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The stability and sensitivity of two- and three-dimensional global modes developing
on steady spanwise-homogeneous laminar separated flows around NACA 4412 swept
wings are numerically investigated for different Reynolds numbers Re and angles of
attack α. The wake dynamics is driven by the two-dimensional von Kármán mode whose
emergence threshold in the α–Re plane is computed with that of the three-dimensional
centrifugal mode. At the critical Reynolds number, the Strouhal number, the streamwise
wavenumber of the von Kármán mode and the spanwise wavenumber of the leading
three-dimensional centrifugal mode scale as a power law of α. The introduction of
a sweep angle attenuates the growth of all unstable modes and entails a Doppler
effect in the leading modes’ dynamics and a shift towards non-zero frequencies of
the three-dimensional centrifugal modes. These are found to be non-dispersive as
opposed to the von Kármán modes. The sensitivity of the leading global modes is
investigated in the vicinity of the critical conditions through adjoint-based methods. The
growth-rate sensitivity map displays a region on the suction side of the wing, wherein
a streamwise-oriented force has a net stabilising effect, comparable to what could have
been obtained inside the recirculation bubble. In agreement with the predictions of the
sensitivity analysis, a spanwise-homogeneous force suppresses the Hopf bifurcation and
stabilises the entire branch of von Kármán modes. In the limit of small amplitudes,
passive control via spanwise-wavy forcing produces a stabilising effect similar to that of a
spanwise-homogeneous control and is more effective than localised spherical forces.
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1. Introduction

The theory of stability and transition in wake flows has always been a subject of interest.
Their frequent occurrence in nature and their practical interest in many engineering
applications have meant that these open shear flows are of an archetypal importance. In
particular, flows around wings have attracted even more interest, since they are relevant to
several practical examples in aeronautical, civil, mechanical and naval engineering and, at
the same time, are characterised by fundamental physical phenomena which influence the
aerodynamic characteristics, such as separation, transition and wake formation.

In this context, many studies based on the assumption of two-dimensional (or
quasi-two-dimensional) flow have provided precious insights into the emergence of vortex
shedding (Pauley, Moin & Reynolds 1990; Huang et al. 2001; Yarusevych, Sullivan &
Kawall 2006, 2009; He et al. 2017; Rossi et al. 2018). From a dynamical point of view, this
phenomenon consists of a Hopf bifurcation induced from the separation due to the adverse
pressure gradient in the laminar boundary layer. A laminar boundary layer typically
separates on the upper surface of the airfoil and generates a separated shear layer. The
presence of a laminar boundary layer separation can have considerable negative impact on
airfoil performance, lowering lift and increasing drag. The behaviour of the separated shear
layer determines the degree of severity of these effects. The understanding of the complete
dynamics of separated flows has then been improved by studies on three-dimensional flows
behind finite-aspect-ratio bluff bodies (Marquet & Larsson 2015) and around unswept
(Zhang et al. 2020a) and swept (Zhang et al. 2020b; Burtsev et al. 2022) finite-aspect-ratio
wings in the incompressible and compressible (Paladini et al. 2019; Timme 2020; He &
Timme 2021; Plante et al. 2021) regimes.

As far as the flows around periodic wings are concerned, many studies dealing
with near- or post-stall configurations at high angles of attack have been performed to
characterise the fundamental aspects of flows related to biological fliers, swimmers or
aircraft that generally experience large-amplitude disturbance in flight. In the latter case,
for transitional and turbulent regimes, experimental techniques (Bippes & Turk 1980;
Winkelman & Barlow 1980; Yon & Katz 1998) have shown that, when pitching up to
angles of attack just beyond stall, the separated flow over a rectangular wing is organised
into three-dimensional cellular patterns known as stall cells (or owl-face structures or
mushrooms). Examining pressure spectra, Bippes & Turk (1983) and, later, Yon & Katz
(1998) found the presence of two dominant frequencies: the higher one was associated by
Yon & Katz (1998) with the vortex shedding, while the lower one was attributed to flapping
of the separated layer. This result was found also by Iorio, Gonzalez & Martínez-Cava
(2016) and, recently, by Busquet et al. (2021) via global stability analysis in the unsteady
Reynolds-averaged Navier-Stokes framework. Similarly, they revealed the existence of two
unstable modes: a low-frequency mode, which is unstable for angles of attack in the stall
region, and a high-frequency vortex shedding mode, which is unstable at larger angles of
attack.

A valuable finding in the understanding of the stall cells was reported by Schewe (2001),
who found that their emergence was the result of a periodic spanwise breakdown of the
separated region (not a tip effect, see also Winkelman & Barlow (1980)) and the number
of cells was related to the model span, actually decreasing as the span of the model
decreased, in agreement with the earlier results of Winkelman & Barlow (1980) and Yon
& Katz (1998). Manolesos & Voutsinas (2014) then found that the angle at which a stall
cell is created does not depend on the aspect ratio, but was considered to be a profile
characteristic. This critical angle of attack α decreases linearly with the Reynolds number
Re.
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More recently, the formation on the airfoil surface of stall cells has been associated
with a three-dimensional stationary eigenmode of the two-dimensional laminar separation
bubble by Rodríguez & Theofilis (2011). Their biglobal stability analysis showed that,
for the NACA 0015 at Re = 200 and α = 18◦, this stationary three-dimensional mode
was more unstable than the von Kármán mode. This would have meant that such base
flows experience first a pitchfork bifurcation rather than a Hopf bifurcation. Later, He
et al. (2017) clarified this point by performing a comprehensive biglobal stability analysis
over two-dimensional steady massively separated flows around NACA 0009, 0015 and
4415 airfoils. They found that the leading modal instability on all three airfoils is the
Bénard–von Kármán mode, and that the three-dimensional stationary eigenmode of the
two-dimensional laminar separation bubble, associated in Rodríguez & Theofilis (2011)
with the stall cells, is shown to be less unstable than the Bénard–von Kármán mode at all
conditions examined.

The aim of the present contribution is to investigate the influence of the sweep angle on
the global stability of steady spanwise-homogeneous laminar separated flows developing
around NACA 4412 periodic wings over a wide range of angle of attack and Reynolds
number. The objective is to provide a complete description of the stability properties of
the global eigenmodes and understand how they are affected by the sideward deflection of
the free stream induced by the sweep angle. The aim is also to provide the adjoint-based
sensitivity of such flows with respect to the application of steady forces and, preliminarily,
to explore new three-dimensional strategies of actuation. In fact, taking advantage of the
three-dimensional nature of the flow solver, we further explore the effect of the passive
control via three-dimensional localised forcing, such as spanwise-wavy or spherical forces,
on the stability properties of the leading eigenmodes.

Whilst this concept of adjoint originated from optimisation theory, it has since been
used quite extensively in the hydrodynamics community to study linear and nonlinear
transient growth of perturbations (Farrell 1988; Barkley, Blackburn & Sherwin 2008;
Nastro, Fontane & Joly 2020, 2022a) or to identify the most receptive path to turbulence
(Hill 1995). Following the pioneering work of Marquet, Sipp & Jacquin (2008b), the
present use of the adjoint enables us to select the most stabilising or destabilising base-flow
modification or to map the sensitivity of the leading unstable mode with respect to the
application of an external force.

In a similar context, previous studies on the canonical two-dimensional cylinder
flow provided experimental (Strykowski & Sreenivasan 1990) and numerical (Marquet
et al. 2008b; Boujo 2021) evidence of the complete suppression of the vortex shedding
phenomenon in the presence of a localised force such as that induced by a small control
cylinder. In particular, by varying the Reynolds number and the diameter ratios of the
cylinders, Strykowski & Sreenivasan (1990) determined the near-wake regions of the main
cylinder where the proper placement of the second, much smaller, cylinder yields the
complete suppression of the vortex shedding. The same positions were later found by
others via direct numerical simulations (Kim & Chang 1995; Mittal & Raghuvanshi 2001)
or global stability analysis (Morzyński, Afanasiev & Thiele 1999). More recently, Marquet
et al. (2008b) proposed a sensitivity analysis based on the adjoint operator to predict
these optimal positions for the passive control of the vortex shedding without requiring
that various locations of the control cylinder be numerically tested. From a mathematical
standpoint, the extension to three-dimensional geometries and three-dimensional localised
forcing is straightforward. This study therefore concludes with the analysis of the effect
of either wavy-cylindrical forcing or localised spherical forcing in order to explore more
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realistic control strategies which can eventually be applied to high-Reynolds-number
flows.

To this end, the objective of the present contribution is also to conduct state-of-the-art
sensitivity analyses to provide new insights about the sensitivity of NACA 4412
periodic wing flows. For that purpose, adjoint-based sensitivity methods (Giannetti &
Luchini 2007; Marquet et al. 2008b) are implemented in the massively parallel spectral
element code Nek5000 (Fischer, Lottes & Kerkemeier 2008). This analysis in the
low-Reynolds-number condition could help in understanding more complex mechanisms
at higher Reynolds numbers, since the vortex shedding phenomenon governing the
low-Reynolds-number dynamics persists at higher Reynolds numbers in the fully
developed turbulent regime (Williamson 1996).

This contribution can thus represent a starting point for determining control strategies
suppressing separation and minimising the drag force. Indeed, during take-off and landing
phases, which are characterised by relatively large angles of attack, the use of complex
wing geometries can lead to the formation of massively separated flow regions on the
suction side of the wing. This reversed flow region causes a large increase of the drag
exerted on the wing and can possibly induce stall, a major limiting cause for rapid take-off
and climbing to cruise altitude. Designing efficient and localised control strategies to
mitigate these issues is thus critical and represents the objective of the H2020 Clean Sky
project PERSEUS which supports the present contribution.

The present paper is organised as follows. The mathematical framework is presented in
§ 2. Starting from the nonlinear incompressible Navier–Stokes equations, the linearised
equations governing the dynamics of infinitesimal perturbations are first derived. These
equations form the basis for the global linear stability analysis to be conducted in order to
extract the instability modes driving the flow dynamics. In a second step, the adjoint-based
framework used to investigate the sensitivity of this instability with respect to a local
feedback, a base-flow modification or an external steady force is presented. We then focus
on the flow around NACA 4412 periodic wings, which is described in § 3. Global stability
over unswept wings is discussed in § 3.1, whereas § 3.2 is dedicated to the influence of
the sweep angle on the global eigenmodes. Results of the first-order sensitivity analysis
are presented and validated via global stability analysis on the forced base flow in § 3.3.
The limitations of our sensitivity analysis are discussed in § 3.4 by assessing the effect
of the forcing amplitude on the eigenspectrum. Passive control via both two-dimensional
and three-dimensional steady forces is presented in § 3.5. Conclusions and perspectives
are finally addressed in § 4.

2. Formulation of the problem and numerical approach

2.1. Navier–Stokes simulations
We consider an incompressible Newtonian fluid flow governed by the Navier–Stokes
equations

∇ · u = 0, (2.1a)

∂u
∂t

= −(u · ∇)u − ∇p + 1
Re

�u + F , (2.1b)

where u(x, t) = (u, v, w)T is the velocity field, p(x, t) is the pressure field and F (x, t)
represents an external body force. The Reynolds number is defined as Re = U∞c/ν, where
U∞ is the free-stream velocity, c is the chord of the airfoil and ν is the kinematic viscosity
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Figure 1. Sketches of (a) the geometry and the flow computational domain for numerical simulations, (b) the
transformation of the boundaries for considering swept wings and (c) the C-grid details for simulations around
the NACA 4412 wing at 20◦ angle of attack.

of the fluid. The Strouhal number describing the oscillating flow mechanisms is defined as
St = fc/U∞, with f being the frequency.

As illustrated in figure 1(a), the origin of our Cartesian reference frame (x, y, z) is set at
the leading edge of the airfoil, with x denoting the streamwise direction, y the cross-stream
direction and z the spanwise direction, respectively.

It should be remembered that the angle between the chord c and the streamwise direction
x is referred to as the angle of attack α.

The complete three-dimensional wing is modelled by extruding the two-dimensional
NACA 4412 airfoil, with a sharp trailing edge, along the unit vector defined by the sweep
angle Λ up to a fixed span length Lz (see figure 1b). For the sake of convenience, another
Cartesian reference frame can be defined using the definition of such a geometry. This
reference frame can be considered as a body reference in which the zΛ axis is aligned
along the direction of the sweep angle Λ and thus represents the locus of the points of
the leading edge, the xΛ axis is provided by the perpendicularity condition with respect to
the zΛ axis and the yΛ axis remains unchanged with respect to the flow reference frame
(x, y, z), i.e. yΛ ≡ y. We point out that the planar wavenumber vector is defined in this
body reference frame as kΛ = kxΛexΛ + kzΛezΛ , with exΛ and ezΛ being the xΛ and zΛ

direction cosines, respectively.
The Navier–Stokes equations (2.1) are solved numerically using the spectral element

solver Nek5000 (Fischer et al. 2008). As depicted in figure 1(a,c), spatial discretisation
relies on a C-grid mesh, whereas a third-order-accurate temporal scheme is used to
integrate the equations forwards in time. The streamwise and cross-stream extents are set
to Lx = 60 and Ly = 40, respectively, whereas the spanwise extent ranges from Lz = 8 to
Lz = 4π. The choice of the spanwise extent Lz is related to the value of the angle of attack,
because, as α increases, the characteristic length scale of leading three-dimensional modes
also increases and thus the spanwise wavenumber (respectively wavelength) required to
capture a significant number of leading three-dimensional modes decreases (respectively
increases). For instance, for α = 10◦, Lz = 8 is more than sufficient, whereas we adopt
a span Lz of 4π for α = 50◦ (cf. § 3.1). The same computational domain and numerical
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Figure 2. Time histories of (a) the drag and (b) the lift coefficients obtained from the two sets of meshes,
M1 and M2, at α = 20◦ and Re = 400 and for three sweep angles, Λ = 0◦, 12◦, 25◦. (c) Flow attractor via
representation of aerodynamic coefficients from the grid M2 once the two-dimensional von Kármán mode is
established for α = 20◦ and Re = 400.

schemes are also used to compute the base flows as well as for conducting the linear
stability and sensitivity analyses.

The mesh configuration is adapted for each angle of attack α and delimited by the
wing walls Σw and the external boundaries, i.e. the inlet Σi, the outlet Σo, the upper and
lower boundaries Σu and Σl, and the lateral boundaries Σp. The Navier–Stokes equations
(2.1) are completed with the following boundary conditions: u = (U∞, 0, 0)T at the inlet
Σi; a stress-free boundary condition pn − Re−1∇u · n = 0 at the outlet Σo; symmetrical
conditions on the lower and upper boundaries Σl and Σu; periodic conditions on the lateral
boundaries Σp; and no-slip conditions u = 0 on the solid walls Σw (see figure 1a,b). As
shown in figure 1(b), the inlet Σi and the outlet Σo are tilted according to the sweep angle
Λ in order to guarantee the periodic boundary conditions at the lateral boundaries Σp.

The drag, lift and span forces are reported in their non-dimensional forms through

CD = D
1
2ρU2∞Lzc

, CL = L
1
2ρU2∞Lzc

and CS = S
1
2ρU2∞Lzc

, (2.2a–c)

where D, L and S are the streamwise, cross-stream and spanwise components of the
pressure and viscous forces integral over the wing surface Σw and ρ = 1 is the constant
density. We compare these forces on the wing evaluated from two meshes to assess the
mesh requirement. The grid M1 consists of approximately 40 000 spectral elements with
polynomial order P = 6, whereas the grid M2 is made of approximately 60 000 spectral
elements with the same polynomial order as M1. The total number of degrees of freedom
N is thus approximately 9 × 106 for the grid M1 and 13 × 106 for the grid M2. Polynomial
order convergence, i.e. the so-called P-convergence, has also been verified, and some
results are discussed in § 2.3 and summarised in table 2. The time history of the drag and
lift forces obtained from these meshes are reported in figure 2, together with the attractor
for the same flow conditions for the grid M2.

The flow is initialised with the steady solution computed as described in § 2.2. Figure 2
shows that it is resolved well with both mesh resolutions even at large times. However,
we choose the grid M2 to yield accurate results and it is used throughout this study. It
should be noted that the unperturbed steady states experience an exponential growth due
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Λ (deg.) St CD CL CS

0 0.501 0.413 0.934 0.000
12 0.491 0.405 0.902 −0.059
25 0.442 0.380 0.805 −0.117

Table 1. Strouhal number St and time-averaged drag, lift and span coefficients CD, CL and CS at α = 20◦ and
Re = 400 for all the sweep angles Λ considered here.

Mesh λ ω P λ ω

M1 0.41190 2.1055 6 0.41146 2.1261
M2 0.41146 2.1261 8 0.41146 2.1262
εM2−M1 1.1 × 10−3 9.6 × 10−3 εP8−P6 1.7 × 10−5 4.7 × 10−5

Table 2. Growth rate λ and angular frequency ω of the most unstable mode developing on an unswept wing
with Lz = 8 at α = 20◦ and Re = 400; the corresponding relative error ε for (left) the M1 and M2 grids and
(right) two polynomial orders P on the M2 grid are also shown.

to the emergence of the von Kármán mode. Increasing the sweep angle Λ delays the mode
growth and provides a slight decrease in its growth rate. Moreover, it should be noted
that the drag and lift coefficients decrease for increasing Λ, as found also by Zhang et al.
(2020a,b) on the NACA 0015 periodic wing by comparing the Λ = 0◦ and Λ = 45◦ cases.
Once the nonlinear saturation of the mode occurs, the aerodynamic coefficients exhibit
periodic oscillations with low-frequency beating whose values are summarised in terms of
Strouhal number in table 1, together with the time-averaged drag, lift and span coefficients,
CD, CL and CS, respectively.

The dynamics of the flow are parametrised by the Reynolds number Re, the angle of
attack α and the sweep angle Λ. Hereafter, the Reynolds number at which a specific steady
equilibrium solution bifurcates to another equilibrium state for a fixed angle of attack will
be referred to as the critical Reynolds number Recr and, consequently, the corresponding
dimensionless frequency Stcr. Similarly, the angle of attack at which this transition occurs
for a fixed Reynolds number will be referred to as the critical angle of attack αcr. In the
present work, three sweep angles are considered Λ = 0◦, 12◦, 25◦.

2.2. Base flow
Base flows are defined as fixed points of the unsteady and nonlinear Navier–Stokes
equations (2.1) and correspond to steady equilibrium solutions. Computing these particular
solutions is thus a prerequisite for the stability and sensitivity analyses to be conducted in
this study. However, because of the sheer size of the system of equations involved, their
computation remains an intensive task for realistic geometries whose complexity is further
augmented by the use of general-purpose time-stepper computational fluid dynamics
codes.

Over the years, various approaches have been proposed to tackle the computation of
these (possibly unstable) steady solutions while requiring minimal modifications to an
existing time-stepper code. One can cite, for instance, the selective frequency damping
(SFD) proposed by Åkervik et al. (2006), wherein a steady-state solution is obtained
by damping the unstable frequency via the addition of a dissipative relaxation term
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Figure 3. Base flow of the periodic unswept wing: spatial distribution of the streamwise velocity U in the
spanwise plane z = 0 (Lz = 8) for α = 20◦ and Re = 180. The white solid lines represent the streamlines and
the single blue one is the locus of the points where the streamwise velocity of the base flow is zero, i.e. the
recirculation bubble region.

proportional to the high-frequency content of the velocity oscillations (for comprehensive
reviews, see Åkervik et al. (2006) and Cunha, Passaggia & Lazareff (2015)). Considering
q(x, t) = (u, p)T and therefore denoting the original Navier–Stokes equations (2.1) by
∂q/∂t = N(q), the corresponding system of equations solved for SFD is given by

∂q
∂t

= N(q) − χ(q − q̄), (2.3a)

∂ q̄
∂t

= ωc(q − q̄), (2.3b)

where q̄ is the temporally filtered solution, and χ and ωc are the gain and cut-off frequency
of the applied first-order filter, respectively. The boundary conditions of the system (2.3)
are the same as those of the Navier–Stokes equations (2.1). As this system of equations is
integrated forward in time, q and q̄ converge towards the same solution. At convergence,
we thus have q = q̄ and this system of equations reduces to the stationary Navier–Stokes
equations.

Hence, q converges towards the fixed point of the original equations. Alternatively, one
can also use a time-stepper formulation of the Newton-GMRES (generalised minimal
residual) algorithm as described in Dijkstra et al. (2014). In the present work, both
approaches have been considered and lead to virtually identical base flows as the flow
is driven by the von Kármán mode. We stress that, in all the cases examined, the fixed
point computed via SFD does not experience the triggering of subdominant modes, unless
forced appropriately. Hereafter, these base flows will be denoted as Q(x) = (U, P)T. We
point out that in our study the body force F in Navier–Stokes equations (2.1) is assumed
to be steady and to act solely on the base flow, i.e. F (x, t) = F (x).

The spatial distribution of the streamwise velocity U computed with the SFD technique
is depicted in figure 3 for the NACA 4412 periodic unswept wing at an angle of attack of
20◦ and a Reynolds number Re = 180.

Laminar boundary layer separation occurs on the suction side of the wing. After the
flow acceleration, as shown by the approaching of streamlines, in the proximity of the
leading edge, the laminar boundary layer separates from the wing surface near x/c = 0.35
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Figure 4. Base flow of the periodic 25◦ swept wing: spatial distribution of (a) the streamwise component U
and (b) the spanwise component W of the velocity field in the spanwise plane z = 0 for α = 20◦ and Re = 400.
The white solid lines represent the corresponding velocity profiles at the streamwise locations x/c = 1.25, 2,
2.75, 3.5, 4.25 and 5, while the dashed ones refer to the unswept wing at the same flow conditions.

and reattaches slightly upstream of the trailing edge. Downstream of the separation
and reattachment lines, two spanwise-homogeneous shear layers detach from the wing
surface, delimiting an asymmetric recirculation bubble (blue solid line in figure 3) whose
streamwise extent (measured from the leading edge) is x/c = 1.84. The length of the
recirculation region is here identified using isolines of zero streamwise velocity. In
addition, the morphology of an airfoil entails an asymmetry in the spanwise vorticity,
with larger values near the leading edge with respect to those at the trailing edge. The
length of the recirculation bubble varies as the angle of attack α and the Reynolds number
Re change and, as discussed later in § 3.1, it drives the longitudinal wavenumber kxΛ of the
von Kármán mode.

Figure 4, displaying the streamwise and spanwise velocity components, illustrates the
effect of the sweep angle Λ on the base flow for Re = 400 and the same angle of attack α

as in figure 3, (i.e. for α = 20◦).
Figure 4(a) shows that the streamwise velocity depletion in the wake is attenuated by

the sweep angle since the velocity deviation for Λ = 25◦ is lower with respect to the
Λ = 0◦ case and, consequently, the corresponding shear layer is slightly smoothed. This
results in a reduction of the drag coefficient for the base flow (see figure 2). Increasing
the Reynolds number leads to an increase of the recirculation bubble length, and a similar
tendency can be observed by fixing the Reynolds number and increasing the angle of
attack. As illustrated in figure 4(b), a non-zero sweep angle entails a non-zero spanwise
component W, homogeneously distributed along the sweep angle direction and varying in
the x–y plane, and as a consequence the three-dimensionalisation of the boundary layer.
The spanwise flow is predominant in the recirculation bubble region and its mean value
increases with the sweep angle.

We should stress that, since the geometry and the steady unforced base flow are invariant
in the zΛ direction (i.e. the sweep direction, see figure 1b), an alternative method to
compute eigenmodes and the corresponding sensitivity could consist in using a change of
variable to compute a two-dimensional base flow with three velocity components (2D-3C),

(U, P)(xΛ) = (U, V, W, P)(xΛ, yΛ) with
∂( · )
∂zΛ

= 0, (2.4)

and then introducing a decomposition into biglobal eigenmodes for the stability analysis,
as follows:

(u′, v′, w′, p′)(xΛ, t) = (û, v̂, ŵ, p̂)(xΛ, yΛ) exp(ikzΛzΛ + σ t) + c.c., (2.5)
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where kzΛ is the spanwise wavenumber, σ represents the complex temporal eigenfrequency
and c.c. stands for the complex conjugate. In addition to saving computation cost, such
a method can allow one to investigate a set of continuous values for the spanwise
wavenumber whose values are subordinated to the choice of the spanwise extent Lz in
a fully three-dimensional approach, as can be noted by the discrete number of eigenvalues
σj in our spectra.

2.3. Direct and adjoint linear stability analyses
The dynamics of an infinitesimal perturbation q′(x, t) = (u′, p′)T evolving on top of the
base-flow solutions Q(x) = (U, P)T such as those described in § 2.2 is dictated by the
linearised Navier–Stokes equations

∇ · u′ = 0, (2.6a)

∂u′

∂t
= −(U · ∇)u′ − (u′ · ∇)U − ∇p′ + 1

Re
�u′. (2.6b)

In the frame of modal stability analysis, the disturbances are sought under the following
form:

(u′, v′, w′, p′)(x, t) = (û, v̂, ŵ, p̂)(x) exp(σ t) + c.c., (2.7)

where σ = λ+ iω is the complex eigenvalue, with λ being the growth rate and ω the
angular frequency, i.e. the frequency f = ω/2π. Substituting the normal-mode ansatz (2.7)
into the linearised Navier–Stokes equations (2.6), the above linear initial-value problem
can be recast as the following generalised eigenvalue problem:

∇ · û = 0, (2.8a)

σ û = −(U · ∇)û − (û · ∇)U − ∇p̂ + 1
Re

�û. (2.8b)

The associated boundary conditions consist of the Dirichlet condition û = 0 at the
inlet Σi, and the remaining boundary conditions are the same as for the Navier–Stokes
equations. The asymptotic temporal features of the perturbation are thus obtained from
the least damped/most unstable eigenvalue. For instance, the imaginary part of the leading
eigenvalue determines whether the fixed point experiences a pitchfork or transcritical (ω =
0) or Hopf-type (ω /= 0) bifurcation. Moreover, if this leading eigenvalue has a positive
real part, i.e. λ > 0, the amplitude of the associated eigenmode will grow exponentially
fast in time and, consequently, the base flow is asymptotically unstable. On the other
hand, if the real part of all eigenvalues is negative (that is, for λj < 0 for all j with j the
index of eigenvalues), the base flow is asymptotically stable and all eigenmodes will decay
asymptotically in time.

Table 2 summarises the growth rate and the angular frequency of the most unstable
mode obtained from the M1 and M2 meshes and two different polynomial orders on the
M2 grid for an unswept wing at α = 20◦ and Re = 400. As advocated in § 2.1, the two
mesh resolutions provide comparable results, as the relative error is of the order of 0.1 %.
The analysis of the polynomial order on the M2 grid shows that the numerical convergence
is substantially reached since, in this case, the relative error is of the order of 0.001 %.
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Stability, sensitivity and control of low-Re NACA 4412 flows

From a linear algebra point of view, the generalised eigenvalue problem (2.8) can be
written as

σB q̂ = L q̂, (2.9)

where B is a singular mass matrix enforcing that the velocity is an actual degree of freedom
of the problem while the perturbation pressure field can be understood as a Lagrange
multiplier to enforce the divergence-free constraint. The operator L then corresponds to
the Jacobian of the Navier–Stokes equations. Introducing a spatial inner product between
two arbitrary state vectors q1 and q2, i.e.

〈q1|q2〉 =
∫

Ω

q∗
1B q2 dΩ, (2.10)

where Ω is the flow domain and the ∗ stands for the complex conjugate, one can introduce
the so-called ‘adjoint Navier–Stokes operator’ (Hill 1995) satisfying

〈q1|L q2〉 = 〈L†q1|q2〉. (2.11)

The corresponding adjoint eigenproblem then reads

∇ · û† = 0, (2.12a)

σ ∗û† = (U · ∇)û† − û† · (∇U)T + ∇p̂† + 1
Re

�û†, (2.12b)

where q†(x, t) = (u†, p†)T = (û†, v̂†, ŵ†, p̂†)T(x) exp(σ ∗t) + c.c. is the adjoint state
vector. Note that the biorthogonality condition is used to normalise the adjoint:

〈û†|û〉 = 1. (2.13)

For a discussion about the boundary conditions for the adjoint operator, interested
readers are referred to Barkley et al. (2008). While the notion of adjoint originated
in optimisation theory, it has subsequently been widely applied in the hydrodynamics
community to analyse linear and nonlinear transient growth of disturbances (Farrell 1988;
Hill 1995; Barkley et al. 2008). According to Marquet et al. (2008b), the adjoint can be
used to identify the most stabilising or destabilising base-flow modification, or to map the
sensitivity of leading modes to the application of an external force.

2.4. Sensitivity analysis of global modes
The sensitivity analysis consists in assessing how a variable is modified by the variation of
a physical quantity. In particular, this study focuses on the sensitivity of the leading global
modes. In this regard, a first instrument of the sensitivity analysis is the determination of
the wavemaker region, i.e. the so-called structural sensitivity first introduced by Giannetti
& Luchini (2007) in the framework of global stability. The wavemaker is defined by the
following relation:

ζ(x) = ‖û‖‖û†‖
〈û†|û〉 , (2.14)

where ‖ · ‖ should be understood as the pointwise norm of the mode. It allows for
identification of regions of the flow where generic structural modifications of the
linearised Navier–Stokes operator lead to the strongest drift of the leading eigenvalue (see
Appendix B).
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The sensitivity of a given eigenvalue to an arbitrary base-flow modification or to a force
can be considered. The concept of sensitivity to a base-flow modification was originally
introduced by Bottaro, Corbett & Luchini (2003) in a local framework and later extended
to the global framework also for a body force by Marquet et al. (2008b). The variations
δσ of the complex eigenvalue with respect to an arbitrary small-amplitude base-flow
modification δU can be formally related through the inner-product definition:

δσ = 〈∇Uσ |δU〉. (2.15)

The specific form of the sensitivity ∇Uσ is derived by a Lagrangian-based approach (see
appendix A in Marquet et al. (2008b) for a complete derivation) and reads

∇Uσ = −(∇û)H · û† + ∇û† · û∗, (2.16)

where the superscript H denotes the transconjugate. Note that ∇Uσ is a complex vector
field, and that variations of the growth rate δλ and frequency δω are linked to δσ via
∇Uλ = Re(∇Uσ) and ∇Uω = −Im(∇Uσ). It should be stressed that the base-flow
modification δU is generic since U + δU is not assumed to be a steady solution of the
equations governing the base flow.

Analogously, the sensitivity to a force can be derived. Variations of a particular
eigenvalue δσ induced by infinitesimal variations δF of the body force are formally
described by the following relation:

δσ = 〈∇F σ |δF 〉, (2.17)

where ∇F σ defines the sensitivity to a steady force modification. As for the base-flow
sensitivity, ∇F σ is a complex vector field so that ∇Fλ = Re(∇F σ) and ∇F ω =
−Im(∇F σ). The Lagrangian-based approach allows the following expression to be derived
for the force sensitivity:

∇F σ = U†, (2.18)

where Q† = (U†, P†)T is the adjoint (complex) base flow whose governing equations read

∇ · U† = 0, (2.19a)

−(U · ∇)U† + U† · (∇U)T − ∇P† − 1
Re

�U† = ∇Uσ, (2.19b)

with U† = 0 at the inlet and on the wing walls, symmetrical conditions on the lower and
upper boundaries, and periodic conditions on the lateral boundaries. Note that computing
the force sensitivity ∇F σ , which is the focus of § 3.3, requires the computation of the
base-flow sensitivity function beforehand.

3. Global stability and sensitivity analyses of leading global modes

3.1. Global stability analysis over unswept periodic wings
We first consider the global stability analysis of the massively separated flow around
a NACA 4412 periodic unswept wing at α = 20◦ and Re = 400. Figure 5 shows the
corresponding eigenspectrum and some direct global eigenmodes. Following the notation
in figure 5(a), there are depicted the real parts of the streamwise velocity Re(û) of the
eigenfunction corresponding to the two-dimensional von Kármán mode σ1Λ0

(figure 5b),
the three-dimensional von Kármán mode σ2Λ0

(figure 5c) and the three-dimensional
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Figure 5. Global stability results and direct global eigenmodes. (a) Eigenspectrum of the flow around a
periodic unswept wing with a span extent of Lz = 8 at α = 20◦ and Re = 400. The double circle symbol
indicates that the algebraic multiplicity of the corresponding eigenvalue is two. Only the positive-frequency
part of the eigenspectrum is shown. The eigenvalues are ordered following the notation σjΛi

, where j follows an
order relation with respect to the growth rate such that σ1 represents the least stable eigenvalue and i denotes
the value of the sweep angle Λ. (b–d) According to this notation, depicted are the real parts of the streamwise
velocity Re(û) of the eigenfunction corresponding to (b) the two-dimensional von Kármán mode σ1Λ0

, (c) the
three-dimensional von Kármán mode σ2Λ0

≡ σ3Λ0
with kzΛ = ±π/4 and (d) the three-dimensional centrifugal

mode σ8Λ0
with kzΛ = ±3π/4. Red (blue) contours correspond to positive (negative) values of 10 % of the

maximal absolute value of Re(û). These conventions hold throughout the paper.

centrifugal mode σ8Λ0
(figure 5d) (Theofilis, Hein & Dallmann 2000; Kitsios et al. 2009;

Rodríguez & Theofilis 2011).
Here the spanwise extent is set to Lz = 8, and three-dimensional modes are selected for

wavenumbers defined as kzΛ = 2πn/Lz, with n ∈ Z in order to satisfy periodicity on the
lateral boundaries. Continuous eigenbranches are therefore discretised as a function of Lz.
This is the case for both the von Kármán and three-dimensional centrifugal modes.

As illustrated in figure 5(c), the von Kármán mode is characterised by a spanwise
wavenumber kzΛ = ±π/4, whereas the three-dimensional centrifugal mode shown in
figure 5(d) has a wavenumber kzΛ = ±3π/4. The plus or minus sign corresponds to the
superposition of two invariant modes with respect to the phase velocity in the positive
or negative spanwise direction. This justifies the double algebraic multiplicity of all the
eigenvalues (except the two-dimensional von Kármán mode) in the spectrum of figure 5(a).
As a result, when Λ = 0◦, σ2Λ0

≡ σ3Λ0
with |kzΛ | = π/4. In the spectrum in figure 5(a),

other three-dimensional von Kármán modes have been indicated. They present a spatial
distribution similar to the global mode in figure 5(c) but present increasing spanwise
wavenumber. In particular, the modes σ4Λ0

and σ5Λ0
are characterised by |kzΛ | = π/2,

whereas the modes σ6Λ0
and σ7Λ0

are characterised by |kzΛ | = 3π/4 (see also the red
curves in figure 11).

In fact, regardless of the spanwise wavenumber’s sign, three-dimensional modes (both
the von Kármán and centrifugal types) with the same spanwise wavenumber (in absolute
value) ought to have the same stability properties (i.e. equal growth rates and frequencies).
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Figure 6. Marginal curves in log–log plots for the flow around a periodic unswept wing: (a) the emergence
threshold of the two-dimensional von Kármán mode together with that of the three-dimensional centrifugal
mode in the α–Re plane; (b) the critical Strouhal number of the von Kármán mode; and (c) the spanwise
wavenumber kzΛ of the leading three-dimensional centrifugal mode as a function of the angle of attack.

The spanwise wavenumber of the two-dimensional von Kármán mode is null, i.e. kzΛ = 0,
and its algebraic multiplicity is unity. It represents the most unstable global mode with a
frequency of 0.338. The difference between the nonlinear natural frequency (see table 1)
and that obtained with the linear stability analysis is attributable to the distortion due to
the nonlinear effects (Barkley 2006; Sipp & Lebedev 2007). It should be noted that this
analysis is carried out far beyond the bifurcation threshold since the growth rate value is
λ = 0.411, as shown in figure 5(a) (see also table 2).

Varying the Reynolds number Re and the angle of attack α, the marginal stability curves
were computed as a function of Re for the leading mode. The results are collected in
figure 6, together with the thresholds for the leading three-dimensional centrifugal mode
and the corresponding Strouhal numbers.

As observed also by He et al. (2017) for the NACA 0009, 0015 and 4415,
the leading flow eigenmode is the two-dimensional von Kármán mode and not the
stationary three-dimensional mode, whose emergence threshold is higher, i.e. Re3DC

cr (α) >

ReVK
cr (α), ∀α ∈ [0;π/2] Re3DC

cr (α) > ReVK
cr (α), for all α ∈ [0;π/2] (see figure 6a).

Figure 7 shows the Reynolds number at which the three-dimensional centrifugal mode
becomes marginally stable as a function of that concerning the two-dimensional von
Kármán mode.

As also confirmed by direct numerical simulations, we conclude that this stationary
three-dimensional mode (as well as the three-dimensional von Kármán modes) does not
contribute to the dynamics of unswept wings at low Reynolds numbers. The critical
Strouhal number of the two-dimensional von Kármán mode decreases as the angle of
attack increases (see figure 6b), with d = c sin α, which corresponds to the vertical
distance between the leading and trailing edges or the characteristic length scale for the
interactions of shear layers across the wake (see figure 23b in Appendix A). The spanwise
wavenumber of the leading three-dimensional centrifugal mode k3DC

zΛ as a function of the
angle of attack is reported in figure 6(c) and is also depicted in figure 8. It should be noted
that all quantities, Recr, Stcr and k3DC

zΛ , follow power laws with respect to the angle of
attack.

Figure 8 shows the growth rate λ of the leading global modes with respect to the
spanwise wavenumber kzΛ for four different angles of attack, α = 10◦, 20◦, 32◦ and 50◦,
at the respective Reynolds numbers for which the leading three-dimensional centrifugal
mode is marginally stable (see also figure 4b in Nastro et al. (2022b)). As far as the
von Kármán modes are concerned (see the solid lines), the growth rate decreases with
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Figure 7. Relation between the critical Reynolds number of the leading three-dimensional centrifugal mode
and that of the two-dimensional von Kármán mode.
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Figure 8. Growth rate λ of leading global modes as a function of the spanwise wavenumber kzΛ for four
different angles of attack, α = 10◦, 20◦, 32◦ and 50◦, at the respective Reynolds numbers at which the leading
three-dimensional centrifugal mode becomes marginally stable. The solid (dashed) lines refer to the von
Kármán (three-dimensional centrifugal) modes. The corresponding spanwise wavenumbers k3DC

zΛ are collected
in figure 6(c).

a parabolic behaviour for increasing spanwise wavenumber. Interestingly, the eigenbranch
of von Kármán modes crosses the marginal stability axis at a spanwise wavenumber close
to the leading three-dimensional centrifugal mode (see the dashed lines). However, no
clear explanation can justify this observation.

Since the flow dynamics are driven by the two-dimensional von Kármán mode, we
now analyse some of its properties with respect to the respective base flow at the critical
conditions. Figure 9(a) shows the largest streamwise extent of the recirculation bubble
xrb/c and the streamwise location of the separation line xsep/c computed on the base flows
corresponding to the critical conditions Recr.
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Figure 9. (a) For each critical point Recr, the maximal streamwise extent of the recirculation bubble (left y-axis
and red line) and the streamwise location of the separation line (right y-axis and blue line), both evaluated on
the corresponding base flows. (b) Streamwise wavenumber of the two-dimensional von Kármán mode obtained
by fast Fourier transform of the velocity spatial signal as a function of the critical angle of attack. (c) Critical
Strouhal number as a function of the streamwise wavenumber kxΛ .

As the critical Reynolds number decreases and, consequently, the critical angle of
attack increases, the recirculation bubble becomes larger and the laminar boundary layer
separation is located farther upstream, ranging from xsep/c = 0.6 for Recr = 1046 and
αcr = 5◦ to a leading-edge separation (xsep/c = 0.03) for Recr = 32.9 and αcr = 80◦.

Figure 9(b) illustrates the streamwise wavenumber kxΛ of the two-dimensional von
Kármán mode obtained by fast Fourier transform of the eigenmode velocity spatial signal
as a function of the critical angle of attack. The streamwise wavelength of the leading
eigenmode increases for higher critical angles of attack as a result of the thickening of the
recirculation region. The characteristic length scale of the recirculation region thus drives
the eigenmode wavelength. As a consequence, the streamwise wavenumber decreases
monotonically when increasing the angle of attack and follows a power law, which is
similar to that obtained for the critical Strouhal number and decreases with d = c sin α

measuring the interaction distance between the shear layers – compare figure 9(b) with
figures 6(c,d) and see figure 23(b) in Appendix A. Evidently, these two length scales,
xrb/c and d, are tied, since they increase and decrease proportionally if one moves along
the marginal curve in the α–Re plane. Whence, the eigenmode frequency is linearly
proportional to the streamwise wavenumber, leading to a constant critical phase velocity
cxΛ ≈ 0.93.

3.2. Influence of sweep angle on global modes
In this section, we discuss the effect of the sweep angle Λ on the leading global modes
developing around periodic NACA 4412 wings. We first consider the same conditions as in
figure 5 to elucidate the influence of the sweep angle on a larger set of unstable or weakly
stable global modes.

Figure 10 shows the spectrum for three different sweep angles and some direct global
eigenmodes for the specific case of Λ = 25◦.

As we increase the sweep angle, both the frequency and the growth rate of all leading
global modes undergo a slight reduction. This suggests that instabilities are attenuated
over spanwise-periodic wings for increasing Λ. As observed for the unswept wing, the
two-dimensional von Kármán mode (depicted in figure 10b for Λ = 25◦) remains the
most unstable global mode with f = 0.329 and 0.300 for Λ = 12◦ and 25◦, respectively.
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Figure 10. Global stability results and direct global eigenmodes. (a) Eigenspectrum for Λ = 0◦, 12◦, 25◦
at α = 20◦ and Re = 400. (b–e) According to spectrum notation, depicted for the Λ = 25◦ case are the real
parts of the streamwise velocity Re(û) of the eigenfunction corresponding to (b) the two-dimensional von
Kármán mode σ1Λ25

, the three-dimensional von Kármán modes (c) σ2Λ25
with kzΛ = π/4 and (d) σ3Λ25

with
kzΛ = −π/4 and (e) the three-dimensional centrifugal mode σ8Λ25

characterised by kzΛ = 3π/4.

The three-dimensional eigenmodes, both the von Kármán and three-dimensional
centrifugal ones, do not take part in the dynamics of swept wings in this Reynolds number
regime, as proved by direct numerical simulations. It is worth noting that introducing a
non-zero sweep angle leads to a split in the three-dimensional von Kármán modes having
the same spanwise wavenumber in absolute value. In fact, as a non-zero sweep angle
induces a sideward deflection (sidewash) of the free stream (see figure 4b), the spanwise
direction is no longer invariant with respect to mode displacements in the positive or
negative direction. Global modes now display a unitary algebraic multiplicity as opposed
to the Λ = 0◦ case. Keeping the wavenumber kzΛ constant in absolute value, the frequency
decreases for the corresponding negative value and increases for the positive one due to
the Doppler effect. Analogously, the growth rate is lower in the former and higher in the
latter case.

Considering three-dimensional von Kármán modes σ2Λ25
illustrated in figure 10(c) and

σ3Λ25
in figure 10(d), the former is characterised by a spanwise wavenumber kzΛ = π/4,

whereas the latter has kzΛ = −π/4. As a consequence, σ2Λ25
moves in the same direction

induced by the sidewash, whereas σ3Λ25
moves against the side stream. In addition, the

introduction of a sweep angle causes the three-dimensional centrifugal modes to detach
from the zero-frequency axis. Figure 10(e) illustrates the most unstable three-dimensional
centrifugal mode for Λ = 25◦, σ8Λ25

, which is characterised by a spanwise wavenumber
kzΛ = 3π/4. For a fixed non-zero sweep angle, they present a range of low frequencies
which substantially increase as Λ increases, whereas the growth rates are subjected to
a slight attenuation. They present only positive values of the spanwise wavenumber and
as a consequence move only along the positive spanwise direction following the mean
side stream.

Let us consider in more detail the influence of the sweep angle on the wave properties
of the global eigenmodes depicted in figure 10. It should be remembered that it is also
possible to define the wave angle as φ = tan−1(kzΛ/kxΛ). The main features of the global
eigenmodes for a 25◦ swept periodic wing flow at α = 20◦ and Re = 400 are summarised
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kzΛ −3π/4 −π/2 −π/4 0 π/4 π/2 3π/4
φ −π/4 −π/6 −π/12 0 π/12 π/6 π/4
λ 0.0370 0.1908 0.3042 0.3569 0.3339 0.2341 0.0681
f 0.1470 0.2032 0.2542 0.3002 0.3413 0.3777 0.4095

Table 3. Main features of the von Kármán modes for Λ = 25◦: streamwise wavenumber kzΛ , wave angle φ,
growth rate λ and frequency f .
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Figure 11. Influence of the sweep angle on the wave properties of the global eigenvalues: (a) growth rate λ,
(b) frequency f , (c) phase velocity czΛ and (d) group velocity vzΛ as functions of the spanwise wavenumber kzΛ
at α = 20◦ and Re = 400 for Λ = 0◦, 12◦, 25◦.

in table 3 or von Kármán modes and in table 4 for three-dimensional centrifugal modes
and compared to the Λ = 0◦ and 12◦ cases in figure 11.

Figure 11 shows the growth rate λ, the frequency f , the spanwise phase velocity czΛ
and the spanwise group velocity vzΛ as functions of the spanwise wavenumber at α = 20◦
and Re = 400 for Λ = 0◦, 12◦, 25◦. As done previously, figure 11 follows the convention
of representing only the part of the eigenspectrum with positive frequencies. Increasing
the sweep angle Λ leads to a slight decrease of the growth rate. As far as the von
Kármán modes are concerned, this decrease is more pronounced for negative spanwise
wavenumbers, as discussed earlier. For all sweep angles considered here, the growth rates
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kzΛ π/2 3π/4 π 5π/4 3π/2
φ π/2 π/2 π/2 π/2 π/2
λ 0.0147 0.0292 0.0204 −0.0026 −0.0353
f 0.0801 0.1163 0.1518 0.1872 0.2228

Table 4. Main features of the three-dimensional centrifugal modes for Λ = 25◦: streamwise wavenumber
kzΛ , wave angle φ, growth rate λ and frequency f .

of both the von Kármán and three-dimensional centrifugal modes have a parabolic-like
behaviour (see figure 11a).

As shown in figure 11(b), whilst the frequency of the three-dimensional centrifugal
modes shows a linear trend and therefore a non-dispersive behaviour, that of the
von Kármán modes has a weakly parabolic behaviour, suggesting a slight dispersion
in the spanwise direction (Fraternale, Nastro & Tordella 2021). Introducing a sweep
angle induces a monotonic behaviour of the frequency curves with respect to the
spanwise wavenumber. As far as the von Kármán modes are concerned, the curves
rotate anticlockwise around the value corresponding to kzΛ = 0, providing a decrease
for negative spanwise wavenumbers and an increases for positive ones because of the
Doppler effect introduced by the sideward deflection of the free stream. The substantial
difference between the phase and group velocities is indicative of the spanwise dispersion
of the von Kármán modes, whereas for the three-dimensional centrifugal modes the phase
velocity coincides with the group one, which is comparable to the base-flow sidewash (see
figure 11c,d).

The adjoint global eigenmodes corresponding to the 25◦ swept periodic wing flow at
α = 20◦ and Re = 400 are compared with those of the unswept wing flow in figure 12,
with the same convention as in figures 5 and 10.

The streamwise velocities are concentrated around the wing surface and exhibit only
weak spatial oscillations upstream from the wing (lower than 10 % of the maximal absolute
value, therefore not visible in figure 12). Varying the sweep angle Λ does not yield
substantial differences in the spatial distribution of the adjoint modes, at least for this
flow regime. For a fixed angle of attack, increasing (respectively decreasing) the Reynolds
number leads to a streamwise elongation (respectively approaching) of the sheet structures
forming the adjoint modes, in agreement with the thickening (respectively shrinking)
of the recirculation bubble region. The same observation applies for constant Reynolds
numbers with an increase (respectively decrease) of the angle of attack α.

Figure 13(a) shows the spectrum for different Reynolds numbers on a 25◦ swept wing
at angle of attack of 20◦. As done for the unswept case, the Reynolds number Re and
the angle of attack α were varied, and the marginal stability for Λ = 12◦ and 25◦ was
determined. The trend in the critical Reynolds number with respect to the sweep angle is
collected in figure 13 together with the corresponding Strouhal numbers for α = 10◦, 20◦
and 32◦.

For instance, for Λ = 25◦ and α = 20◦, the critical Reynolds number is found to
be 188.8 with a characteristic frequency of 0.310, which coincides perfectly with that
obtained from the direct numerical simulation. Considering a Reynolds number of 220,
the deviation between the nonlinear frequency and that obtained from the stability
analysis remains less than 0.03 %. Then it increases significantly for Re = 400, where the
frequency given by global stability analysis is 0.300 and that from the nonlinear simulation
is 0.442. The critical Reynolds number increases, confirming the attenuation of the flow
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Figure 12. Comparison of the adjoint global eigenmodes for Λ = 0◦ and 25◦: real parts of the streamwise
velocity Re(û†) of the eigenfunction corresponding to the two-dimensional von Kármán mode for (a) Λ = 0◦
and (b) Λ = 25◦, the three-dimensional von Kármán mode with kzΛ = π/4 for (c) Λ = 0◦ and (d) Λ = 25◦,
the three-dimensional von Kármán mode with kzΛ = −π/4 for (e) Λ = 0◦ and ( f ) Λ = 25◦ and the
three-dimensional centrifugal mode with kzΛ = 3π/4 for (g) Λ = 0◦ and (h) Λ = 25◦.

behaviour over spanwise-periodic wings for increasing Λ (see figure 13b,d, f ). In addition,
increasing the wing sweep angle leads to a reduction of the critical frequency, as depicted
in figure 13(c,e,g).

The remainder of the present work focuses on a sensitivity analysis (§ 3.3) and control
of the unsteady wake (§ 3.5), and the analysis is restricted to α = 20◦, which allows for
understanding the fundamental characteristics of the wake forming in the flow of a stalled
lifting body with a non-zero sweep angle. Moreover, the analysis is carried out in the
vicinity of the critical Reynolds number of the first bifurcation to assure a stable von
Kármán orbit.
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Figure 13. Marginal curves for the flow around periodic swept wings. (a) Spectrum of 25◦ swept wing at
angle of attack of 20◦ for several Reynolds numbers, with the solid line denoting the von Kármán modes and
the dash-dotted one the three-dimensional centrifugal modes. (b–g) Critical Reynolds number as a function of
the sweep angle for (b) α = 10◦, (d) α = 20◦ and ( f ) α = 32◦; and corresponding critical Strouhal number for
the same angles of attack, (c) α = 10◦, (e) α = 20◦ and (g) α = 32◦.

3.3. Sensitivity analysis of the leading global mode
We are now interested in the stabilisation of the flow by means of a steady force that
is assumed to modify only the base flow (Marquet et al. 2008b). The angle of attack is
kept constant at α = 20◦ and we consider a Reynolds number equal to 190, which is very
close to the critical one (|Re − Recr| < 1.5). For these flow conditions, the leading global
mode developing on the 25◦ swept periodic wing is depicted in figure 14 together with the
corresponding adjoint mode.

It should be noted that, in the vicinity of the critical point, the direct global mode
presents structure extending into the far wake, whereas, as the Reynolds number (or
the angle of attack) increases, the global mode contracts, concentrating around the
recirculation bubble, at whose closure point is approximately the maximum value of the
mode energy. The break in the spatial symmetry of the mode developing on the wing can
be noted in the spanwise component, whose lobe structures differ in shape, moving from
above to below the wake. The adjoint global mode remains concentrated around the wing
surface and exhibits weak spatial oscillations upstream from the wing.

The sensitivity analysis to a steady force, presented in § 2.4, is now applied to the leading
global eigenvalue. It should be remembered that, thanks to the sensitivity analysis to a
steady force, base-flow modifications induced by an arbitrary force δF do not need to be
explicitly computed in order to determine the eigenvalue variations δσ (Marquet et al.
2008b). The sensitivity function to a base-flow modification involved as source term in
(2.19) for the determination of the sensitivity to a steady force is illustrated in Appendix C.

Figure 15 depicts the growth-rate sensitivity to a steady force ∇Fλ of the leading
eigenvalue σ1Λ25

computed for the same conditions as in figure 14.
Figure 15(a) shows that a steady force acting inside the recirculation bubble in the

positive streamwise direction is stabilising, since the growth-rate sensitivity exhibits
negative values. Furthermore, an extended region localised on the suction side is
stabilising as well. It represents a region of interest for the arrangement of jet actuators.
Conversely, acting on the shear zones outside the recirculation region in the positive
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Figure 14. Direct and adjoint leading global mode for Λ = 25◦, α = 20◦ and Re = 190: contours of the real
part of the streamwise velocity of (a) the direct global mode and (e) the adjoint one. (b–d) Slices in the spanwise
plane z = 0 (Lz = 8) of (b) streamwise, (c) cross-stream and (d) spanwise velocity components for the direct
mode, and ( f –h) the same for the adjoint one, respectively.
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Figure 15. Spatial distribution in the plane z = 0 of the growth-rate sensitivity to a steady force of the leading
eigenvalue for Λ = 25◦, α = 20◦ and Re = 190: (a) streamwise, (b) cross-stream and (c) spanwise components
of ∇Fλ.
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Figure 16. Spatial distribution in the plane z = 0 of the frequency sensitivity to a steady force of the leading
eigenvalue for Λ = 25◦, α = 20◦ and Re = 190: (a) streamwise, (b) cross-stream and (c) spanwise components
of ∇F ω.

x direction induces a positive variation of the growth rate, i.e. δλ > 0. Regarding the
cross-stream direction, figure 15(b) shows that the highest sensitivity is concentrated
around the trailing edge with negative values and along the suction side with positive
values. As far as the spanwise component is concerned, the most sensitive regions are
the shear layers which host negative values of the growth-rate sensitivity such that a
positive spanwise force has a stabilising effect, i.e. δλ < 0. As mentioned by Marquet
et al. (2008b), the present approach would also be able to predict whether a distributed
force or a non-local one has a stabilising or destabilising effect, although a local force has
been adopted here to interpret the sensitivity maps.

The frequency sensitivity to a steady force is depicted in figure 16(a–c) in terms
of streamwise, cross-stream and spanwise components, respectively. The streamwise
component of the frequency sensitivity function shows that a stabilising local force (see
figure 15a) is associated with an increase of the frequency in both the separation and
recirculation regions, and a slight decrease in the outer region. Similarly to the growth-rate
sensitivity function, the cross-stream component is essentially concentrated around the
trailing edge, where a localised normal oscillator would yield an increase of the frequency.
Analogously, in the near proximity of the leading edge, a local force would slightly
increase the frequency, whereas in the extended region along the suction side, it would
lead to a shift towards low frequencies. For the spanwise component, a local force along
the positive z axis would provide a decrease of the frequency when acting on the suction
side and around the trailing edge and a shift towards high frequencies when acting inside
the recirculation bubble.

We now consider a specific steady force F modelling a small increment in the drag force.
The effect of such a body force can be related to that of a small-diameter cylindrical rod,
which would lead to a pointwise supply of momentum to the flow equal and opposite to
the anticipated drag (Hill 1992). This force is applied to the unforced base-flow solution of
(2.3) with F = 0 and is therefore denoted δF according to the general formalism described
in § 2.4. In particular, it is considered to be proportional to the square of the base flow field
(see also (5.1) in Marquet et al. (2008b)) according to the following relation:

δF = −ε‖U‖U δ(x − xc(z), y − yc), (3.1)

where ε is the amplitude parameter and (xc, yc) is the station where the control is
applied. In order to apply the steady force homogeneously along the span, the streamwise
coordinate for the control is found to be a function of the spanwise direction as follows:
xc(z) = xc(z = 0) + z tan Λ.

In the case of cylinder flow, previous numerical studies (Hill 1992; Marquet et al. 2008b;
Boujo 2021) have shown that a mathematical form like that of (3.1) models appropriately
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Figure 17. Variations of (a) the growth rate δλ/ε and (b) the frequency δω/ε in the plane z = 0 as a function
of the location of the steady force modelled by (3.1). The results are given for Λ = 25◦, α = 20◦ and Re = 190.

the effect of a cylindrical rod-type physical control device. Such a device can control the
vortex shedding at low Reynolds number, as demonstrated experimentally by Strykowski
& Sreenivasan (1990) and later via Navier–Stokes simulations by Dipankar, Sengupta &
Talla (2007). However, we point out that the presence of a physical control device (such as
a cylindrical rod) in the flow could be modelled by a force acting not only at the base-flow
level (as considered here) but also at the perturbation level in order to take into account
their respective effects on the flow stability and to gain a more detailed prediction of the
stabilising/destabilising regions, as shown by Marquet et al. (2008a) for the passive control
of cylinder flow. Using the force modelled by (3.1) and the relation (2.17), variations of the
growth rate and frequency (normalised by the amplitude ε) can be expressed as follows:

δλ

ε
= −‖U‖U(∇Fλ · U), (3.2a)

δω

ε
= −‖U‖U(∇F ω · U). (3.2b)

The quantities expressed by (3.2a) and (3.2b) are illustrated in figures 17(a) and 17(b),
respectively. The results are shown in the plane z = 0 but they are homogeneous along
the span because of the spanwise homogeneity of the leading global mode. It should be
recalled that, for Re = 190, the base flow is very close to the marginal stability, since,
for a 25◦ swept periodic wing at α = 20◦, the critical Reynolds number is 188.8. This
means that the application of the localised force (3.1) in regions characterised by δλ <

0 (respectively δλ > 0) provides a stabilisation (respectively destabilisation) of the flow.
Figure 17(a) shows that the most sensitive regions are the neighbourhood of the leading
edge along the suction side and the upper shear zone where a force modelled according to
(3.2a) would provide a destabilising effect and a stabilising one, respectively. Evidently,
these effects would be reversed if, instead of modelling an increase in the drag force, one
were to consider its decrease, i.e. a plus sign in (3.1). Figure 17(b) shows that the force
(3.1) leads to a decrease of the frequency for almost every position along the separation
region, whereas a weak increase of the frequency is observed only if the force is located
in the outer regions.

We now apply the force given by (3.1) at a specific location and study the stability of
such a modified base flow in order to verify if the predictions of the sensitivity analysis
are in agreement with the results provided by the stability analysis on the forced base
flow. We choose to apply the drag force given by (3.1) at the station (x∗

c(z), y∗
c(z)), where
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Stability, sensitivity and control of low-Re NACA 4412 flows

x∗
c(z) = x∗

c(z = 0) + z tan Λ and y∗
c(z) = y∗

c(z = 0) to apply it homogeneously along the
swept wing, with (x∗

c(z = 0), y∗
c(z = 0)) = (0.45, 0.23) (see figure 21a). It should be

noted that, for Reynolds numbers close to the bifurcation, this position corresponds to
the station where the largest stabilisation of the flow is obtained (see figure 17a). The
Dirac delta function modelling the steady force δF of (3.1) is numerically smoothed out
into a Gaussian function, as done by Marquet et al. (2008b) and Boujo (2021) for cylinder
flow. The standard deviation is fixed and set at 0.05 (the same value as Boujo (2021)).
Considering the power law CD(Red) = 0.8558 + 10.05Re−0.7004

d for cylinder flow (Boujo
& Gallaire 2014; Meliga et al. 2014) with Red = ‖U(xc)‖d/ν and that

δFx = CD(Red)
1
2ρ‖U(xc)‖2Σcd, (3.3)

where Σcd = dLz is the projected frontal area of the control device, we can determine the
equivalent diameter d of the cylindrical rod by substituting the power law into (3.3) and
equalising the corresponding equation to (3.1). Thus, the diameter results to be d = 0.001
(for ε = 0.1), i.e. the diameter of the cylindrical rod is 1000 times smaller than the airfoil
chord.

The specific base-flow modifications δUF induced by the force δF with ε = 0.1 are
illustrated in figure 18.

The velocity profiles on the cross-streamlines x/c = 1.25, 2.0, 2.75, 3.5, 4.25 and
5.0 are depicted on each panel and appropriately amplified for clarity. The largest
modifications of the streamwise and cross-stream components are concentrated in the
neighbourhood of (x∗

c , y∗
c) where the force is applied, whereas the spanwise component

presents the largest (negative) values in the wing recirculation region, yielding an
attenuation of the sideward deflection of the flow induced by the sweep angle.
Nevertheless, such a localised force has a non-local effect on the base flow, as it
significantly affects the flow field, also far from the application point. The most important
effect is observed on the streamwise component, which is greater by one order of
magnitude with respect to the cross-stream and spanwise components. Figure 18(a) shows
a significant decrease of the velocity downstream from the application point in the
free-stream zone (high-speed zone) and an increase between the localised force and the
suction side of the wing, delimited by the recirculation region (low-speed zone). This
results in a thickening of the shear layer on the wing suction side.

We now consider the comparison between the growth rate and frequency variations of
the leading global mode obtained by the stability analysis conducted over the base flow
forced according to (3.1) with ε = 0.1 and located at the station (x∗

c(z), y∗
c(z)) and those

from the sensitivity analysis. In fact, as reported in table 5, the growth rate variation is
comparable to that estimated by the sensitivity analysis (see also figure 17a). Also, the
leading mode frequency experiences a slight decrease in agreement with the prediction of
the sensitivity analysis (see also figure 17b).

3.4. Influence of nonlinearities
It should be remembered that the sensitivity analysis discussed in § 3.3 is fundamentally
linear since it is based on the evaluation of a gradient. In particular, base-flow
modifications resulting from a steady force are sought as linear base-flow modifications.
Therefore, a variation of the eigenvalue computed using the sensitivity analysis is exact
in the limit of a small-amplitude force (Marquet et al. 2008b). In order to assess how
nonlinearities influence the results obtained by the sensitivity analysis and its limitations,
we now consider the effect of the amplitude ε on the eigenspectrum. In addition, we
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Figure 18. Specific base-flow modifications induced by a force modelled by (3.1) with ε = 0.1 and located at
the station (x∗

c , y∗
c ) indicated by the black dot. The sweep angle is Λ = 25◦, the angle of attack α = 20◦ and

the Reynolds number is close to the bifurcation, i.e. Re = 190. Spatial distribution in the plane z = 0 of (a) the
streamwise velocity δUF , (b) the cross-stream velocity δVF and (c) the spanwise velocity δWF . The black solid
lines depicting the corresponding velocity profiles at the streamwise locations x/c = 1.25, 2.0, 2.75, 3.5, 4.25,
5.0 are magnified by a factor of 20 to ease visualisation.
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δλsensitivity δλstability δ fsensitivity δ fstability

−0.0160 −0.0176 −0.0024 −0.0023

Table 5. Leading growth rate δλ and frequency δf variations obtained by the sensitivity analysis and those
obtained by the stability analysis conducted over a base flow forced according to (3.1) with ε = 0.1 and located
at the station (x∗

c , y∗
c ). The Reynolds number is set to Re = 190, which is very close to the critical one, i.e.

Re = 188.8. The sweep angle is Λ = 25◦ and the angle of attack α = 20◦.
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f

St ≡ f = ω/2π

Figure 19. (a) Eigenvalues of the uncontrolled (ε = 0) and controlled (ε ∈ ]0; 0.75]) flow with a force
modelled by (3.1) for increasing ε and located at the station (x∗

c , y∗
c ). The sweep angle is Λ = 25◦, the angle of

attack α = 20◦ and the Reynolds number is Re = 220. (b) Growth rate and (c) frequency as functions of the
amplitude ε for the most unstable global modes depicted in panel (a).

investigate the effect of the steady force modelled by (3.1) for a slightly higher Reynolds
number, i.e. Re = 220, at which three eigenvalues are found to be unstable. The sweep
angle and the angle of attack are the same as in § 3.3, i.e. Λ = 25◦ and α = 20◦.

The influence of the steady force on the eigenspectrum is illustrated in figure 19(a) for
different values of the amplitude ε. The values of the growth rate and frequency of the
unstable global modes with respect to the amplitude ε are collected in figures 19(b) and
19(c), respectively.

Figure 19(a) shows that a steady force modelled by (3.1) makes the entire von Kármán
branch shift down in the eigenspectrum. Evidently, the higher the amplitude, the more
significant is the downshift in the eigenspectrum. Figure 19(b) (respectively figure 19c)
shows the deviation between the growth rate (respectively frequency) variation provided
by the sensitivity analysis (dash-dotted lines in figure 19) and that obtained by stability
analysis on the forced base flow as a function of the amplitude ε. For small amplitudes
of the force, the curves are superimposed since the base-flow modifications due to the
force are linear in this case. This result validates the sensitivity analysis to a steady force
and, in particular, the accuracy of the sensitivity function. The linear predictions for both
the growth rate and frequency match those obtained by the stability analysis on the forced
base flow for values of the amplitude less than ε ≈ 0.25, which equates to a diameter of the
cylindrical rod 100 times smaller than the chord, i.e. d � 0.01. For larger amplitudes, the
discrepancy becomes significant, indicating that nonlinearities affect the global dynamics.
As found also by Marquet et al. (2008b) and Boujo (2021) for the passive control of
the flow around a circular cylinder, the first-order sensitivity analysis for such a steady
force seems to underestimate the variations of the growth rate and overestimate those of
the frequency (see also table 5). The same analysis is conducted for an unswept periodic
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Figure 20. (a) Eigenvalues of the uncontrolled (ε = 0) and controlled (ε ∈ ]0; 0.75]) flow with a force
modelled by (3.1) for increasing ε and located at the station (x∗

c , y∗
c ). The sweep angle is Λ = 0◦, the angle

of attack α = 20◦ and the Reynolds number is Re = 220. (b) Growth rate and (c) frequency as a function of
the amplitude ε for the most unstable global modes depicted in panel (a).
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z
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Λ

	 	

(b)(a) (c)

Figure 21. Sketch of the geometry for the application of the steady force (a) homogeneously along the swept
wing, (b) modulated along the span and (c) as pointwise spheres.

wing at the same flow conditions, i.e. α = 20◦ and Re = 220. The results are illustrated in
figure 20.

It should be remembered that, for these flow conditions (α = 20◦ and Re = 220),
the unswept wing result is farther from the corresponding critical point with respect
to the swept one (compare the eigenspectrum in figure 20a and that in figure 19a). As
observed for the swept case, all the eigenvalues belonging to the von Kármán family are
further stabilised for increasing amplitudes. Similarly, the linear predictions match with
the growth rate and the frequency of the forced base flow for values of the amplitude less
than ε ≈ 0.25 and, therefore, for values of the cylindrical rod diameter d � 0.01.

3.5. Three-dimensional passive control
We now explore the influence of three-dimensional forcing such as spanwise-wavy or
pointwise forces on the stability properties of the leading eigenmodes with respect
to the spanwise-homogeneous forcing for the same flow conditions as § 3.3, i.e. very
close to the critical Reynolds number. All the steady forces investigated in the present
work are summarised in figure 21 (see also Appendix D for the effect of a small
amplitude-modulated force on the leading global modes).
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δF ε � λ f CD CL CS

uncontrolled 0 — 0.0032 0.3104 0.4072 0.6766 −0.1000
pointwise, Ns = 1 0.025 8 0.0031 0.3104 0.4071 0.6764 −0.1000
pointwise, Ns = 2 0.025 4 0.0029 0.3104 0.4071 0.6763 −0.1000
pointwise, Ns = 4 0.025 2 0.0026 0.3103 0.4070 0.6760 −0.0999
pointwise, Ns = 8 0.025 1 0.0020 0.3103 0.4068 0.6753 −0.0998
pointwise, Ns = 12 0.025 0.67 0.0013 0.3102 0.4065 0.6747 −0.0998
pointwise, Ns = 16 0.025 0.5 0.0007 0.3101 0.4063 0.6741 −0.0997
spanwise-wavy 0.1 1 −0.0140 0.3081 0.4055 0.6692 −0.0994
spanwise-wavy 0.1 9 −0.0140 0.3081 0.4055 0.6692 −0.0994
spanwise-wavy 0.1 3 −0.0140 0.3081 0.4055 0.6692 −0.0994
homogeneous 0.1 — −0.0144 0.3082 0.4055 0.6694 −0.0994

Table 6. Type of forcing δF , amplitude ε, distance between two adjacent spheres or modulation of the
chordwise position along the sweep direction �, leading growth rate λ and frequency f , together with the
time-averaged drag, lift and span coefficients CD, CL and CS obtained from direct numerical simulations at
Λ = 25◦, α = 20◦ and Re = 190 (cf. figure 22). The data are ordered by decreasing growth rate.

The spanwise-homogeneous control (see figure 21a), which approximately shapes a
cylindrical rod, is modelled by equation (3.1) in § 3.3. The spanwise-modulated control
illustrated in figure 21(b) is modelled by the following relation:

δF = −ε‖U‖U δ

(
x − x∗

c(z) − sin
(

2π�

Lz
z
)

, y − y∗
c

)
, (3.4)

where � represents the modulation of the chordwise position along the sweep direction.
The maximum variation of the forcing position along the wing chord is small and set equal
to the standard deviation of the Gaussian function that approximates the Dirac function
(i.e. 0.05).

As far as the estimation of the equivalent diameter d is concerned, in the case of
spanwise-modulated forcing, the local velocity U(xc) and thus the local Reynolds number
Red fluctuate slightly, since the chordwise position varies as the sine. This implies that the
equivalent diameter also oscillates slightly around an average value equal to that of the
cylindrical rod, i.e. d = 0.001 for ε = 0.1 (see § 3.3). On the other hand, the pointwise
forces modelling small localised spheres are simulated via the sum of Ns Dirac delta
functions:

δF = −ε‖U‖U
Ns∑

n=1

δ(x − x∗
c(z

∗
cn

), y − y∗
c , z − z∗

cn
), (3.5)

where z∗
cn

is the spanwise location of the nth localised sphere. These pointwise forces
are equidistant in such a way as to respect the periodic boundary conditions on the
lateral surfaces Σp. Referring to table 6, in the case of localised spherical forcing,
the quantity � stands for the distance between two adjacent spheres (see figure 21c).
As with the modelling of (3.1), the Dirac delta functions of (3.4) and (3.5) are
numerically approximated by Gaussian functions with the same standard deviation as the
spanwise-homogeneous force.

As done for the cylindrical rod in § 3.3, we can estimate the equivalent diameter of one
isolated sphere (Ns = 1). Specifically, considering that in this case in (3.3) the projected
frontal area is Σcd = πd2/4 and using the Turton & Levenspiel (1986) law for the drag
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Figure 22. (a) Eigenvalues of the uncontrolled (ε = 0) and controlled flow with different steady forces and
located at the station (x∗

c , y∗
c ). The sweep angle is Λ = 25◦, the angle of attack α = 20◦ and the Reynolds

number is close to the bifurcation, i.e. Re = 190. The spanwise extent is Lz = 8. (b) Close-up inset evidencing
the behaviour of the eigenvalues in the proximity of the marginal line (see also table 6). (c) Growth rate of the
leading global mode for the different steady forces considered here as a function of the amplitude ε.

coefficient,

CD(Red) = 24
Red

(1 + 0.173Re0.657
d ) + 0.413

1 + 16300Re−1.09
d

, (3.6)

the equivalent diameter of one sphere is found to be d = 0.191 for ε = 0.025. This value
of the diameter may vary slightly when the distance � between two adjacent spheres
becomes relatively small. In this case, mutual interaction and blockage effects yield some
corrections in the law for the drag coefficient, which increases with decreasing � and, as a
consequence, the equivalent diameter d changes as well.

The eigenspectrum of the uncontrolled flow is compared to that of the controlled flow
with the forces modelled by (3.1), (3.4) and (3.5) in figure 22.

Interestingly, all types of passive control considered here lead to a stabilisation of
the whole of the von Kármán branch. As observed in § 3.3, the leading global mode is
rendered stable by the spanwise-homogeneous force, in very good agreement with the
predictions of the sensitivity analysis (see tables 5 and 6). The spanwise-wavy forcing
yields a stabilising effect similar to that induced by the homogeneous forcing and is
seen to be less effective only at the third significant figure (see table 6). By tripling the
maximum chordwise variation of the forcing position, the spanwise-wavy force is found
to diminish its stabilisation efficiency, as the growth rate slightly increases, remaining
negative (i.e. λ = −0.0122 for ε = 0.1 and � = 3), whereas the frequency does not change.
The localised spherical forces are found to be less effective in stabilising the leading mode
than the homogeneous and spanwise-wavy forcing. The growth rate and frequency in the
case of localised spherical forces slightly decrease with a linear trend as the number of
spheres Ns increases (see the close-up inset in figure 22b), but the leading global mode is
not rendered stable, unless the forcing amplitude ε or the number of spheres Ns is increased
significantly (see figure 22c).
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It should be stressed that the present analysis is conducted near the bifurcation threshold
and, as a consequence, small control amplitudes suffice to stabilise the leading global
modes. However, far from the bifurcation threshold, where large amplitudes are necessary
for stabilising the leading global modes, a three-dimensional spanwise-wavy forcing could
become more efficient than a spanwise-homogeneous one. Furthermore, a first-order
sensitivity analysis on a purely two-dimensional flow indicates that a two-dimensional
control is always more efficient than a spanwise-periodic control, since the sensitivity
of a purely two-dimensional flow to spanwise-periodic control is identically zero at first
order, but quadratic at leading order (Hwang, Kim & Choi 2013; Del Guercio, Cossu &
Pujals 2014a,b,c). This aspect has elicited the interest of heterogeneous research groups
that either evaluated the second-order variation induced by a given control (Tammisola
et al. 2014; Boujo 2021) or computed optimal spanwise-periodic flow modification or
control (Boujo, Fani & Gallaire 2015, 2019; Tammisola 2017). Therefore, far from the
bifurcation threshold, a second-order sensitivity analysis becomes necessary, since in this
case a first-order sensitivity analysis can yield misleading conclusions when the stabilising
efficiencies of three-dimensional and two-dimensional controls are compared.

In conclusion, it should be pointed out that the result obtained with the localised
spherical forcing (i.e. the stabilisation of the leading two-dimensional global mode from
a three-dimensional modification of the flow) can be significant from the perspective of
determining a control strategy that simultaneously suppresses the von Kármán periodic
wake and minimises the net mass flow rate used for control. In fact, controlling with
pointwise spheres would also result in a saving of body force/control flow, compared to a
forcing distributed homogeneously or wavy along the span.

4. Conclusions and perspectives

This paper reports the global stability and sensitivity analyses of the leading global
eigenmodes developing on steady spanwise-homogeneous laminar separated flows around
periodic NACA 4412 wings for different angles of attack, various Reynolds numbers and
sweep angles ranging from Λ = 0◦ to 25◦.

The global stability analysis is performed by varying the Reynolds number and the angle
of attack. The results show that the flow dynamics are driven by the two-dimensional
von Kármán mode for all the conditions examined, and neither the three-dimensional
von Kármán modes nor the three-dimensional centrifugal ones contribute to the linear
dynamics of wing flows. The Reynolds number at which the three-dimensional centrifugal
mode emerges is found to be ∼ 9/5 of that related to the two-dimensional von
Kármán mode. At the critical conditions, the Reynolds number, the Strouhal number,
the streamwise wavenumber of the von Kármán mode and the spanwise wavenumber
of the leading three-dimensional centrifugal mode scale with power laws with respect
to the angle of attack. A more detailed analysis on the von Kármán mode shows
that its streamwise wavelength increases for higher critical angles of attack as a result
of the thickening of the recirculation region. The characteristic length scale of the
recirculation region thus drives the eigenmode wavelength. As a consequence, the
streamwise wavenumber decreases monotonically with the increase of the angle of attack
also scales as a power law, which is comparable to that of the critical Strouhal number.
It follows that the critical frequency is linearly proportional to the critical streamwise
wavenumber and the critical phase velocity is almost constant, i.e. cxΛ ≈ 0.93.

Introducing a non-zero sweep angle yields an attenuation in the wake flow and entails
a Doppler effect in the dynamics of the three-dimensional von Kármán modes. For a
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fixed non-zero sweep angle, the three-dimensional centrifugal modes present a range of
low frequencies, which substantially increase as the sweep angle increases, whereas their
growth rates are subjected to a slight attenuation. These modes present only positive values
of the spanwise wavenumber and, as a consequence, move only along the positive spanwise
direction following the mean side stream. In the case of unswept wings, the spanwise
direction is invariant with respect to mode displacements in the positive or negative
direction. The adjoint global eigenmodes developing over unswept and swept wings at
α = 20◦ and Re = 400 are described in § 3.2. Varying the sweep angle Λ does not yield
substantial differences in the spatial distribution of the adjoint modes, at least for this flow
regime. For a fixed Reynolds number, increasing (decreasing) the angle of attack leads to
a streamwise elongation (approaching) of the sheet structures forming the adjoint modes,
in agreement with the thickening (shrinking) of the recirculation bubble region. The same
consideration applies to a fixed angle of attack with an increase (decrease) of the Reynolds
number.

The sensitivity of the leading global modes is investigated in the vicinity of the critical
conditions through adjoint-based methods in order to predict regions of the flow which
are most sensitive to the application of additional steady forces. A steady force acting
inside the recirculation bubble in the positive streamwise direction has a stabilising
effect. Furthermore, an extended region near the leading edge may highlight a region
of interest for the arrangement of jet actuators that is stabilising as well. Acting on the
shear zones outside the recirculation region in the positive streamwise direction induces
a destabilisation. Regarding the cross-stream direction, the largest sensitivity is localised
near the trailing edge with negative values and along the suction side with positive values.
Concerning the spanwise component, the most sensitive zones are the shear regions.

The frequency sensitivity to a steady force is also discussed. The streamwise component
of the frequency sensitivity function shows that a stabilising local force yields an increase
of the frequency in both the separation and the recirculation regions, and a slight
decrease in the outer region. Like for the growth-rate sensitivity function, the cross-stream
component is essentially localised near the trailing edge, where a localised positive normal
force would make the mode frequency increase. Similarly, in the vicinity of the leading
edge, a local force would yield an increase of the frequency, whereas in the extended
region along the suction side, it would lead to a shift towards low frequencies. Concerning
the spanwise component, a local force along the positive z axis would lead to a decrease of
the frequency when acting on the suction side and around the trailing edge and an increase
of the frequency when acting inside the recirculation bubble.

In agreement with the predictions of the sensitivity analysis, a localised
spanwise-homogeneous force modelled according to (3.1) is found to suppress the
vortex shedding phenomenon and stabilise the entire branch of von Kármán modes.
The linear predictions for both the growth rate and frequency match those obtained
by the stability analysis on the forced base flow for values of the amplitude ε up to
0.25. For amplitudes ε > 0.25, the discrepancy becomes significant, suggesting that
nonlinearity effects become relevant for the global dynamics. It is observed that the
sensitivity analysis for such a steady force underestimates the variations of the growth
rate and overestimates those of the frequency. The influence of the three-dimensional
forces, i.e. the spanwise-wavy and pointwise forcing, is further investigated. In the limit
of small amplitudes, the spanwise-wavy forcing produces a stabilising effect similar to the
spanwise-homogeneous one, and only becomes less effective at the third significant figure.
The localised forces are found to be less effective than the spanwise-homogeneous and
spanwise-wavy forcing. Nevertheless, if the forcing amplitude ε or the number of spheres
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Ns is increased, the localised spherical forcing can suppress the von Kármán periodic
wake. This result is significant from the perspective of determining control strategies
minimising the body forces or the net mass flow rate used for the control.

Moreover, it should be recalled that we have observed that the two-dimensional unstable
steady solution becomes three-dimensionally unstable at a Reynolds number very close
to that of the periodic wake, as discussed by Noack & Eckelmann (1994) referring
to cylinder flow. This aspect deserves to be analysed in detail to search for secondary
three-dimensional instabilities developing on the periodic wake via Floquet theory. Until
now, the study has been performed at low Reynolds numbers, but an extension of this
approach to the turbulent regime will be provided during the H2020 Clean Sky project
Perseus. Further work could consider extending the sensitivity analysis to other control
functions, such as the separation and stagnation points, recirculation area, etc. (Boujo
& Gallaire 2014). As recently done by Boujo (2021), an adjoint-based second-order
sensitivity operator can also be derived in order to improve the sensitivity analysis
predictions. With the improvement of control strategies in mind, an extension of this
approach to unsteady external forces that could better model pulsed-jet actuators would
be of great interest.
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Appendix A. Critical Reynolds and Strouhal numbers

Figure 23 shows the critical Reynolds and Strouhal numbers of the two-dimensional von
Kármán mode scaled using (solid line) the chord c and (dashed line) the length scale
d = c sin α (i.e. the vertical distance between the leading and trailing edges) as a function
of the angle of attack α for the unswept wing.

As already observed, both the quantities evaluated using the chord c decrease as the
angle of attack increases with a power-law-like behaviour. The decrease of the Strouhal
number is attributable to the fact that Stc scales with d, which stands as a characteristic
length scale for the interactions of shear layers across the wake (Rolandi et al. 2021). In
fact, the variations in the critical Reynolds number and, above all, those in the critical
Strouhal number are mitigated if one considers d as characteristic length scale for the
non-dimensionalisation. Whereas, for α < 20◦, both Red and Std show a slight sensitivity
to the angle of attack, for larger values of α they are considerably less sensitive to the angle
of attack. In particular, the Strouhal number scales perfectly with d, and for α ≥ 10◦ has a
constant value equal to Std ∼ 0.11.
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Figure 23. Critical (a) Reynolds and (b) Strouhal numbers of the two-dimensional von Kármán mode
developing on the unswept periodic wing evaluated using (solid line) the chord c and (dashed line) the length
scale d = c sin α, i.e. the vertical distance between the leading and trailing edges, as a function of the angle of
attack α.
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Figure 24. Sensitivity to a local feedback of the bifurcating global mode. The wavemaker, defined as the
product of the direct and adjoint velocity magnitudes according to (2.14), is shown in the plane z = 0 for
Λ = 25◦, α = 20◦ and Re = 190. The blue solid line circumscribes the recirculation bubble region.

Appendix B. Wavemaker

Giannetti & Luchini (2007) introduced the concept of structural sensitivity or wavemaker
in the global framework. The wavemaker function can be used to identify the locations
where the feedback is stronger and therefore determines the regions of the flow where the
instability mechanism acts. To determine the spatial support of this particular region, they
investigated variations of the leading eigenvalue as a result of the existence of a spatially
localised feedback in the momentum equations (see § 8 in Giannetti & Luchini (2007) for
a detailed derivation). Figure 24 depicts the wavemaker defined in (2.14) for a 25◦ swept
periodic wing at α = 20◦ and Re = 190.

Figure 24 shows that the wavemaker has a double-lobed conformation across the
separation bubble, similar to that of the flow around a circular cylinder. Nevertheless,
larger values of the wavemaker are attained in the lobe located downstream from the
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Figure 25. Spatial distribution in the plane z = 0 of the growth-rate sensitivity to a base-flow modification of
the leading eigenvalue for Λ = 25◦, α = 20◦ and Re = 190: (a) streamwise, (b) cross-stream and (c) spanwise
components of ∇Uλ.
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Figure 26. Spatial distribution in the plane z = 0 of the frequency sensitivity to a base-flow modification of
the leading eigenvalue for Λ = 25◦, α = 20◦ and Re = 190: (a) streamwise, (b) cross-stream and (c) spanwise
components of ∇Uω.

trailing edge. The separation and recirculation regions are thus of particular importance
for the instability mechanism, whereas the immediate surroundings of the wing and the
far wake are not structurally sensitive. This means that the latter regions of the flow are
not relevant for the sensitivity analysis. As observed by Giannetti & Luchini (2007), if the
Reynolds number is increased, the spatial distribution of the direct and adjoint modes split
apart from one another, but the main characteristics of the wavemaker remain unaltered.

Appendix C. Sensitivity to a base-flow modification

Here we consider structural modifications of the stability problem arising from base-flow
modifications (see Marquet et al. (2008b) for a comprehensive review) and compute the
sensitivity to steady-state modifications, as presented in § 2.4. The growth-rate sensitivity
to such a modification is plotted in figure 25 in terms of its spatial components in a
spanwise plane (z = 0). Analogously, that of the frequency is depicted in figure 26. Both
are evaluated with reference to the leading eigenvalue for the same flow conditions as in
figure 24, i.e. Λ = 25◦, α = 20◦ and Re = 190.

Figure 25(a) shows that a small increase of the base-flow streamwise velocity on the
immediate surrounding of the recirculation bubble leads to a destabilisation, while it has
a stabilising effect inside the recirculation bubble. This reflects the central role of the
shear layer in the instability dynamics: in the former case (increase of the streamwise
velocity outside the recirculation bubble), the shear layer would become thinner, whereas
in the latter case (increase of the streamwise velocity inside the recirculation bubble),
it would be thicker. Regarding the cross-stream direction, figure 25(b) shows that most
of the sensitivity is concentrated downstream from the trailing edge with positive values
and across the recirculation bubble with weakly negative values. As far as the spanwise
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Figure 27. (a) Sketch of the geometry for the application of the amplitude-wavy steady force and
(b) eigenvalues of the uncontrolled (ε = 0) and controlled flow with the amplitude-wavy forcing located at
the station (x∗

c , y∗
c ). The sweep angle is Λ = 25◦, the angle of attack α = 20◦ and the Reynolds number is close

to the bifurcation, i.e. Re = 190. The spanwise extent is Lz = 8. See also table 7.

δF ε � λ f CD CL CS

uncontrolled 0 — 0.0032 0.3104 0.4072 0.6766 −0.1000
amplitude-wavy 0.1 9 0.0031 0.3104 0.4071 0.6765 −0.1000
amplitude-wavy 0.1 3 0.0028 0.3104 0.4070 0.6763 −0.0999
amplitude-wavy 0.1 1 0.0027 0.3104 0.4070 0.6763 −0.0999

Table 7. Type of forcing δF , amplitude ε and its modulation along the spanwise direction �, leading growth
rate λ and frequency f , together with the time-averaged drag, lift and span coefficients CD, CL and CS obtained
from direct numerical simulations at Λ = 25◦, α = 20◦ and Re = 190. The data are ordered by decreasing
growth rate.

component is concerned, the most sensitive regions are the recirculation region with
positive values and the immediate surrounding of the recirculation region which hosts
negative values of the growth-rate sensitivity such that a positive variation of the spanwise
component has a destabilising effect in the former case and a stabilising one in the latter.

The streamwise component of the frequency sensitivity function shows that positive
variations of the base-flow streamwise component are associated with a decrease of the
frequency when they are located along the vorticity sheets delimiting the recirculation
bubble and an increase of the frequency when located in the core of the recirculation
region or in the outer regions (see figure 26a). As shown in figure 26(b), the cross-stream
component is essentially concentrated in the shear layers. Positive variations of the base
flow cross-stream component in the lower (respectively upper) shear layer yield a shift
towards low (respectively high) frequencies. As can be seen in figure 26(c), the spanwise
component of the frequency sensitivity function shows that positive variations of the
base-flow spanwise component are associated with an increase of the frequency when they
are located along the shear layers delimiting the recirculation bubble and a decrease of the
frequency when located in the core of the recirculation region or in the outer regions.
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Appendix D. Effect of a small amplitude-modulated force on the leading global
modes

Here we explore the influence of a small forcing modulated in amplitude on the leading
global modes near the bifurcation threshold. In particular, we consider a 25◦ swept
periodic wing at α = 20◦ and Re = 190. For this angle of attack, the critical Reynolds
number is 188.8. Such a force is modelled by the following relation:

δF = −ε‖U‖U δ(x − x∗
c(z), y − y∗

c) sin
(

2π�

Lz
z
)

, (D1)

where � represents the modulation of the amplitude along the sweep direction. As shown
in figure 27, the amplitude-wavy forcing is found to be ineffective in stabilisation of
the leading global mode. It leads to a very slight decrease of the growth rate, whereas
the frequency remains almost unchanged. It should be noted that the effect of the
amplitude-wavy forcing becomes more evanescent the higher is the value of �.
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