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Abstract

Revealing the expression patterns of fatty acid and amino acid transporters as affected by dietary n-6:n-3 PUFA ratio would be useful for

further clarifying the importance of the balance between n-6 and n-3 PUFA. A total of ninety-six finishing pigs were fed one of four diets

with the ratio of 1:1, 2·5:1, 5:1 and 10:1. Pigs fed the dietary n-6:n-3 PUFA ratio of 5:1 had the highest (P,0·05) daily weight gain, and those

fed the dietary n-6:n-3 PUFA ratio of 1:1 had the largest loin muscle area (P,0·01). The concentration of n-3 PUFA was raised as the ratio

declined (P,0·05) in the longissimus dorsi and subcutaneous adipose tissue. The contents of tryptophan, tasty amino acids and branched-

chain amino acids in the longissimus dorsi were enhanced in pigs fed the dietary n-6:n-3 PUFA ratios of 1:1–5:1. The mRNA expression

level of the fatty acid transporter fatty acid transport protein-1 (FATP-1) was declined (P,0·05) in the longissimus dorsi of pigs fed the

dietary n-6:n-3 PUFA ratios of 1:1–5:1, and increased (P,0·05) in the subcutaneous adipose tissue of pigs fed the dietary n-6:n-3 PUFA

ratios of 5:1 and 10:1. The expression profile of FATP-4 was similar to those of FATP-1 in the adipose tissue. The mRNA expression level of

the amino acid transceptors LAT1 and SNAT2 was up-regulated (P,0·05) in the longissimus dorsi of pigs fed the dietary n-6:n-3 PUFA ratios

of 1:1 and 2·5:1. In conclusion, maintaining the dietary n-6:n-3 PUFA ratios of 1:1–5:1 would facilitate the absorption and utilisation of fatty

acids and free amino acids, and result in improved muscle and adipose composition.
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Fatty acids are essential components of membrane

phospholipids. PUFA are classified into two series, n-6 and

n-3 PUFA, based on their chemical structures. Animals and

humans are unable to synthesise the essential n-3 fatty acids

de novo, and so must obtain these fats from dietary sources.

The conversion of linoleic acid (18 : 2n-6) or a-linolenic acid

(18 : 3n-3) to long-chain PUFA shares a common enzymatic

pathway (particularly for D6-desaturation), which is regarded

as a rate-limiting step, hence there exists a competition

between n-6 and n-3 fatty acids in vivo (1). Thus, metabolism

of both n-6 and n-3 PUFA must be taken into consideration.

This concern is epidemiologically relevant because intakes

of dietary n-6:n-3 PUFA ratio have been reported to exceed

10:1 over the past decades(2,3). Normal body metabolism

and functioning of the organs depends on maintaining

a homeostatically balanced concentration of n-6 and n-3

PUFA(4–7), while excessive concentration of n-6 PUFA and

an imbalance n-6:n-3 PUFA ratio have been associated

with the development of cardiovascular, metabolic and

neuropsychiatric disorders(8,9). Further studies are, therefore,
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required to investigate the n-6:n-3 PUFA ratio in ration for live-

stock animals so as to maintain an appropriate balance of the

n-6:n-3 PUFA ratio in animal products, and, consequently,

supply high-quality animal-derived foods and provide new

insight to improve the health of humans.

Previous studies have shown that dietary PUFA affects the fatty

acid profile of the resultant muscle and fat tissues(10), and plays a

vital role in the transport of fatty acids to many tissues via a

protein-mediated mechanism(11). A family of fatty acid transport

proteins (FATP) is involved in the transport of fatty acids(12).

FATP are expressed in a tissue-specific pattern; for instance,

FATP-1, -4 and -6 are co-expressed in muscle tissues(13,14), but

FATP-1 and FATP-4 are predominantly expressed in white

adipose tissue(15). Meanwhile, dietary PUFA composition pro-

motes the hypertrophy of skeletal muscle(10), thus it enhances

the amounts of total protein or amino acids of the tissues. Impor-

tantly, amino acids have the capacity to transduce signals to

metabolic pathways (e.g. mammalian target of rapamycin

complex 1) via transporters and to changes in the intracellular

concentration of specific amino acids that regulate muscle or

adipose protein synthesis(16–18). These transporters, also named

‘transceptors’, regulate the function of transporters and sensors,

including system L amino acid transporter 1 (LAT1), proton-

assisted amino acid transporter (PAT) and sodium-coupled

neural amino acid transporter 2 (SNAT2; for a review, see

Suryawan & Davis(19)). Therefore, in addition to the role as

major substrates for energy production or protein synthesis, fatty

acids and amino acids are involved in themodulation of structural

and functional properties at the cellular level.

However, little is known about the effects of dietary n-6:n-3

PUFA ratio on the expression patterns of fatty acid and amino

acid transporters. We previously reported that the n-6:n-3

PUFA ratio plays a key role in regulating lipid metabolism

and inflammation in finishing pigs(20). The purpose of the

present study was to extend our previous studies, and investi-

gate the effects of dietary n-6:n-3 PUFA ratio on fatty acid

composition, free amino acid profile and gene expression

patterns of fatty acid and amino acid transporters in the

skeletal muscle and adipose tissues of finishing pigs. The

present study seeks to provide consumers with high-quality

animal food products containing an appropriate n-6:n-3

PUFA ratio, and ensure improved health status of humans.

Materials and methods

Animals and experimental diets

All procedures carried out in the present study were approved

by the Animal Care Committee of the Institute of Subtropical

Agriculture, the Chinese Academy of Sciences(21). A total of

ninety-six cross-bred (Large White £ Landrace) male finishing

pigs with a similar initial weight (73·8 (SEM 1·6) kg) were

selected and assigned into four treatment groups in a comple-

tely randomised design. Each treatment was replicated six

times with four pigs each. A maize–soyabean meal-based

diet containing 3·00 % linseed oil with no added soyabean

oil was formulated to make a dietary n-6:n-3 PUFA ratio of

1:1 (diet 1). Also, three additional experimental diets were

formulated such that 50, 75 and 90 % equivalent amounts of

linseed oil contained in diet 1 was replaced with soyabean

oil to make a dietary n-6:n-3 PUFA ratio of 2·5:1 (diet 2), 5:1

(diet 3) and 10:1 (diet 4), respectively. All the experimental

diets were formulated to be isoenergetic and isonitrogenous

and to meet the nutritional requirement of finishing pigs.

Gross composition of the experimental diets is presented in

online supplementary Table S1. Pigs were fed with the experi-

mental diets ad libitum, and had unlimited access to clean

drinking-water(22). The experiment lasted for 60 d.

Sample collection

Feed intake was recorded on a daily basis, while final

body-weight gain was recorded on a weekly basis. The feed

conversion ratio was computed as the feed consumed per

unit weight gain(23). From each replicate, a pig with a

representative weight was selected, fasted overnight and

killed at the end of the feeding trial. Pigs were electrically

stunned (250 V, 0·5 A, for 5–6 s), exsanguinated and eviscer-

ated. Subsequently, samples (about 5 g) of the longissimus

dorsi muscle and subcutaneous adipose tissue were rapidly

excised from the right side of the carcass. Visible inter-

muscular adipose tissue between muscles was carefully

removed. The samples were then placed in liquid N2 and

stored at 2808C until further analyses(24,25).

Fatty acid composition

Lipids were extracted from the longissimus dorsi muscle and

subcutaneous adipose tissue samples by the chloroform–

methanol (1:1, v/v) procedure. Fatty acid methyl esters were

prepared for GC determination using KOH/methanol(26).

Fatty acid methyl esters were analysed using an Agilent 6890N

gas chromatographer, equipped with a flame ionisation detector

(Agilent Technologies). A CP-Sil 88 fused silica open tubular

capillary column (100m £ 0·25 nm; Chrompack) was used. The

initial oven temperature was set at 458C for 4min, and then

raised to 1758C at 138C/min, held at 1758C for 27min and then

increased to 2158C at 48C/min and then held at 2158C for

35min. The injector and detector temperatures were set at

2508C. The carrier gas was hydrogen at a flow rate of 30ml/min.

Identification of individual fatty acid methyl esters was accom-

plished by the retention times of an authentic standard. The con-

centration of individual fatty acids was quantified according the

peak area, and expressed as a percentage of total fatty acids(27).

Free amino acid profile

Free amino acid profile was determined in the longissimus

dorsi muscle. About 100 mg samples were dissolved in water

with methanol (1:1) at 48C for 30 min and centrifuged at

10 000 g for 10 min, then the supernatant was filtered through

glass wool and stored at 2808C until analyses(28). After cen-

trifugation to separate soluble from insoluble material, 40ml

of the supernatant were labelled with iTRAQ reagents

(AA 45/32 kit; Applied Biosystems) as recommended by the

manufacturer, and analysed on an Applied Biosystems
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3200 Q TRAP LC/MS/MS system equipped with a RP-C18

column (length 150 mm, diameter 4·6 mm and particle

size 5 mm)(29).

Quantitative real-time PCR analysis

Total RNA was isolated from the muscle and adipose tissue

using the RNeasy Mini Kit (Qiagen), according to the manu-

facturer’s instructions. The quality and quantity of RNA were

determined by ultraviolet spectroscopy using a NanoDropw

ND-1000 spectrophotometer (Thermo Fisher Scientific, Inc.).

Thereafter, 1mg of total RNA was used to produce

complementary DNA using an RT-PCR system (Promega)(30).

Primer sequences for selected genes are listed in Table 1.

The relative expression levels of the target genes were deter-

mined by real-time PCR performed using an ABI7900HT PCR

system (Applied Systems). Real-time PCR was performed in

duplicate for each complementary DNA sample, using SYBR

Green I as PCR core reagents in a final volume of 20ml. PCR

conditions were as follows: incubation for 10 min at 958C,

followed by forty cycles of denaturation for 15 s at 958C,

annealing and extension for 60 s at 56–648C. PCR amplifi-

cation consisting of thirty-five cycles was conducted. mRNA

expression levels of the target genes, expressed as arbitrary

units, were acquired from the value of the threshold cycle

(Ct) of real-time PCR relative to that of b-actin using the

comparative Ct method, according to the following formula:

22DDC t ðDDC t ¼ C t gene of interest 2 C t b�actinÞtreated

2 ðC t gene of interest 2 C t b�actinÞuntreated

To normalise the expression levels of the target genes, the

housekeeping gene b-actin was used as the internal control.

Statistical analysis

All analyses were performed in triplicate. Data obtained were

analysed using one-way ANOVA using the SAS 8.2 software

package (SAS Institute, Inc.). Results are presented as means

with their standard errors. Differences between significant

mean values were compared using Duncan’s multiple range

test. Differences were considered significant at P,0·05.

Results

Effects of dietary n-6:n-3 PUFA ratios on the growth
performance and carcass traits of pigs

The growth performance and carcass traits of pigs fed diets

with varying n-6:n-3 PUFA ratios are presented in Table 2.

Pigs fed the dietary n-6:n-3 PUFA ratio of 5:1 had the highest

(P,0·05) daily weight gain, while those fed the dietary n-6:

n-3 PUFA ratios of 1:1, 2·5:1 and 10:1 exhibited low

(P,0·05) daily weight gain. The best (P,0·01) feed conver-

sion ratio was obtained with pigs fed the dietary n-6:n-3

PUFA ratio of 5:1. Furthermore, the loin muscle area of pigs

fed the dietary n-6:n-3 PUFA ratio of 1:1 was higher

(P,0·05) than those of pigs fed the dietary n-6:n-3 PUFA

ratio of 10:1. The highest (P,0·01) intramuscular fat was

observed in pigs fed the dietary n-6:n-3 PUFA ratio of 2·5:1.

Pigs fed the dietary n-6:n-3 PUFA ratios of 5:1 and 10:1 had

similar intramuscular fat with values higher (P,0·01) than

those obtained for pigs fed the dietary n-6:n-3 PUFA ratio

of 1:1. However, the n-6:n-3 PUFA ratios had no effect

(P.0·05) on backfat thickness.

Effects of dietary n-6:n-3 PUFA ratios on
tissue fatty acid profile

The fatty acid profile of the longissimus dorsi muscle of pigs

fed with the different dietary n-6:n-3 PUFA ratios is presented

in Table 3. MUFA including 16 : 1 and 18 : 1 were unaffected

(P.0·05) by the different dietary n-6:n-3 PUFA ratios. SFA

including 14 : 0, 16 : 0 and 18 : 0 were all enhanced (P,0·05)

in the longissimus dorsi muscles of pigs fed the dietary

n-6:n-3 PUFA ratio of 2·5:1. The concentrations of most

PUFA such as 18 : 3n-3, 20 : 3n-6, 20 : 4n-6, 20 : 5n-3, 22 : 5n-3

and 22 : 6n-3 were highest (P , 0·01) in pigs fed the dietary

n-6:n-3 PUFA ratio of 1:1. However, the highest (P,0·05)

value for 18 : 2n-6 was obtained in the tissue of pigs fed

with the dietary n-6:n-3 PUFA ratios of 5:1 and 10:1. Generally,

the n-6:n-3 PUFA ratio in the longissimus dorsi muscle of pigs

decreased (P , 0·01) with decreasing dietary n-6:n-3 PUFA

ratios.

The fatty acid profile of the subcutaneous adipose of pigs

fed with the different dietary n-6:n-3 PUFA ratios is presented

in Table 4. The different dietary n-6:n-3 PUFA ratios had no

effect (P . 0·05) on the adipose tissue concentrations of SFA

and MUFA. The subcutaneous adipose tissue concentration

of 16 : 1 was enhanced (P,0·01) in pigs fed the dietary

n-6:n-3 PUFA ratios of 2·5:1, 5:1 and 10:1. The least

concentration was recorded for 16 : 1, 18 : 1 and 18 : 2n-6 in

the subcutaneous adipose tissue of pigs fed the dietary

Table 1. Primers used for real-time PCR

Genes Primers Sequences (50-30)
Size
(bp)

TA

(8C)

ACC Forward ATCCCTCCTTGCCTCTCCTA 195 58
Reverse ACTTCCCGTTCAGATTTCCG

HSL Forward GCAGCATCTTCTTCCGCACA 208 62
Reverse AGCCCTTGCGTAGAGTGACA

FATP-1 Forward GGAGTAGAGGGCAAAGCAGG 208 60
Reverse AGGTCTGGCGTGGGTCAAAG

FATP-4 Forward TTCATCAAGACGGTCAGGCG 133 58
Reverse AGACGGTGGCAGCGAATAAG

LAT1 Forward TTTGTTATGCGGAACTGG 155 61
Reverse AAAGGTGATGGCAATGAC

PAT1 Forward TGTGGACTTCTTCCTGATTGTC 125 58
Reverse CATTGTTGTGGCAGTTATTGGT

PAT2 Forward GGGCTACTTGCGGTTCGG 108 60
Reverse GCGCTTTGACACCTGGGAG

SNAT2 Forward TACTTGGTTCTGCTGGTGTCC 212 62
Reverse GTTGTGGGCTGTGTAAAGGTG

b-Actin Forward TGCGGGACATCAAGGAGAAG 216 56
Reverse AGTTGAAGGTGGTCTCGTGG

TA, annealing temperature; ACC, acetyl-CoA carboxylase; HSL, hormone-sensitive
lipase; FATP, fatty acid transport proteins; LAT1, system L amino acid transpor-
ter 1; PAT, proton-assisted amino acid transporter; SNAT2, sodium-coupled
neural amino acid transporter 2.
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n-6:n-3 PUFA ratio of 1:1. The content of 18 : 2n-6 was greater

in pigs fed the dietary n-6:n-3 PUFA ratios of 5:1 and 10:1 than

in those fed the other two treatment diets. The content of

20 : 3n-6 was also boosted in the group fed with the dietary

n-6:n-3 PUFA ratio of 10:1. The contents of 18 : 3n-3, 20 : 4n-6,

20 : 5n-3 and 22 : 5n-3 were highest (P,0·05) in pigs fed the

dietary n-6:n-3 PUFA ratio of 1:1. Consistent with the changes

in the longissimus dorsi muscle, the ratio of n-6:n-3 PUFA in

the adipose tissue also increased (P , 0·01) with increasing

dietary n-6:n-3 PUFA ratio.

Effects of dietary n-6:n-3 PUFA ratios on the
free amino acid profile of longissimus dorsi muscle

Free amino acids were determined in the longissimus dorsi

muscle tissue, as detailed in Table 5 and Fig. 1. Tasty amino

acids included alanine, glycine, glutamate and aspartic acids.

The dietary treatments did not change the amount of alanine

and glycine (P.0·05). In addition, the concentration of gluta-

mate in pigs fed the dietary n-6:n-3 PUFA ratio of 1:1 was

enhanced compared with those fed the dietary n-6:n-3 PUFA

ratio of 5:1. Aspartic acid concentration was also highest

(P,0·05) in pigs fed the dietary n-6:n-3 PUFA ratio of 2·5:1

(Fig. 1(A)). Branched-chain amino acids included leucine,

isoleucine and valine. The dietary treatments did not affect

the concentration of isoleucine (P.0·05). A significant trend

was observed for leucine (P ¼ 0·06), with pigs fed the dietary

n-6:n-3 PUFA ratio of 1:1 exhibiting the highest leucine

concentration. Furthermore, reducing the dietary n-6:n-3

PUFA ratio (1:1) enhanced the content of a-amino-n-butyric

acid and carnosine (P,0·05; Fig. 1(B)). Ornithine concen-

tration was highest in the tissue of pigs fed the dietary

n-6:n-3 PUFA ratio of 2·5:1. A similar trend was observed for

tryptophan (P ¼ 0·06).

Effects of dietary n-6:n-3 PUFA ratios on the
gene expression levels of transporters

To gain further insight into the different impacts of varying

n-6:n-3 PUFA ratios on fatty acid and amino acid profiles,

we investigated the effects of the dietary treatments on the

relative mRNA expression levels of transporters and other

key genes. In the longissimus dorsi muscle, no significant

difference was observed for the mRNA expression level of

hormone-sensitive lipase (HSL; P.0·05; Fig. 2(B)). However,

the relative expression level of acetyl-CoA carboxylase (ACC)

was up-regulated in pigs fed the dietary n-6:n-3 PUFA ratios of

1:1 and 2·5:1 (P,0·05; Fig. 2(A)), and the expression level of

FATP-1 was lowest in pigs fed the dietary n-6:n-3 PUFA ratio

of 1:1 (P,0·05). However, no difference was observed for the

expression level of FATP-4 (Fig. 3(A) and (B)). In the sub-

cutaneous adipose, reducing the dietary n-6:n-3 PUFA ratio

decreased the expression levels of ACC and FATP-1 (Figs. 2(C)

and 3(C), respectively), the expression level of HSL was up-

regulated in pigs fed the dietary n-6:n-3 PUFA ratios of 1:1 and

2·5:1 (P,0·05), and the expressionpatternof FATP-4 was similar

to that of FATP-1 (Figs. 2(D) and 3(D), respectively).

The dietary treatments did not change the relative mRNA

expression levels of PAT1 and PAT2 in the longissimus dorsi

muscle tissue of pigs (Fig. 4(B) and (C)). However, the

expression level of LAT1 was higher in pigs fed the dietary

n-6:n-3 PUFA ratio of 2·5:1 than in those fed the dietary

n-6:n-3 PUFA ratio of 10:1. Reducing the dietary n-6:n-3

PUFA ratio also enhanced the expression level of SNAT2

(P,0·05; Fig. 4(A) and (D)).

Table 2. Effects of dietary n-6:n-3 PUFA ratios on the growth performance and carcass trait of pigs

(Mean values with their standard errors)

n-6:n-3 PUFA ratio

Items 1:1 2·5:1 5:1 10:1 SEM P

Daily weight gain (kg) 0·85b 0·88b 0·93a 0·87b 0·01 0·02
Feed conversion rate (G:F) 3·17a 3·15a 2·75b 3·18a 0·06 ,0·01
Backfat thickness (cm) 3·23 3·46 3·53 3·55 0·12 0·32
Loin muscle area (cm2) 54·87a 51·32a,b 50·64a,b 47·32b 1·46 0·04
Intramuscular fat (%) 1·60c 2·90a 2·47b 2·33b 0·07 ,0·01

G:F, gain:feed intake.
a,b,c Values with unlike superscript letters within a row were significantly different (P,0·05).

Table 3. Effects of dietary n-6:n-3 PUFA ratios on the fatty acid profile
of the longissimus dorsi muscle of pigs (% of total fatty acids)

(Mean values with their standard errors)

n-6:n-3 PUFA ratio

Items 1:1 2·5:1 5:1 10:1 SEM P

14 : 0 0·77c 1·08a 0·97b 1·01b 0·03 ,0·01
16 : 0 24·00b 25·65a 24·44b 24·32b 0·34 0·02
16 : 1 2·31 2·40 2·15 2·28 1·00 0·20
18 : 0 12·29b 13·42a 12·54b 11·73c 0·19 ,0·01
18 : 1 42·27 42·77 43·57 43·58 0·38 0·11
18 : 2n-6 11·39b 11·92b 13·57a 13·92a 0·54 0·02
18 : 3n-3 1·51a 0·83b 0·67c 0·61c 0·04 ,0·01
20 : 3n-6 0·33a 0·15b 0·17b 0·21b 0·04 0·01
20 : 4n-6 2·43a 0·81c 1·28b,c 1·88a,c 0·24 ,0·01
20 : 5n-3 0·60a 0·35b 0·13c 0·09c 0·05 ,0·01
22 : 5n-3 0·77a 0·45b 0·33b 0·21c 0·11 ,0·01
22 : 6n-3 1·30a 0·17b 0·14b 0·16b 1·00 ,0·01
SFA* 37·06b 40·15a 37·96b 37·06b 0·35 ,0·01
MUFA† 44·58 45·17 45·73 45·86 0·43 0·31
PUFA‡ 18·36a 14·68b 16·31a,b 17·08a,b 0·63 ,0·01P

n-6:
P

n-3§ 3·38d 7·16c 11·76b 14·96a 0·54 ,0·01

a,b,c,d Mean values within a row with unlike superscript letters were significantly
different (P,0·05).

* SFA ¼ 14 : 0 þ 16 : 0 þ 18 : 0.
† MUFA ¼ 16 : 1 þ 18 : 1.
‡ PUFA ¼ 18 : 2 þ 18 : 3 þ 20 : 3 þ 20 : 4 þ 20 : 5 þ 22 : 5 þ 22 : 6.
§
P

n-6:
P

n-3 ¼ (18 : 2 þ 20 : 3 þ 20 : 4):(18 : 3 þ 20 : 5 þ 22 : 5 þ 22 : 6).
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Discussion

There is an increasing awareness for the potential health

benefits of the quantitative and qualitative characteristics of

dietary fat, such as the ratio between n-6 and n-3 PUFA. The

present study indicated that dietary n-6:n-3 PUFA ratios of

1:1–5:1 improved growth performance, loin muscle area and

intramuscular fat percentage significantly, which is in agree-

ment with previous reports(10).

n-3 and n-6 PUFA are obtained through diet. Linoleic acid

(18 : 2n-6) is converted to g-linolenic acid (18 : 3n-6) and

dihomo-g-linolenic acid (20 : 3n-6) to form the key inter-

mediate arachidonic acid (20 : 4n-6) by various enzymes.

The n-3 fatty acid a-linolenic acid (18 : 3n-3) is converted to

stearidonic acid (18 : 4n-3) and eicosatetraenoic acid

(20 : 4n-3), which further metabolised to DHA (22 : 6n-3).

Various lines of evidence in the past literature favour the

importance of the n-6:n-3 PUFA ratio and support the view

that decreasing the ratio leads to increased protection against

degenerative diseases(31). Previous studies have confirmed

that reducing dietary n-6 and elevating n-3 PUFA is highly

successful in raising the quantities of 18 : 3n-3 and the long-

chain n-3 PUFA in pork, thus supplying valuable n-3 PUFA

to the human diet(10,32). Additionally, increasing dietary n-3

PUFA significantly enhances the relative content of

a-linolenic acid and long-chain n-3 fatty acids in the lipids

of muscle and backfat at the expense of arachidonic acid(33).

In the present study, we also observed that long-chain n-3

and n-6:n-3 PUFA concentrations were markedly improved

in the longissimus dorsi muscle and subcutaneous adipose

tissue of pigs fed the dietary n-6:n-3 PUFA ratios of 1:1

and 2·5:1, and long-chain n-6 PUFA concentrations were

reduced accordingly.

Long-chain n-3 PUFA have been found to affect protein

metabolism in the neonatal pig. This means long-chain n-3

PUFA are potential regulators of protein metabolism in

pigs(34). In addition, long-chain n-3 PUFA supplementation

increased the muscle protein fractional synthesis rate, muscle

protein concentration and the protein:DNA ratio via activating

mammalian target of rapamycin signalling pathway in healthy

older people(35). Moreover, a diet enriched with n-3 PUFA has

been shown to promote the hypertrophy of the longissimus

dorsi muscle, quadriceps femoris muscle mass and semitendi-

nosus muscle(10). All these findings confirm that n-3 PUFA

have a direct impact on muscle protein anabolism. Further

studies have also provided information on the impact of

fatty acids on muscle function. PUFA are able to enhance

the proliferation and induce the differentiation of skeletal

muscle cells through the activation of the key signalling path-

way(36). n-3 PUFA significantly stimulate L6 skeletal muscle

cell differentiation and membrane composition via activating

mammalian target of rapamycin complex 1 signalling

pathway(37). However, all these studies did not investigate

the amino acid profile of the muscle tissue or cells. However,

the present study indicated that concentrations of branched-

chain amino acids including leucine and valine were highest

in the longissimus dorsi muscle of pigs fed the dietary

n-6:n-3 PUFA ratio of 1:1, and the concentrations of tasty

amino acids including glutamate and aspartic acid were

elevated in pigs fed the dietary n-6:n-3 PUFA ratios of 1:1

and 2·5:1. Branched-chain amino acids could act as signalling

molecules in the regulation of cellular processes through the

modulation of intracellular cell signalling pathways, facilitating

skeletal muscle protein anabolism(38). However, tasty amino

acids have been reported to be positively associated with

meat flavour(39).

Long-chain fatty acids comprise the main energy sources of

the human body, requiring the synthesis of structural lipids.

Central to the balance of lipid metabolism is the rate of

long-chain fatty acid influx, efflux and metabolism by adipo-

cytes in adipose tissue and intramuscular fat. As with glucose,

fatty acids are also cleared from the circulation after a meal or

when the demand for this substrate is needed(40); however, it

is unknown whether an increased rate of fatty acid uptake

requires an elevated FATP expression level. In the present

study, we observed that FATP-1 expression level was raised

in the longissimus dorsi muscle of pigs fed the dietary

n-6:n-3 PUFA ratio of 10:1, and the expression levels of both

FATP-1 and FATP-4 were increased in pigs fed the dietary

n-6:n-3 PUFA ratios of 5:1 and 10:1. FATP are a family of

membrane-bound proteins that catalyse the ATP-dependent

esterification of long-chain fatty acids and very-long-chain

fatty acids to their acyl-CoA derivatives, and they have been

shown to stimulate fatty acid transport(41). The lipid carriers

FATP-1 and FATP-4 are involved in the placental transfer of

long-chain PUFA(42), and the overexpression of FATP-1 and

FATP-4 elevates cellular fatty acid uptake and acyl-CoA

synthetases in adipocytes(43). In addition, increasing skeletal

muscle FATP-1 enhances the rate of long-chain fatty acid

transport and channels, but not intramuscular lipid accumu-

lation(44), and FATP-4 is apparently more important as a fatty

Table 4. Effects of dietary n-6:n-3 PUFA ratios on the fatty acid profile
of the subcutaneous adipose tissue of pigs (% of total fatty acids)

(Mean values with their standard errors)

n-6:n-3 PUFA ratio

Items 1:1 2·5:1 5:1 10:1 SEM P

14 : 0 0·89 0·98 0·98 0·90 0·04 0·21
16 : 0 22·91 23·04 22·95 22·94 0·24 0·98
16 : 1 1·17b 1·90a 2·20a 2·07a 0·15 ,0·01
18 : 0 10·92c 12·11b 13·21a 13·35a 0·23 ,0·01
18 : 1 41·85 42·18 42·47 42·37 0·28 0·50
18 : 2n-6 13·14c 14·85b 16·85a 17·04a 0·18 ,0·01
18 : 3n-3 8·54a 4·44b 0·87c 0·78c 0·25 ,0·01
20 : 3n-6 0·03c 0·04c 0·14b 0·22a 0·02 ,0·01
20 : 4n-6 0·15a 0·15a 0·13b 0·13b 0·01 ,0·01
20 : 5n-3 0·13a 0·08b 0·06b 0·04c 0·02 0·03
22 : 5n-3 0·28a 0·24a 0·14b 0·10b 0·04 0·02
22 : 6n-3 0·03 0·03 0·03 0·02 0·003 0·23
SFA* 34·71 36·11 37·13 37·20 0·27 0·06
MUFA† 43·01 44·07 44·66 44·45 0·32 0·20
PUFA‡ 22·28a 19·82b 18·21c 18·35c 0·25 ,0·01P

n-6:
P

n-3§ 1·48d 3·14c 15·60b 18·43a 0·45 ,0·01

a,b,c,d Mean values within a row with unlike superscript letters were significantly
different (P,0·05).

* SFA ¼ 14 : 0 þ 16 : 0 þ 18 : 0.
† MUFA ¼ 16 : 1 þ 18 : 1.
‡ PUFA ¼ 18 : 2 þ 18 : 3 þ 20 : 3 þ 20 : 4 þ 20 : 5 þ 22 : 5 þ 22 : 6.
§
P

n-6:
P

n-3 ¼ (18 : 2 þ 20 : 3 þ 20 : 4):(18 : 3 þ 20 : 5 þ 22 : 5 þ 22 : 6).
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acyl-CoA synthetase directing lipids for lipid metabolic

pathways(45). Therefore, both FATP-1 and FATP-4 facilitate

the fatty acid metabolism of tissues, especially for skeletal

muscle or adipose tissue. Meanwhile, we found that lower

dietary n-6:n-3 PUFA enhanced the expression level of ACC

in the longissimus dorsi muscle, increased HSL expression

level but reduced ACC expression level in subcutaneous adi-

pose tissue. It is known that HSL and ACC are rate-limiting

enzymes of lipid metabolism(46). HSL is an intracellular

enzyme that regulates the release of NEFA from lipid stores,

and ACC is the key enzyme for the de novo biosynthesis of

long-chain fatty acids. n-3 PUFA can enhance lipolysis through

increasing the expression level of HSL and decreasing the

expression of ACC (47). Moreover, n-3 PUFA increases insulin

sensitivity and then the activity of HSL(48).

At present, the impact of PUFA on amino acid transporters

is poorly understood and very little information exists. It is

interesting to find that the mechanisms regulating the
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Fig. 1. Effects of different dietary n-6:n-3 PUFA ratios on (A) tasty amino acids and (B) branched-chain amino acid concentrations in the longissimus dorsi muscle

of pigs. The growing–finishing pigs were fed one of the four isoenergetic diets with the n-6:n-3 PUFA ratios of 1:1 ( ), 2·5:1 ( ), 5:1 ( ) and 10:1 ( ). Values are

means, with their standard errors represented by vertical bars (n 6). a,b Mean values with unlike letters were significantly different (P,0·05).

Table 5. Effects of dietary n-6:n-3 PUFA ratios on the free amino acid profile of the longissimus dorsi
muscle of pigs

(Mean values with their standard errors)

n-6:n-3 PUFA ratio

Items (mg/g) 1:1 2·5:1 5:1 10:1 SEM P

Essential amino acids
Arg 2·98 2·99 2·35 3·01 0·17 0·23
His 2·49a 2·30a,b 1·42c 1·84b,c 0·11 ,0·01
Ile 0·28 0·32 0·28 0·22 0·09 0·61
Leu 0·85a 0·69b 0·69b 0·64b 0·08 0·06
Lys 0·75 0·84 0·86 0·92 0·08 0·79
Phe 0·33 0·31 0·24 0·39 0·07 0·72
Thr 1·02 1·18 1·02 1·38 0·20 0·78
Trp 3·18b 4·45a 2·97b 2·86b 0·27 0·06
Val 0·40a 0·32a,b 0·27a,b 0·22b 0·03 ,0·01

Non-essential amino acids
Ala 1·17 1·34 1·12 1·41 0·20 0·87
Asp 1·03b 2·07a 0·83b 0·96b 0·12 ,0·01
Glu 1·29a 0·93a,b 0·60b 0·93a,b 0·09 0·04
Gly 1·49 1·21 1·21 1·31 0·16 0·31
Pro 0·53 0·52 0·43 0·50 0·07 0·91
Ser 2·25 1·43 1·99 2·79 0·35 0·34
Tyr 0·84 0·94 0·86 0·47 0·20 0·66

Other amino acids
a-Amino-n-butyric acid 0·47a 0·34b 0·18c 0·17c 0·02 ,0·01
b-Amino-isobutyric acid 0·20 0·20 0·21 0·23 0·03 0·96
b-Alanine 3·59 3·05 3·04 3·41 0·15 0·27
Citrulline 1·27 1·56 0·97 1·09 0·13 0·12
Carnosine 22·50a 18·07a,b 18·73a,b 17·09b 0·12 0·04
Ethanolamine 0·11 0·10 0·09 0·20 0·03 0·39
Ornithine 1·33b 2·38a 0·94b 0·99b 0·13 ,0·01
Taurine 0·68a,b 0·82a 0·59b 0·61b 0·09 0·05

a,b,c Mean values within a row with unlike superscript letters were significantly different (P,0·05).
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abundance of amino acid transporters in the skeletal muscle

in vivo. A previous study has reported that n-3 PUFA,

especially DHA, modulate glutamate transporter subtypes via

different mechanisms(49), indicating that n-3 PUFA directly

modulate various ion channels. The expression levels of

amino acid transporters such as LAT1, PAT1 and SNAT2 are

rapidly and transiently up-regulated following an increase in

the availability of essential amino acids in the skeletal
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Fig. 3. Effects of different dietary n-6:n-3 PUFA ratios on the relative mRNA expression levels of fatty acid transport protein-1 (FATP-1) and FATP-4 in (A, B) the

longissimus dorsi muscle and (C, D) subcutaneous adipose tissue of pigs. The growing–finishing pigs were fed one of the four isoenergetic diets with the n-6:n-3

PUFA ratios of 1:1 ( ), 2·5:1 ( ), 5:1 ( ) and 10:1 ( ). The real-time PCR method was employed, and b-actin was used as an internal control. Values are means,

with their standard errors represented by vertical bars (n 6). a,b Mean values with unlike letters were significantly different (P,0·05).
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muscle, and the increased expression levels of amino acid

transporters may contribute to enhanced amino acid sensi-

tivity(50). Our observations indicated that lower dietary

n-6:n-3 PUFA up-regulated the expression levels of LAT1

and SNAT2; however, no significant difference was observed

for PAT1 and PAT2. SNAT2 is a principal isoform of the

system A amino acid transporter and also a classical amino

acid transceptor that is expressed in most extraneural tissues

including skeletal muscle. An important role of SNAT2 and

LAT1 is observed in the intracellular accumulation of essential

amino acids, such as the branched-chain amino acid leucine,

and the elevated abundance of SNAT2 and LAT1 is regulated

in the skeletal muscle of neonatal pigs(51). Generally, PAT

families facilitate the transport of simple amino acids such as

alanine, glycine and proline, and have potent effects on

growth(52). However, there are few studies of PAT in mamma-

lian species. PAT1 has been reported to function as part of the

‘nutrisome’ and to physically interact with the Rag–Ragulator

complex(53). The abundance of PAT2 is highly expressed in

the skeletal muscle of neonatal pigs and developmentally

regulated(54). These observations suggest the importance of

transporter function in the uptake and metabolism of muscle

and adipose tissue fatty acids and amino acids.

In conclusion, optimal n-6:n-3 PUFA, i.e. 1:1–5:1, modu-

lated the fatty acid and free amino acid profile, and altered

the expression levels of FATP-1 and FATP-4 and amino acid

transceptor proteins LAT1 and SANT2. It also facilitated the

absorption and utilisation of fatty acids and free amino

acids, leading to an improved muscle:adipose ratio of the

body. This will lead to the production of improved pork

quality from the pig industry and, consequently, improved

the health status of humans. Future studies are needed to

explore the impact of the n-6:n-3 PUFA ratio on the crosstalk

between skeletal muscle cells and adipocytes.
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