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Abstract

We study the existence of zeros of a perturbed nonlinear operator near a zero of the unperturbed
operator in the case where both operators are invariant under a symmetry group. To do this, we first
correct some work of Rubinsztein on the G-homotopy groups of spheres.

1980 Mathematics subject classification (Amer. Math. Soc): 58 E 07, 47 H 15, 57 S 99.

The problem we wish to study is the following. Assume that G is a compact Lie
group, {Tg}geG is a linear action of G on a finite-dimensional linear space E, and
F: E X R -» E is continuous and G-invariant (that is, F(Tgx, t) = TgF(x, t) for
g G G, x G E, t S R). Finally assume that k e E such that F(k, 0) = 0 and that
F(x, 0) ¥= 0 in some deleted neighbourhood of M, where M denotes the orbit
G(k) = {Tgk: g e G}. (Note that, by the symmetries, F( ,0) vanishes on M.) We
want to find necessary and sufficient conditions on F( ,0) for the equation
F(x, t) = 0 to have solutions near M for all / near 0. Note that, in the case where
G = {e}, it is a well-known result that this holds if and only if index£(F, k) =£ 0.
(The index is defined in Lloyd [18].) Surprisingly, we show that the conditions on
F( , 0) are different if we assume that F is C1 (but still require that F(x, t) = 0 has
solutions near M for all / near 0).

We should explain what is already known. In [6], we obtained a G-invariant
implicit function theorem, in other words, an extension of the implicit function
theorem to the invariant case. Our main result here gives weaker conditions for
the existence (but not the uniqueness) of orbits of zeros of F( , t) near M. Thus
our main result bears the same relationship to the G-invariant implicit function
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theorem as does the classical degree theory result mentioned at the end of
previous paragraph to the ordinary implicit function theorem. On the other hand,
Golubitsky and Schaefer [13] have some related work on the zeros of perturba-
tions in the invariant case when M = {0} (that is, when k = 0). Their results,
which apply to smooth maps, give in principle a nearly complete analysis of the
number of zeros of all smooth perturbations of F( , 0) provided F( , 0) has finite
G-codimension. (We do not explain this here because we shall not need it.) They
do this by looking at (/-universal unfoldings. Thus their results are much stronger
than ours when they can be applied. Note that the assumption that M = {0}
severely restricts the use of their results. The case where M = {0} seems to be
significantly simpler than the general case. Moreover, our work, which shows the
occurrence of normalizer conditions, should help in understanding what their
method involves for complicated group actions. In addition, our results are also
applicable if F( ,0) does not have finite G-codimension. Moreover, even when
their results are applicable, the calculations with the universal unfolding are
difficult and tedious except in very simple cases especially if the G-codimension is
large. Thus it may happen that our results can be used while theirs cannot, simply
because one cannot do the calculations in their methods. Note that, to verify the
assumptions of our theorem, we only need to calculate a number of normalizer
groups and a number of degrees of mappings. These are usually reasonably easy
to calculate. Thus our results and theirs seem complementary.

It might be asked why we are interested in our problem at all. This sort of
problem occurs in bifurcation theory when an invertibility condition fails. See [5],
[6] or [13].

Our proofs depend essentially upon some work of Rubinsztein [21] on the
equivariant homotopy of spheres. Unfortunately, as pointed out in Komiya [17],
the main theorem in [21] contains an error. We give a corrected statement of his
main result and explain briefly how the proof has to be altered. We also give an
alternative formulation of his main theorem which seems convenient for calcula-
tions. Note that it is also of interest to correct Rubinsztein's work because we
used it in [8] to prove a result relating degrees in the symmetric case.

In Section 1, we discuss Rubinsztein's error and its correction and also some
variants of his work. We defer any discussion of the proofs of these results to the
appendix. There we sketch the proofs. In Section 2, we obtain our main results. In
Section 3, we obtain some partial results for the case where F is C1 or F is a
gradient mapping. Finally, in Section 4, we discuss some special cases and
examples. We avoid most of the technicalities of the general case in Section 4.

Because of the rather technical nature of the paper, I should indicate how the
sections depend upon each other. To read most of Section 4, one needs to first
read the introduction and the first two paragraphs of Section 2. (If the reader
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does this, he should ignore bracketed comments in Section 4. These consider
generalizations or explain how the results follow from those of Section 2.) In
addition, Section 2 can be read without reading the very technical Section 1
provided that one ignores the proof that the two statements of Theorem 4 are
equivalent.

It is assumed that the reader has a knowledge of the basic properties of
transformation groups as in Brtdon [3, Chapter 1].

1. On Rubinsztein's results

In this section, we discuss some results of Rubinsztein which are basic to our
work. We point out an error in his work and state a corrected version of his main
theorem. We also discuss some minor extensions of his work and also a variant of
his main theorem which seems more convenient for calculations. We merely state
the results here and defer a brief discussion of the proofs to the appendix. We do
this because these proofs are quite separate from the main interest of this paper.

We assume that S(V) is the unit sphere in a finite-dimensional linear space V
on which the compact Lie group G acts linearly and unitarily by the action {Tg:
g €E G). Rubinsztein establishes a 1-1 correspondence between [S(V), S(V)]G,
the set of G-homotopy classes of G-invariant maps of S(V) into itself and a
subset of Zk for some k. We will be more precise in a moment. Note that, for
simplicity (and also because we will not need the more general results), we are
assuming that W = {0} (with the notation of [21]).

Firstly, we explain briefly his error. He assumes that, if K C H C G where K
and H are closed subgroups of G, then (G/H)K = {gH £ G/H: kgH - gH for
all k in K] is a manifold. Now general theory (see Bredon [3, Corollary 6.2.5])
ensures that each component of (G/H)K is a manifold but one can construct
simple examples where the components have different dimensions. (Note that
Bredon's result is stated incorrectly.) This error was pointed out in [17].

Let us now state a corrected version of Rubinsztein's resit. We first introduce
quickly his basic notation. If H is a closed subgroup of G and A C V, let AH be
the set of points in A fixed by H, let XH = {x G S(V): Gx = H} where Gx

denotes the isotropy group of x and let X{H) be {Tgx: g G G , x £ XH).
Define 9? to be the set of isotropy groups H (up to conjugacy) for the action of

G on S{V) with the additional property that NG(H)/H is finite, where NG(H)
denotes the normalizer of H in G. Finally, let IT denote the natural map of V into
the quotient space V/G.

We assume a knowledge of the rest of his notation in Section 7 of [21]. (There
seems little point in repeating all his definitions. We will not need them in later
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sections.) The one change that has to be made is that the definition of K^ has to
be modified. We define «,j(l((//) a)) = 2(-l)''x(a,)> where the summation is over
the components a, of (G/H)ff and f, = dima,. With this change his main
theorem is true. Thus we have the following result.

THEOREM 1. There is a 1-1 correspondence ¥ between [S(V), S(V)]C and
A(V, {0}) such that, if H is a closed subgroup of G and iff is a representative of a
homotopy class [/] in [S(V), S(V)]G, then degS(^»(/|S(K)«) = K H * [ / ] .

Note that, if S(V)H is empty, we take the degree to be 1. We will explain how
the original proof can be modified in the appendix.

The correspondence in Theorem 1 does not give a very convenient method for
deciding whether maps are G-homotopic. We now present a more explicit criteria.
First we need some notation. If H G 9? consider WH = {x G S(V)H: Gx¥= H).
This is a closed proper subset of S(V)H. Suppose T is a component of irX(H). Let
f = Tf - 'm S(V)" and choose p G f. Note that f is open in S(V)H. If / :
S(V) -> S(V) is G-invariant, one easily sees that/maps S(V)H into itself and WH

into itself. Since d(XH) C WH and thus/(x) =tp for x £ d(XH), it follows that
degS(,,)«(/, p, f) is defined and is independent of /> for p in a component of T
(by homotopy invariance). Note that N(H)/H acts freely on S(V)H\WH. Thus if
g G N(H)/H and T1 is a component of S(F) H \W", then f' = Tgr ' is also a
component of S(F)w\JfH (possibly T1 again). By the commutativity theorem for
the degree and the G-invariance of/, degs^y)H(f, p, Tl) = degS(K)«(/, Tgp, f 1 ) .
By summing over the components of T, we find that degS(K)//(/, />, T) =
degS(K)«(/, Tg^, T1). Thus degS(K)ff(/, p, f) is constant for p in T1. Note that
since/(x) ^j? on 8T, we easily see that these degrees are G-homotopy invariants
of / . Moreover, if irXiH) is connected, then f has closure S(V)H. Thus, since
f(x) ^p on hf, degS(n»(/, p, f) = dcgS(K)W(/, />, S(K)W) = deg S ( n »( / ) . This
degree is often easier to calculate. (It equals indexVH{F\VH,0) if f{x) =
\\F(x)\\~xF(x) where F: V -» F is continuous, G-invariant and F(x) ̂  0 for
x # 0.)

Let Z denote the set of pairs (H, f) such that H G 9i and f = 7 r " 1 ( r ) n S ( F ) / f ,
where T is a component of irX^H).

THEOREM 2. Suppose / , , /2: S(F) -» 5(F) are G-invariant. Then they are G-in-
variantly homotopic if and only f/degS(K)«(/,, /?, f) — degS{K)«(/2, p, f)for each
(H,f) (EZ.(Herep G f.)

The advantage of this variant of Theorem 1 is that degrees are often relatively
easy to calculate. For example, the degree is often easy to calculate if/, is smooth
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and p is a regular value of/, |f. Note that our comments above prove the necessity
of the conditions. Once again, we prove Theorem 2 in the appendix.

Finally, assume that Y is a subset of S(V) with the property that if x £ Y and
Gy contains a conjugate of Gx, then y G Y. Standard theory implies that Y is
G-invariant and closed and is a union of X(H)'s. Let ZY = {(H, f)EZ:Gx = H
for some x in Y). Thus ZY is the part of Z corresponding to points in Y.

THEOREM 3. Suppose /,, /2: y ^ 5(F) are continuous and G-invariant. Then they
are G-invariantly homotopic if and only if degS( V)H{ /,, />, f1) = degS(|/)«(/2, /?, T)
/or et>ery (H,T) £ Zy.

This is a slight strengthening of Theorem 2. Once again it is proved in the
appendix. We need Theorem 3 in Section 2.

2. The main result

We assume that {Tg}gec is a linear action of a compact Lie group G on a
finite-dimensional linear space E,®s: E -» E is continuous and G-invariant, §{ k) = 0
and there is a neighbourhood 3"of M = G(k) such that <5(x) ¥= 0 for x £ 5" \M.
Let K = Gk, where Gk = {g £ G: Tgk = k}. As usual, we may assume without
loss of generality that each Tg is unitary (see [3, Theorem 6.2.1]). By the tubular
neighbourhood theorem (see [3, Theorem 6.2.2]), we may choose f to be a
G-invariant neighbourhood of M such that 9" intersects Nk(M) = Tk(M)x in a
ball Br(k) in Nk(M). Let Pk be the orthogonal projection onto Nk(M). It is easy
to check that Pk is ^-invariant. Let K', i = 1,... ,m, denote the isotropy groups
(up to conjugacy in K) for the action of K on Nk(M), where K1 = K. (It is easy
to check that Nk(M) is ^-invariant.) As usual, we may order the K' such that K'
is not conjugate (in K) to a subgroup of Kj if / <,j.lf A C E and i / is a subgroup
of G, let A" = {x £ A: Tgx = x for all g £ 7/}. Let AT, = Tk(M)K' and A7, =
Nk(M)K'. We will discuss the Â  later in this section.

We say that k is G-stable for I3r if there is a 5 > 0 such that every continuous
G-invariant map F such that ||£F(.x) — F(x)\\ < 8 on Thas a zero in (5. It is easy to
see that this definition is independent of the choice of 9" (in particular, indepen-
dent of the r in the definition of 9"). In the main result of this section, we obtain
necessary and sufficient conditions for F to be G-stable.

Since Pk^\NtiM) is ^-invariant, it follows easily that P$ maps Â  into itself.
Suppose that A*, = {0} and x G ^ n J such that P$(x) = 0. Because <3 is
K-invariant, we easily see that ?F(x) is fixed by K'. Since Pk is /^-invariant, we
also see that (/ — Pk)^(x) is fixed by K'. Thus it is in Nf and hence is zero. Thus
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^(JC) = 0. Hence, by our assumptions on '%, x £ M. Thus we see that, if
Nt = {0}, then Pk<5{x) =t 0 on (JV, n Br(k))\{k}. Let N1 denote the set of points
on the sphere Sr(k) in 91^M) with centre k which have isotropy group conjugate
to K' and let N' be the closure of N'. It is well known that, for each point x in N',
the isotropy group Kx has some conjugate of K' as a subgroup. Now it is easy to
show that, if K' is conjugate (in K) to a subgroup of Kj and iV, = {0}, then
Nj = {0}. It follows as above that Pk^(x) ^ 0 on S£k) D N'. Let/-: JV' -> Sr(A:)
be defined by f(x) = k + r\\Pk^(xyi\-%<»(x). It is easy to check that ft is
K-invariant. This is the type of map we considered in Theorem 3 (if we use a
change of origin by k and a change of scalar by r). The following theorem is the
main result of this paper.

THEOREM 4. % is G-stable if and only if there is an i in {l,...,m} such that
Nt = {0} andf is not K-invariantly homotopic to a constant map. Equivalently, 'S is
G-stable if and only if (I) there is an i and a component T of ir(N') such that (a)
Nj = {0}, (b) dim N^K') = dim K\ where NK(K') denotes the normalizer of K*
in K, (c) dimiV, > 1 and (d) degSrW*,(/., p, €~\T) (1 Nt) ^ 0 where p e
ir~l(T) (~l Nt or (II) there is an i such that Nj = {0}, dim Nt = 1 andf \finNi is not a
constant map. Here # is the natural map of Sr(k) into the orbit space Sr(k)/K.

REMARK. It is possible to replace (a) and (b) by the single condition that
dim NG(K') = dim K'. The proof of this uses our later discussion of Nt and also
requires the consideration of the natural map of G/K' to G/K. It is unclear
which formulation is more convenient in applications. Note that Theorem 4 gives
conditions which are reasonable to check in applications.

PROOF. The second statement follows from the first and Theorem 3 of Section 1
(applied to the action of K on N' C Sr(k)). Thus we need only consider the first
statement.

We first prove that ^is G-stable if there is an / such that Nt, = {0} and/ is not
.K-invariantly homotopic to a constant. Since Sr(k) is a ^-invariant strong
deformation retract of 9l/t(M)\{A:} (by the obvious retraction), it follows that
the map x -» Pffix) is not K-invariantly null homotopic as a map of N' into
%k(M)\{0). First note that, since N' is compact, there is a /x > 0 such that
\\Pk'»(xyi\>n on N'. It follows easily that if F: $-* E is continuous and
G-invariant and if W»(x) - F(x)|| ^ {p on 5", then Pfi and PkF\& are tf-in-
variantly homotopic as maps of N' into 9l;t(M)\{0}. (We simply use the map
(x, t) -> tPk<$(x) + (1 - t)PkF{x).) Thus PkF\jf> is not K-invariantly homotopic
to a constant map. It follows that there exists x G CN' = {x: x — k + ty,
0 < t ^ 1, y G N'} such that PkF(x) = 0. [If PkF(x) ^ 0 on CN', the map
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(x, t) -* PkF(tx + (1 - t)k) (as a map of Nf -> 9lA(M)\{0}) would be a ^-in-
variant homotopy to a constant map.] Now x — Tky where A: E K and j has
isotropy group a subgroup containing K'. (Remember that any x in N' has an
isotropy group which contains a conjugate of AT'.) By AT-invariance, PkF(y) = 0.
Since;' is fixed by AT', (I - Pk)F(y) is fixed by AT' and is contained in Tk(M).
Hence, since Nt = {0}, (/ - Pk)F{y) - 0. Thus F(y) = 0. Hence "f is G-stable.
(Take 8 = i/x.)

To prove the converse, we will show that '5 is not G-stable if, for each / such
that Nt — {0},fi is AT-invariantly homotopic to a constant map. We need a lemma.

LEMMA 1. / / / : Br(k) -» ?Hk(M) is a continuous K-invariant map such that
f(x) ¥= 0 on Sr(k) and 8 > 0, then there is a K-invariant map / : Br(k) -> %k(M)
such that (i) \\f(x) — f(x)\\ < 5 on Br(k), (ii) / vanishes on only a finite number of
(K-) orbits in Br(k) and (iii)f(x) = f(x) on Sr(k).

PROOF. By applying Theorem 6.4.2 in Bredon [3] with M = int Br{k), we see
that there is a .^-invariant map/, such that/, = / o n Sr(k), ||/,(JC) — /(JC>|| < ^8
on 5r(A:) and/, is smooth in int Br(k). By using the theory of G-transversality (see
Bierstone [2] and Field [12]) we can approximate/, to within ^8 by a K-invariant
map/such that/ = /near Sr(k),f is smooth in int 5r(&) and/is AT-transversal to
zero. It follows easily that / has the required properties. (The AT-transversality to
zero ensures that / vanishes on only a finite number of orbits.)

PROOF OF THEOREM 4 (continued). We now return to the proof of Theorem 4.
If 0 < s < r, we construct a AT-invariant map F2: Bs(k) -» £\{0} such that
<3{x) = F2(x) on Ss(k) and \\F2(xy\ =£ q on Bs(k) where ^ = supfll^j)!!: y G
SS(A:)}. This is the key part of the proof. Let / be the set of integers in {l,...,m}
for which Nt = {0} and let A = {x G Ss(k): Kx is conjugate to K' for some / in
/ } . By our earher arguments, A is a closed AT-invariant subset of Ss(k) with the
property that, if x G A, if j G S,(&) and if Ky is conjugate (in AT) to a subgroup
of Kx, then ^ E A. Thus, we can apply Theorem 3 to PkF\A. Now the obstruc-
tions in Theorem 3 to Pfil, being AT-invariantly homotopic to a constant (as a
map of A into ?flk(M)\{0}) are precisely all those which occur in the obstruc-
tions to each of the / , / G J, being AT-invariantly homotopic to a constant. (Here
we are not distinguishing between AT-invariant homotopic maps of A into Ss(k)
and into ?flk(M)\{0} since we can readily change from one to the other.) Thus
we find from Theorem 3 and our assumptions on the / that Pft is AT-invariantly
homotopic to a constant (as a map of A into <3lA.(M)\{0}). Let H denote this
homotopy, where H{ ,0) = Pffi. We can now extend Pk'S'\s(k) t o a AT-invariant
map F, of CA = {k + tu: 0 < / < 1, u G A} into %k(M)\{0} by defining
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Ft(k + tu) = H(u, 1 - 0- Define Fx to be <fon Ss(k). By Theorem 1.2.3 in [3], we
can extend F, to a ^-invariant map of Bs{k) into 91 ̂ .(M). Since CA is compact
and F^x) ¥=• 0 on CA, we can use Lemma 1 (with 8 small) to find a new extension
F, of ^\ss(k)

 s u c n t n a t ^ i ( x) ^ 0 on C4 and F,(x) vanishes on only a finite
number of orbits in Bs(k). We now perturb F, to construct a AT-invariant map of
Bs(k) into £ \{0} . Let {Tkxt: k £ K) for 1 < i < z denote the distinct orbits on
which F, vanishes. We can choose the xt such that Kx = KJi for some y, in
{ l , . . . , w } \ / . By our construction of F, and the definition of / , Nj,¥= {0} for
1 =£ / < z. Suppose 8 > 0 and choose u, G Â . with ||t>,|| = 8. We then define a
AT-invariant map F2 of {Tkxt: \ ^ i ^ z, k E K) into /?(/ - Pk) by F1{Tkxi) =
Tkvr (Since Nj is fixed by Kji, the map is well-defined and ^-invariant.) We
define F2 to be zero on Ss(k). By Theorem 1.2.3 in [3], we can extend F2 to a
AT-invariant map of B£k) into {x G /?(/ - Pk): \\x\\ < 5). We now define F, = F,
+ F2. It is easy to see that F2 is equal to 'fon Ss(k) and F2(x) =£ 0 in Bs(k). To
ensure the last required property of F2 we replace F2 by r ° F2 where r is the
obvious retraction of E onto the ball of radius q in E.

We now complete the proof of Theorem 4. Suppose e > 0. Choose s in (0, r)
such that ||^(JC)|| < \t in B/A:). (Remember that \\^{xy\ -+ 0 as x -> A:.) By the
result of the previous paragraph, there is a A^-invariant map F3: B//c) -* £ \{0}
such that ||F3(x)|| < {e on Bs(k) and F3(x) = f (x ) on 5/A:). By the triangle
inequality, \\F3(x) - 9(x^\ < e on Bs(k). We extend F3 to Br(k) by defining
F3(x) = ^{x) if ||A; — A:|| > s. Finally, we extend F3 to the tubular neighbourhood
?T by the group invariance. It is then easy to check that F3 is continuous and
G-invariant, ||F3(x) — ^(x)\\ < e on ?Tand F3(x) ¥= 0 on 9". Since e was arbitrary,
it follows that 5" is not G-stable. This completes the proof of Theorem 4.

REMARK. If <$ is smooth, a smoothing argument shows that F3 can be chosen to
be smooth.

The definition of G-stability in this section is not the same as in the introduc-
tion. The next proposition shows that they are equivalent. We assume that "F
satisfies the assumptions at the beginning of the section.

PROPOSITION 1. If ^ is not G-stable, then there is a continuous G-invariant F:
9" X [0,1] -> E such that F( , 0) = <5and F(x, t) ¥= 0 //1 ^ 0.

PROOF. AS before, it suffices to construct a AT-invariant map F: Br(k) X [0,1] -»
E such that F( ,0) = $ and F(x, t) ¥- 0 if t *= 0. Since k is fixed by K, we can
translate axes to assume that k = 0. Define F(x, t) = ^(x) if ||x|| s* t and
F(.x, f) = F3(x) if t ^ r. (F3 was defined in the proof of Theorem 4.) Now it is
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easy to construct a ^-invariant retraction f of {(«, t) E Br(0) X [0, r\. \\u\\ ̂
/}\{(0,0)} onto the subset where ||u|| = t or t = r. (One starts with a retraction rt

of {(y, t) S R2: 0 *Zy < ? < r}\{(0,0)} onto the subset where y = t or ? = r
with the property that r,(0, 0 = (0, r) for r e (0, /•].) Choose a: [0, /•] -» (0, oo) to
be continuous such that a(O -» 0 as f -» 0 and a(O s* supdl^x)!!: ||x|| = /}. Let
Rq be the obvious retraction of ?fik(M) onto 5,(0). Now define ir(^, t) =
/?a(r)/"(r(x, 0) if 11*11 < f < r and (x, r) ^ (0,0). Finally, define F(0,0) = 0. By
our choice of a(t), the two definitions of F agree on ||JC|| = t. Thus Fis continuous
at (x, t) if (JC, t) ¥= (0,0). Since ||F(JC, Oil < «(0 if 11*11 < * and since a(t) -» 0 as
/ -» 0, F is continuous at (0,0). It is now easy to see that F has the required
properties.

REMARK. Surprisingly, the results of Section 3 imply that it may happen that F
cannot be chosen to be C1 when <5 is C°°. We suspect that, if f is C1 and
§\k) = 0, then F can be chosen to be C1. The difficulty is to keep smoothness at
(s,0) where s £ M. It can be shown with care that F is C1 except possibly on
M X {0} and that F is differentiable at (s, 0) if * e M.

We now want to return to discuss the Nt 's.

PROPOSITION 2. The following properties are equivalent: (a) Â  ^ {0}; (b) there is
a K'-invariant vector field on M which does not vanish at k; (c) the component of
(G/K)K' containing eK is positive dimensional.

PROOF. The proof that (a), (b) and (c) are equivalent is essentially the same as
the proof of the proposition in [6]. (Note that there is a misprint in [6]. Part (i)
should read "dim N(Gk) — dimG*.".) Thus we merely sketch it. If v(x) is a Kj

invariant vector field on M, then v(k) is in Tk(M) and is fixed by K'. Thus (b)
implies (a). Assume (a) holds and choose c £ ^ \ { 0 } . Choose a smooth vector
field u on M such that v(k) = v. By using the usual averaging with respect to an
invariant Haar measure on K' (also using a K '-invariant Riemannian metric on
M), we can assume that v is #'-invariant. (Since v(k) is fixed by K', it will not be
changed by the averaging.) Thus (b) holds. Note that the above argument ensures
that v can be chosen smooth in (b). Assume that (b) holds and let Z(t) be the
solution of x\t) = -v(x(t)), x(0) = k. As in [6], we find that Z(t) is a non-con-
stant curve in M fixed by K'. Since M is G-invaliantly diffeomorphic to G/K by a
diffeomorphism <j> which sends k to eK, (c) holds. Conversely, if (c) holds, there
must be a smooth curve w(t) in (G/K)K' such that w(0) = eK and w'(0) =£ 0.
(Remember that each component of (G/K)K is a manifold.) Then w(t) = ^"'^(O
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is a curve in M such that w(0) = k, w'(0) =̂ o and w(t) is fixed by K'. Hence
vv'(O) E Nt and hence (a) holds.

Condition (c) shows that whether Nt = {0} depends only on the three groups
G, K, K1. It is clear from (c) that it is very difficult to have A*, = {0} if G is
abelian and positive-dimensional.

Finally to complete this section, we make some remarks on Theorem 4 (our
main theorem). Firstly, if Tis a component of TT(N') such that / and T satisfy the
conditions of the second statement of Theorem 4, then each G-invariant map F
near ?Fhas zeros x near M such that Gx has K' as a subgroup. This shows that
solutions must lie in certain parts ofS. Secondly, if JV, ^ {0}, our earlier comments
imply that Nt =£ {0} for i > 1 and hence f i s not G-stable.

3. Some other results

In this section, we consider briefly the cases where either <§ is C1 or F is a
gradient mapping. (Fis as in the introduction.) We use the notation of Section 2.

We say that ^ is C1 G-stable if firstly ^satisfies the assumptions at the start of
Section 2 and secondly, for every C1 G-invariant map F: E X R -» E such that
F(, 0) = 5", the equation F(x, t) = 0 has a solution x near M for each t near 0. (It
would possibly be more natural to call this C1 parametrized G-stable. In fact, our
methods could be used to study all G-invariant maps C1 close to *&.) As usual,
9l(B) and R(B) denote the kernel and range of B respectively.

We assume that F: E X R -» E is C1 and 13r= F( , 0) satisfies the assumptions
at the start of Section 2. We use the notation there. Consider the equation
PkF(k + M, 0 = 0 where u G 9Lk(M). We write u = M, + u2 where a, G y, s
9L(PtF,1(A;,0)|gL4(A/)) and u2 G Y2. Here y2 is a ^T-invariant complement
to y,. Similarly, we let P be a /^-invariant projection of l3LJt(M) onto
/{(Pfc.F^fc.O)!^^)). (It is well-known that these can be found. See, for example,
[6].) By the implicit function theorem, the equation PPkF(u] + u2, t) — 0 can be
solved (for «,, u2, t small) to obtain u2 = b(uu t). By uniqueness, we easily see
that b is .K-invariant. Let L be a /T-invariant linear isomorphism between Y] and
R(I — P). That L exists is proved by the same argument as in the proof of
Lemma 2 in [6]. Thus the equation PkF{k + M, + u2, t) = 0 near (k,0) reduces
to

*(«„ /) = L(I - P)PkF(k + «, + />("., '), 0 = 0

where M2 = &(«,, ?)• Note that B is a ^-invariant map of a neighbourhood of
(A:,0) in y, X /? into y,. Let Jf be the set of integers i in {!,...,m} such that
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Kx = K1 for some x in 7,\{0}. In other words, {#': i: G W) are the set of orbit
types for the action of K on y,\{0}. It follows as in Section 2 that, if f is small,
then B(ut,0) ¥= 0 whenever M, e S^k) n N' n 7, and AT = {0}. (Note that
b(0,0) = 0.) Note that # was defined in Section 2.

THEOREM 5. <5is C1 G-stable if (I) 1 £ WandNx = {0} or (II) fAere w a/i i in W
and a component Tx ofjf(N' (1 Yx) such that (a) Nt = {0}, (b) NK(K')/K' is finite
and (c) degy,(fl(,0), p, Y' n ^"'(T,)) ^ o W (d) dim Y' > 0 or (III) tfim? is an
i in W such that Nt = {0}, dim Y' = 0 and B( , 0) |y, w not a constant map. Here
Y1 - fS(Yx)

K', p e Y' f\ f-n-\Tx) and N' was defined in Section 2.

PROOF. By combining the ideas above with those in Section 2, we see that it
suffices to find solutions ut of B(uu t) = 0 such that the isotropy group of
M, + b(ux, t) is in K' where Nt = {0}. Note that M, + b{ux, t) and w, have the
same isotropy group as is easily seen. Suppose (I) holds. Now B(0, t)is fixed by K
since B is A'-invariant. Thus, if 1 $ W (that is no point in 7,\{0} is fixed by K),
5(0, t) = 0. Since 0 has isotropy group K and ./V, = {0}, it follows from our
comments above that f is C G-stable. If (II) or (III) holds, then by the
arguments in the proof of Theorem 4, there is a solution M, of B(ux, t) = 0 in
B^k) fl 7, such that Kai contains K' as a conjugate for each small /. Now it
follows as in Section 2 that Â  = {0} where KJ = Ka<. Thus, by our comments
above, the result follows.

REMARK. 1. It is easy to check that, if the conditions of Theorem 5 fail, then ®s
is not G-stable. We conjecture that Theorem 5 is best possible in the sense that, if the
conditions there fail, then there is a G-invariant C1 function F: E X [0,1] -» E such
that F(,0) = <$ and F(x, t) ¥= 0 for t ¥= 0. We are only able to prove that F can be
found such that (A) Fis G-invariant, differentiable and C1 for t ^ 0, (B) there is a
sequence /, approaching zero such that F(x, tt) ¥= 0 on 5" and (C) the equation
PkF(k + u, t) = 0 for u G %k(M) reduces to a bifurcation equation as above.
Note that the proof of Theorem 5 does not really need the existence of the partial
derivative Fj(x, t).

2. It can happen that ?Fis not G-stable but ^Fis C1 G-stable. We prove this by
constructing F̂ not G-stable such that ?F satisfies the assumptions of Theorem 5.
We construct an example with G = K — Sn, the symmetric group of order n,
k = 0 and M = {k}. (Thus the conditions on Â  and the normalizers are trivially
satisfied.) Weuse the representation in [21, page 35] which acts on R". Now, by
Theorem 1, there is a continuous invariant map/, of the sphere S/0) of radius r in
R" into itself such that/, is not A-in valiantly homo topic to a constant and such
that deg(/, |fr(0)^') = 0 for / G W. [The important point is that, in this case,
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there is an / E W such that dim Nt > 1 and X(K^/K is not connected. (Here
X(K')/K denotes the set of points in the quotient space Sr(Q)/K corresponding to
the points with isotropy group conjugate to K'.) Using Theorem 2 here, we simply
choose a map corresponding to {a,} e A(R", {0}) such that not all the a,'s are
zero but such that, for each i G W, the sum of the a,'s corresponding to X(K,^/K
is zero.] By the usual smoothing arguments, we may assume that /, is smooth. We
extend /, smoothly and A-invariantly to Br(0) by defining /,(*) =
g(||jc||)/,(r;c/||x||), where g(y) = exp(j>~2). Note that /, only vanishes at k. We
define f: Rn ® R" -> Rn © R" by ^{x, y) = (x, /,(>»)). Here K acts as above on
each component of the direct sum. It is easy to see that <fis smooth, ^-invariant
and only vanishes at (0,0). Now the bifurcation equation above (for t = 0) is
easily seen to be fx(y) = 0. (Note that y, = Rn.) Hence our choice of/, above
and Theorem 5 imply that ^is C1 G-stable. On the other hand, ^is not G-stable.
To see this, we must show that ^]Sr(E): Sr(E) -» £\{0} is K-nu\\ homotopic,
where Sr(E) denotes the sphere of radius r in E = R" © R". By Theorem 8.4 and
Proposition 8.3 in [21], it suffices to prove that the map x -»/•||f(jc)||-|(5r(;<:) has
zero degree as a map of S(E)K' into itself for each isotropy group K'. However,
by the product theorem for the degree, this degree equals the degree of /, as a
map of S(R")K into itself and hence is zero by the choce of/,.

3. If the construction above is examined closely, one finds that the key point is
that (A) here is an isotropy group K' for the action of K on S{YX) such that
dim S{Y\)K' > 1 and w(N' n y,) has strictly more components than N'/K. (This
will become clear from our comments below.) Necessary conditions for this to
occur are that §(N' n y,) is not connected and that there is an isotropy group K>
for the action of K on Yx such that KJ D K\ dim S(YX)K' = dim S(YX)K' - 1 and
dim S(Y2)

KJ < dim S(Y2)
K'. Conversely, if Condition A above fails and if f

satisfies the assumptions of Theorem 5, then it can be shown that 5" is G-stable.
The key point of the proof of this is to show that, if 'Fis as above, if H (= K') is
an isotropy group for the action of K on S{V) such that some point of S{YX) has
isotropy group H, if Â  = {0}, if T is a component of N'/K and if p G 7r~\T) n

rf', then

= ±degS(yi)W(ll( ,0), p, # " ' ( r ) n rS(Yx)").

Here F(x) = ||/>A.9:'(jc)||~I||̂ >
it̂ '(jc |̂. This seems most easily proved by intersection

theory and is an analogue of the known result that a local index is determined up
to sign by the bifurcation equations (see [8], Section 3). Note that one can easily
show that -jt-\T) n S(YX)H is non-empty.

4. A variant of Theorem 5 can be proved which gives a lower dimensional
bifurcation equation if ^L(<S\k)) f~l R{<3\k)) ¥={0}. We replace the equation
PkF(k + u, t) = 0 by PkF(k + u, t) = 0 where Pk is a ^-invariant projection
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onto R(¥'(&)). We can then argue as before to reduce to a A-invariant bifurca-
tion equation «(«„ 0 = 0 where B: <3l(^l(k)) n %k(M) X R -> /?(/ - PJ . By
Lemma 2 in [6], there is a subspace of R(I — Pk) which is /if-invariantly
isomorphic to Tk(M). Choose a ̂ f-invariant projection P onto this subspace such
that PPk = 0. It is then not difficult to prove an analogue of Theorem 5 with B
replaced by (/ — P)B (more strictly a linear operator times this) and Yt replaced
by(X('»\k))ncXk(M).

We now very briefly consider the gradient case. Once again we obtain a partial
result for this case. We assume that the conditions of Section 2 hold, that there is
a scalar product ( , ) on E and that a map/: E X R -> R exists such that F{, t) is
the gradient of/( , 0 for each t (with respect to ( , )). We discuss when F(, t) has
a zero near k for each t near 0.

Firstly, as in [8, Section 1], we may assume that ( , > and / are G-invariant.
Now, if u e 9lA(M), M is near k and PkF(u, t) — 0, then F(u, t) = 0. To see this,
we note that, by differentiating f(x, t) along the orbit through u, (F(u, t), z) = 0
whenever z is tangent to the orbit G(u) at u. (Remember that / is constant on
orbits.) Since it is easily shown that Tu(G(uJ) and cdlk(M) span E, it follows that
F(u, t) = 0. (A similar argument appears in the proof of Theorem 6 in [10].) Thus
we see that, in the gradient case, the tangential conditions are not needed. This is a
major difference from the non-gradient case. Now it is easily checked that
PkF{, t) 1̂  (W) is gradient of/( , t) \%,k(M) for each t. Thus our problem reduces to
the case where the group acts trivially on k. Note that we must consider the most
general problem on 9lfc(M) because a ^-invariant gradient mapping F, on
91 k(M) can be easily used to generate a G-invariant gradient map 'Fnear M such
that Pk^k{M) = Fx.

We now consider this reduced problem. Note that, by our assumptions and the
results of the previous paragraph, A: is an isolated solution of PkF(u,0) = 0 in
?Hk(M). We want to use Conley's homotopy index [4]. Thus we need to assume
that F(x,Q) is locally Lipschitz in x. (This is needed to ensure that solutions of
certain ordinary differential equations are unique. We suspect that it should be
possible to use quasi-gradient flows as in Rabinowitz [19] to at least partially
remove this assumption.) Now one easily sees that, if 1 < /: < w, then Nt =
?Hk(iM)K' is PkF{ , 0 invariant. Moreover, PkF( , 01^, i s gradient of/( , t)\^.
Since k is an isolated solution of PkF( , 0) = 0, it follows as in [7] that k is an
isolated invariant set for the flow corresponding to PkF( ,0) on Nt. Thus the
homotopy index hfii(PkF( ,0)\^,k) is defined. Now the homotopy index is
homotopy invariant. Hence, if h$(PkF( , 0) |^, k) ¥^ 0, then, for each small /, the
equation PkF(u, t) = 0 has a solution in JV, near k. This is similar to the proof of
Theorem 2 in [7]. (Technically, the above argument is only valid if PkF( , t) is
Lipschitz in t for each t ̂  0. However, as in [7], this condition for / =£ 0 can be
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avoided by an approximation argument.) It follows from this and the results of
the previous paragraph that, if there is an i such that h$(PkF{ ,0), k) ¥= 0, then,
for each small t, the equation F(x, t) = 0 has a solution near k. Thus, in this case,
the manifold M is a stable set of zeros of F( , 0) for G-invariant gradient
mappings.

It might be objected that, since we have used invariant subspaces, we have not
used the full symmetry structure. Now, for ^-invariant gradient mappings, we
could follow the procedure in [4] and define a ^-invariant homotopy index. (We
consider index pairs (X, A) where X and A are ^-invariant and define the
^-homotopy index to be the ^-invariant homotopy type of X/A.) However,
unlike the case of Section 2, we do not gain much because a theorem of James
and Segal [15] implies that, if X/A is a K - ENR, then X/A is AT-invariantly
contractible if and only if the fixed point set (X/A)K' is contractible for each
isotropy group K'. (The term K- ENR is defined in [15].) Thus if X/A is
"reasonable" (and a variant of a construction of Rabinowitz [19] and a theorem
of Jaworowski [16] imply that this always holds if F( ,0) is C1), then we get the
same result as in the previous paragraph.

If F is also C1, then, by a similar argument to that in [19], the bifurcation
equation B(uu t) = 0 has a gradient structure. Moreover, the homotopy index of
PkF( ,0)|^ is a suspension of the homotopy index of B{ , 0 ) | ^ n y (see [1]). It is
unclear if any of these last homotopy indices can be non-zero while
hfi(PkF( ,0)|^., k) = 0 for every /. However the neighbourhood constructed by
Rothe [20] and an argument in [8, Section 1] imply that this cannot happen if (a)
F(, 0) is analytic or (b) B( , 0) satisfies the technical condition in [20], or (c) there
is local C° ^-invariant diffeomorphism <f> near 0 such that <j>(0) = k and b ° <f> is
analytic (where B(, 0) is the gradient of b) or (d) dim Yx < 2.

However, this leaves aside the basic question. Is the above homotopy index
condition the best possible condition to ensure the stability of the zero k of F( , 0) in
the K-invariant gradient easel This seems nontrivial and interesting even in the
much simpler case where K = G = {e} (that is, the case where there are no
symmetries).

4. Some special cases and examples

We present a number of special cases and examples of our main theorem
(Theorem 4). These also illustrate how easy the calculations often are in examples.
The complexity in the statement of Theorem 4 is caused by a number of awkward
special cases. We assume the conditions of Section 2.
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As our first special case, assume that M is not discrete and G acts freely on M,
that is Gk = {e}. Then k is not G-stable for <3. (This follows because, in this case,
all the N,'s are non-trivial since K = Gk = {e} and Tk(M) ¥= {0}.) Similarly, if
G — Tn (that is an /j-dimensional torus) and if G^ ^ {e}, then A: is not G-stable
for f. (This follows because (G/K)K' = G/K ii Kl Q K <Z G since G is abelian.
Proposition 2 at the end of Section 2 then implies that all the TVj's are non-trivial.)
Note that the two results above are cases where the Golubitsky-Schaefer theory
does not apply.

Next, we present a special case of Theorem 4 which covers a great many
applications. Assume that K is abelian or that every non-trivial irreducible subrepre-
sentation of the action of K on Nk(M) occurs with multiplicity at least 2. (More
generally, it would suffice to assume that each isotropy group K' for the action of
K on Nk(M) with / > 1 has the property that -if(N') is connected or is discrete.)
Then k is G-stable for '•Fif and only if we can find an isotropy group K' for the
action of K on Nk(M) such that

(i) dim 9lc(AT') = dim K> and
(ii) indexziPfib;,, k) * 0.

Here 9lG(K') denotes the normalizer of K' in G, Pk is the orthogonal projection
onto Nk(M) and

Nt= {x G Nk(M):Tgx = x for g G K'}.

Note that 9 l c ( # ' ) is a manifold and that Pk<5 maps iV; into itself and hence the
index of the isolated solution k is defined. (This result follows from Theorem 4,
the remark immediately after the statement of Theorem 4 and a comment
preceding Theorem 2 in Section 1.) The advantage of this special case is that the
indices are indices on linear spaces. These spaces usually have smaller dimension
than E. The only occasion when we have to evaluate an index on all of E is when
k = 0, G is discrete and {e} is an isotropy group. If G is discrete, (i) can be
omitted. If G is not discrete, one usually finds that (i) is only satisfied for a few
isotropy groups K'.

Let us consider some simple examples where k = 0. Thus K = G. If 0 is the
only point of E fixed by all the Tg for g in G, then 0 is G-stable for ?F (since any
G-invariant map must vanish at zero). Let us now assume that G = Sl. In this
case, condition (i) can only be satisfied if we take K'' — Sl. (This follows by
similar arguments to those in the second paragraph of this section.) Thus, in this
case, 0 is S'-stable for "fif and only if index £c(Sr|£.c, 0) ¥= 0 where, as before,

Ec = {x G E: Tgx = x for g G G}.

(Here G = Sl.) Thus, in this case, we have only to check a single degree to check
S'-stability. Note that EG may be of quite small dimension while E has large
dimension. If the representation of 5 ' on E contains many different irreducible

https://doi.org/10.1017/S1446788700027361 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700027361


(16] Perturbation under symmetries 121

subrepresentations, the structure of S1-invariant maps of E into itself may be
quite complicated and the universal 5'-unfolding may contain many parameters.
Thus applying the methods in [14] can be quite difficult to apply on occasions
when our method is very easy to apply. As a second example, assume that
G — Z6. Then 0 is Z6-stable for ^if and only if index£H(9r|£H,0) ¥= 0 for some
subgroup H of Z6. Thus H can be {0}, {0,3}, {0,2,4}, or Z6. (If the second or
third subgroup does not occur as an isotropy group, one does not need to evaluate
the corresponding index.)

Finally, note that our method in Section 3 for constructing maps which are C1

G-stable but not C° G-stable depends crucially on using representations which do
not satisfy the assumption in the special case of Theorem 4 stated above.

Appendix

In this appendix, we show how Rubinsztein's methods can be used to prove
Theorems 1-3. Here we assume a good deal of familiarity with [21] and,
moreover, that the reader has a copy of [21] available when he reads this
appendix. We follow his notation closely.

We first consider Theorem 1. The proof follows the proof of Theorem 7.2 in [21].
We point out the changes that have to be made. We first look at the proof of
Lemma 4.1 there. The fixed points of/, are S(V0)\D2 and {.y,}f=1. By a simple,
but tedious, calculation (yt,0) is a fixed point of <£'(/) for z = \,...,k and these
and S(V)\D3 are the only fixed points of <£'(/)• (There are several misprints in
the proof of Lemma 4.1 but these are easily corrected.) Since A(z) = 2 > l o n D 2 ,
a simple calculation shows that (/ — (̂<f»'(/))(>.,,o)) *s a direct sum of ( / — d{f^)y)
and -Ik where k — dim Vv In particular,

det(/ - </(*'(/))(„*>) = (-l)*det(/ - </(/,)„).

A similar result holds for d(<j>D(f))(yi 0) since it is similar to d(<j>'(f))(y 0). (Recall
that <}>D(f) = g, ° <*>'(/) °gil.) Moreover, since g,, $'(/) and gj"1 are G-in-
variant, they map S(VQ) into itself. It follows that, if V is a subspace of V, if
Vo £ ^ £ Fand if V O S(V) is invariant under <j>'(f) and g,, then

det(/ - d{*D(f)\?ns(V)\yim) = (- l)d i m^d i m I /°det(/ - «/(/,)„).

We will need these results in a moment.

We now consider his Lemma 4.3. This is where the major change must be made
in his proof. Firstly, in the statement of the lemma, we must change the definition
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of nK[f] to nK[f] — 1 + (deg(/) — l)2(-l)''x(«,X where a, are the components
of (G/H)K, tj = dim a, and the summation is over the components of {G/H)K.
With this change, the statement of Lemma 4.3 is correct. We now consider how
the proof must be modified. It is easy to see that it suffices to prove the result
when K C H. (The case where K is only conjugate to a subgroup of H is easily
reduced to this case and the result is easy to prove if K is not conjugate to a
subgroup of H.) The part of the proof on page 17 is unchanged except that the
comment on UK on the third last line should be ignored. (It is true if suitably
interpreted.) Page 18 is also unchanged except that we replace the 8th line from
the bottom by s = dim S(E)K. The top of page 19 down to line 16 is unchanged
except that when we say P( is diffeomorphic to (G/H)K we mean componentwise.
(They both consist of manifolds possibly of different dimensions.) Similarly, when
we say UK is a disc bundle over (G/H)K we mean that it is a union of disc
bundles over the components of (G/H)K. Now VK is a subspace of V and hence
S(V)K is a sphere and in particular a manifold. Since U is an open subset of
S(V), it follows that UK is an open subset of S(V)K and hence a manifold. Let
a = dim i/* = d im^K)* . Recall that a, are the components of (G/H)K (or
equivalently of /",). Now a component Tt of UK is a disc bundle over a,. Thus the
dimension of the corresponding disc must be a — ?,, where /, = dim a,. Similarly,
the fibre of the part of the sphere bundle dUK over at will be a sphere of
dimension a — tt — 1 (that is a Sa~'>~x\ Now dP0 = WK is a union of bundles.
Thus, by applying the argument in [21] to each component of dUK, we find that

where the summation is over the components a, of (G/H)K. By repeating the
argument in [21], it follows that

i'o = X(P0) = i + (-i)a + 2 (-lr'^'xK).

The last paragraph of page 19 is true except that (c) should be ignored.
Suppose z 6 ? , , We can choose the fibres N^ to be locally the intersection of a

subspace containing EH with S{E) (or more strictly a conjugate of EH). Thus, by
the last comment in the paragraph above discussing the proof of Lemma 4.1 in
[21] and by the construction of ^ in [21], we see that det(/ - d(h\Ni )z) =
(-l)ydet(I — d(h\S(E)H)(v 0 ) ) , where y = dim iV̂  + 1 — dim EH and z is on the
orbit through u,. (Note that we really should have conjugates in here but they will
not affect the determinant. The +1 occurs because N, is the intersection of a
subspace with S(E).) Note that; ' is constant on components of Pt but that,y may
be different on different components. However, dim a, + dim ./V, = dim Uk — a

https://doi.org/10.1017/S1446788700027361 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700027361


[18] Perturbation under symmetries 123

if z E a, since Uk is a. bundle over a, with fibre N,. Thus y = dim Nt + 1 —
dim EH = a — /, + 1 — b, where b = dim EH. Hence

- d(h\S(E)H\vJ

where q = dim EK — dim EH. For the last equality we have again used our
remarks on Lemma 4.1 (with V = EH and V - EK). Now, on S(E)K,h = k and
q = s + 1 — b. Thus we eventually have that

(1) sgndet(/-</(%Jz) = (-l)a-'-''sgndet(/-rffct,().

The remainder of the proof of Lemma 4.3 now follows that in [21]. The only thing
we have to do is ensure that, if we are applying results for manifolds, we must
apply them to each component and then 'take the sum. This completes the proof
of Lemma 4.3. The remainder of the proof of Theorem 1 follows the proof of the
corresponding result in [21].

We now prove Theorem 2. As we commented in Section 1, the degrees are
constants on G-homotopy classes. Thus the conditions on the degrees are neces-
sary for / , and f2 to be G-homotopic. Now, in [21], it is shown that any
G-homotopy class contains a $ ( a ) where a G A{V, {0}). Thus, we have only to
show that, if a ¥= b, one of our degrees distinguishes between 4>(a) and $>(b). We
let {(G,)}"=1 denote the elements of 91 where, as in [21], they are ordered such
that i > j implies (G,) C (G,). We define p(G) to be 2 />((C),a) where the summa-
tion is over the components of irX{G). (The projection/?((G)a) are defined in [21,
page 271].) Suppose we know that/>(G j(a) = p(C){.b) ioxj < k — 1. We show that,
if all of the degrees of $ ( a ) and <b(b) are the same, then the same equahty is true
fory = k. This will prove the result (see the proof of Theorem 8.4 in [21]). Assume
T is a component of ^X(Gk)

 a n ^ ^et f = ir~x(T). Let x(H)a and U(H)a be
constructed as on page 28 of [21]. Let x,, Ux denote the pair corresponding to f.
Choose p S (/,. Now, by construction, <&(a)x = x if x & U U(H) a. Thus, by the
construction of the U(H) o 's, XELT and <fr(a)x = p implies that x G Ux or
x G t/(G , a for some,/ < k — 1. Since the U(H)a's are disjoint, it follows that

d e g S i y f k ( < t > ( a ) , p , f n S ( V ) G k ) = d e g S ( K ) C t ( O ( a ) , p , f n S ( V ) G k n £ / , )

( f l ) , P , f n s(v)Gk n u(Hha),

where the summation is over the ( / / ) , a's corresponding to isotropy groups G,
withy «£ k — 1. However, by the construction in [21] and by our assumption that
p(G)(a) — p(G )(fe) fory < k — 1, <P(a) and $ (6) agree on U(H a) if H corresponds
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to Gj fory < k — 1. Hence

) , p , f n S(V)Ct n Ux)

= degS(yfk(<t>(b), P,f n s(vfk n t / , ) .

Suppose we replace $(#) by $'(a) where <b'(a) = $(#) o n U\ a nd $ '( a)* = x

elsewhere. Thus the above equality is easily seen to be still true with $(a)
replaced by <&\a) (and corresponding changes for {b)) and then f n S(V)G n C/,
replaced by S(F)C*. (This follows since we have not altered the behaviour of the
functions near possible solutions. Remember that/> G Ux and <&'(a)x = x outside
of £/,.) We can evaluate these degrees by using iic . Since (G/Gk)

Gk is finite, we
find that

(-\yx{{G/Gkf% = (-lYx{(G/Gk)
G%,

where at (6,) is the component of a (b) corresponding to (Gk), T and p =
dim(G/Gk)

Gt. Because (G/Gk)
Ck is finite and thus has non-zero Euler character-

istic, it follows that a, = bt. Since we could use a similar argument for any
component of irX(Ck), it follows that/?Ci(a) = pc (b) and hence the result follows.

The above method could be used to prove the injectivity of 0 in the proof of
Theorem 7.2 in [21].

We now prove Theorem 3. We first note that one can argue as in the proof of
Theorem 7.2 in [21] to find that/is G-homotopic (as a map of Y into S(V)) to a
map <fr(a)\Y. (We simply follow the proof of the bijectivity in the proof of
Theorem 7.2 in [21]. We can do this because the proof there works by changing/
on points of given orbit type, proceeding successively to points with "smaller"
isotropy group.) As in Theorem 2, we can easily see that our degree conditions are
necessary. Thus the proof reduces to showing that, if $ (a ) | y is Cr-homotopic to
<b(b)\Y, then <P(a)\Y = <b(b)\Y (that is, pc(a) = pc(b) if Gy is an isotropy group
occurring on Y). This can be proved by the same argument as in the proof of
Theorem 2.

ADDED IN PROOF. The author has answered affirmatively the conjecture after
Theorem 5 and answered negatively the question at the end of Section 3 with
G = {e}.
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