_0^x t^{\alpha - 1} (1 - F(t)) dt \in \Pi^{(\infty)}$$
$$\Leftrightarrow \int_0^x t^{\alpha} dF(t) \in \Pi^{(\infty)} \Leftrightarrow \int_0^x t^{\beta} (1 - F(t)) dt \in RV_{\beta - \alpha + 1}^{(\infty)}$$

(the equivalence of these statements follows from (P4)).

PROOF OF (P5). U_2 has a proper inverse U_2^{-1} . So

$$\int_0^x U_1(t) dU_2(t) = \int_0^{U_2(x)} U_1(U_2^{-1}(s)) ds.$$

We shall write $U_1 \circ U_2^{-1}(s)$ for the compound function $U_1(U_2^{-1}(s))$.

Assume a) and b). Then $U_1 \circ U_2^{-1} \in RV_{\alpha/\beta}^{(x)}$, and hence

$$\lim_{y \to \infty} \frac{\int_{0}^{y} U_{1}(t) dU_{2}(t)}{U_{1}(y) U_{2}(y)} = \lim_{x \to \infty} \frac{\int_{0}^{U_{2}^{-1}(x)} U_{1}(t) dU_{2}(t)}{x U_{1} \circ U_{2}^{-1}(x)}$$
$$= \lim_{x \to \infty} \frac{\int_{0}^{x} U_{1} \circ U_{2}^{-1}(s) ds}{x U_{1} \circ U_{2}^{-1}(x)} = \frac{\beta}{\alpha + \beta}.$$

Assume b) and c). The compound function

$$\int_0^{U_2^{-1}(x)} U_1(t) dU_2(t) = \int_0^x U_1 \circ U_2^{-1}(s) ds$$

https://doi.org/10.1017/S1446788700019583 Published online by Cambridge University Press

[4]

434

then belongs to $RV_{\beta^{-1}(\alpha+\beta)}^{(\infty)}$. Since $U_1 \circ U_2^{-1}$ is monotone, it follows $U_1 \circ U_2^{-1} \in RV_{\beta^{-1}\alpha}^{(\infty)}$. Hence

$$U_1 = U_1 \circ U_2^{-1} \circ U_2 \in RV_{\alpha}^{(\infty)}.$$

Assume a) and c). It is well known that there is a continuous and strictly increasing function U_3 such that $U_3(0+) = 0$ and $U_1(x) \sim U_3(x)$ as $x \to \infty$. Then $\int_0^x U_3(t) dU_2(t) \sim \int_0^x U_1(t) dU_2(t)$ as $x \to \infty$. The compound function

$$\int_0^{U_3^{-1}(x)} U_3(t) dU_2(t) = \int_0^x s dU_2 \circ U_3^{-1}(s)$$

is in $RV_{\alpha^{-1}(\alpha+\beta)}^{(\infty)}$. By (P2) then $U_2 \circ U_3^{-1} \in RV_{\alpha^{-1}\beta}^{(\infty)}$. Hence $U_2 = U_2 \circ U_3^{-1} \circ U_3 \in RV_{\beta}^{(\infty)}$.

Assume d) then

$$\lim_{x \to \infty} \frac{\int_{0}^{x} U_{1} \circ U_{2}^{-1}(s) ds}{x U_{1} \circ U_{2}^{-1}(x)} = \lim_{x \to \infty} \frac{\int_{0}^{U_{2}(x)} U_{1} \circ U_{2}^{-1}(s) ds}{U_{2}(x) U_{1} \circ U_{2}^{-1}(U_{2}(x))}$$
$$= \lim_{x \to \infty} \frac{\int_{0}^{x} U_{1}(t) dU_{2}(t)}{U_{1}(x) U_{2}(x)} = \frac{\beta}{\alpha + \beta}$$

Hence $U_1 \circ U_2^{-1} \in RV_{\beta^{-1}\alpha}^{(\infty)}$. Once we know this a) and b) are equivalent. If in addition to d) we assume c) then $U_1(x)U_2(x) = U_2(x)U_1 \circ U_2^{-1}(U_2(x)) = U_4 \circ U_2(x) \in RV_{\alpha^+\beta}^{(\infty)}$ where $U_4(x) = xU_1 \circ U_2^{-1}(x)$. Clearly $U_4 \in RV_{\beta^{-1}(\alpha^+\beta)}^{(\infty)}$ hence $U_2 \in RV_{\beta}^{(\infty)}$.

The implications $abd \Rightarrow c$ and $bcd \Rightarrow a$ are trivial. Suppose abc then from $U_1 \circ U_2^{-1} \in RV_{\beta^{-1}\alpha}$ it follows as above

$$\lim_{x \to \infty} \frac{\int_0^x U_1(t) dU_2(t)}{U_1(x) U_2(x)} = \lim_{x \to \infty} \frac{\int_0^x U_1 \circ U_2^{-1}(s) ds}{x U_1 \circ U_2^{-1}(x)} = \frac{\beta}{\alpha + \beta}$$

PROOF OF (P6).

$$U_{2} \in \Pi^{(\infty)} \Leftrightarrow U_{2} \circ U_{1}^{-1} \in \Pi^{(\infty)} \Leftrightarrow \int_{0}^{x} t dU_{2} \circ U_{1}^{-1}(t) \in RV_{1}^{(\infty)}$$
$$\Leftrightarrow \int_{0}^{x} U_{1}(t) dU_{2}(t) = \int_{0}^{U_{1}(x)} t dU_{2} \circ U_{1}^{-1}(t) \in RV_{\alpha}^{(\infty)}$$

and similarly for the third statement of (P6). The second equivalence above follows from de Haan (1970), theorem 1.4.1.b.

As to the first equivalence: suppose $U_2 \in \Pi^{(\infty)}$ and $U_1^{-1} \in RV_{\alpha}^{(\infty)}$, then for all x > 0

Laurens de Haan

$$\lim_{t \to \infty} \frac{U_2\left(\frac{U_1^{-1}(tx)}{U_1^{-1}(t)} \cdot U_1^{-1}(t)\right) - U_2(U_1^{-1}(t))}{U_2\left(\frac{U_1^{-1}(te)}{U_1^{-1}(t)} \cdot U_1^{-1}(t)\right) - U_2(U_1^{-1}(t))} = \frac{\log x^{\alpha^{-1}}}{\log e^{\alpha^{-1}}} = \log x.$$

For the converse implication write $U_2 = U_2 \circ U_1^{-1} \circ U_1$.

3. Derivatives

We prove the following:

THEOREM 1. Any α -varying function U with $\alpha + 1 \notin \mathbb{N}$ is asymptotic to a function U_1 with the property that the absolute values of all its derivatives are regularly varying.

PROOF. First let $\alpha < 0$. There is a decreasing function U_2 such that $U(x) \sim U_2(x)$ as $x \to \infty$. Define $U_3(x) = U_2\left(\frac{1}{x}\right)$ then $U_3 \in RV_{-\alpha}^{(0)}$. Denote its Laplace-Stieltjes transform by \check{U}_3 . Then $U_3(x) \sim \{\Gamma(1-\alpha)\}^{-1}\check{U}_3\left(\frac{1}{x}\right)$ as $x \downarrow 0$. So $U(x) \sim \{\Gamma(1-\alpha)\}^{-1}\check{U}_3(x)$ as $x \to \infty$ and latter function satisfies the requirements (property 8 p. 22 de Haan (1970)).

Next let $\alpha > 0$ ($\alpha \notin N$). There is an increasing function U_2 such that $U_2(0+) = 0$ and $U(x) \sim U_2(x)$ as $x \to \infty$. Denote its Laplace-Stieltjes transform by \check{U}_2 . Then

$$U(x) \sim U_2(x) \sim \frac{1}{\Gamma(1+\alpha)} \check{U}_2\left(\frac{1}{x}\right) \text{ as } x \to \infty.$$

We shall prove that $U_1(x) = (\Gamma (1 + \alpha))^{-1} \check{U}_2\left(\frac{1}{x}\right)$ satisfies the requirements. We have (Abramowitz and Stegun (1970) Ch. 24, 1.2.I.c.)

$$\frac{d^n}{dx^n}\check{U}_2\left(\frac{1}{x}\right)=\sum_{m=1}^n\frac{n!}{m!}\binom{n-1}{m-1}(-1)^nx^{-n-m}\check{U}_2^{(m)}\left(\frac{1}{x}\right).$$

By property 8 of de Haan (1970), p. 22) for $m = 1, 2, \cdots$

$$x^{-m}\check{U}_2^{(m)}\left(\frac{1}{x}\right)\sim (-\alpha)(-\alpha-1)\cdots(-\alpha-m+1)\check{U}_2\left(\frac{1}{x}\right)$$

as $x \to \infty$. Hence as $x \to \infty$

$$\frac{d^n}{dx^n} \check{U}_2\left(\frac{1}{x}\right) \sim n! (-1)^n x^{-n} \check{U}_2\left(\frac{1}{x}\right) \sum_{m=1}^n \binom{n-1}{n-m} \binom{-\alpha}{m}$$

[6]

$$= \binom{-\alpha+n-1}{n} n! (-1)^n x^{-n} \check{U}_2\left(\frac{1}{x}\right)$$
$$= \alpha (\alpha-1) \cdots (\alpha-n+1) x^{-n} \check{U}_2\left(\frac{1}{x}\right).$$

REMARK. A. A. Balkema has given another proof of this result using the convolution of the function with a probability distribution.

The theorem says that within each equivalence class of asymptotically equivalent regularly varying functions there is at least one function satisfying the requirements. A similar statement with a different definition of the equivalence class holds for functions in Π . This is the analogue of the previous theorem for $\alpha = 0$.

THEOREM 2. Any function $U \in \Pi^{(\infty)}$, i.e. any non-decreasing function satisfying

$$\lim_{t\to\infty}\frac{U(tx)-b(t)}{a(t)}=\log x$$

for all x > 0 and suitably chosen functions a(t) > 0 and b(t) has a companion function U_1 such that $(-1)^{n+1}U_1^{(n)}(x) \in RV_{-n}^{(\infty)}$ for $n = 1, 2, \cdots$ and

$$\lim_{t\to\infty}\frac{U(t)-U_1(t)}{a(t)}=0.$$

PROOF. The Laplace-Stieltjes transform $\check{U}(t)$ of U exists for all t > 0. We shall prove that $U_1(x) = \check{U}(x^{-1}e^{-\gamma})$ satisfies the requirements; here γ is Euler's constant. By de Haan (1976) $\check{U} \in \Pi^{(0)}$ and

$$\lim_{t\to\infty}\frac{U(t)-\check{U}\left(\frac{1}{t}\right)}{a(t)}=\gamma.$$

As in the previous proof we have

$$\frac{d^n}{dx^n}\,\check{U}\left(\frac{1}{x}\right)=\sum_{m=1}^n\frac{n!}{m!}\binom{n-1}{m-1}(-1)^nx^{-n-m}\check{U}^{(m)}\left(\frac{1}{x}\right).$$

By the lemma in de Haan (1976) we have for the derivative $-\check{U}^{(1)}(1/x) \in RV^{(0)}_{-1}$ and by property 8, p. 22 of de Haan (1970) for $m = 1, 2, \cdots$ as $x \to \infty$

$$x^{-m}\check{U}^{(m)}\left(\frac{1}{x}\right) \sim (-1)^{m+1}(m-1)! x^{-1}\check{U}^{(1)}\left(\frac{1}{x}\right).$$

Hence as $x \to \infty$

$$\frac{d^n}{dx^n} \check{U}\left(\frac{1}{x}\right) \sim (-1)^n x^{-n-1} \check{U}^{(1)}\left(\frac{1}{x}\right) \sum_{m=1}^n \binom{n-1}{m-1} \frac{(m-1)! \, n!}{m!} \, (-1)^{m+1}$$
$$= (-1)^n x^{-n-1} (n-1)! \, \check{U}^{(1)}\left(\frac{1}{x}\right).$$

References

- M. Abramowitz, and I. A. Stegun, ed. (1970), Handbook of mathematical functions (National bureau of standards, Washington).
- W. Feller (1971), Introduction to Probability Theory and Its Applications, Vol. 2 (Wiley, New York).
- L. de Haan, (1970), 'On regular variation and its application to the weak convergence of sample extremes', *Mathematisch Centrum*, *Amsterdam*.
- L. de Haan (1976). 'An Abel-Tauber theorem for Laplace transforms', J. London Math. Soc. (2), 13, 537-542.
- J. Karamata, (1930), 'Sur un mode de croissance régulière des fonctions', Mathematica (Cluj) 4, 38-53.
- J. Karamata, (1933), 'Sur un mode de croissance régulière. Théorèmes fondamentaux'. *Bull. Soc. Math. France* 61, 55-62.
- J. Pickands, (1968), 'Moment convergence of sample extremes', Ann. Math. Statist. 39, 881-889.
- E. J. G. Pitman, (1968), 'On the behaviour of the characteristic function of a probability distribution in the neighbourhood of the origin', J. Austral. Math. Soc. 8, 423-443.

Econometric Institute,

Netherlands School of Economics,

Burgemeester Oudlaan 50,

Rotterdam 3016,

Netherlands.