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ABSTRACT The procedure for polarisation measurements with 
radio synthesis telescopes is fraught with uncertaincies and shaky 
assumptions. Therefore, their accuracy will be limited to a few percent 
at best. It is investigated here whether it will be possible to improve 
this accuracy by a factor 10-100 with the WSRT, which has excellent 
polarisation characteristics, very small closure errors, and redundant 
spacings. The latter can be used to calibrate the instrument in a way 
which is less dependent upon assumptions about the polarisation of 
the calibrator source. They also cause more reliable convergence of the 
SELFCAL model, by reducing the number of free parameters. Although 
the investigation is not yet finished, the tentative conclusion is that it may 
be possible, with crossed dipoles, to derive completely model-independent 
values for Q/I, U/I and V/I. 

INTRODUCTION 

The accuracy of polarisation measurements with radio synthesis telescopes is 
limited to about a percent. For linear polarisation observations this is usually 
sufficient, but circular polarisation requires an accuracy that is 10-100 times 
better. The same accuracy would be desirable for monitoring the short-term 
polarisation variability that has recently been discovered in certain galaxies. 

The Westerbork Synthesis Radio Telescope (WSRT) may be the most suitable 
instrument to achieve increased polarisation accuracy, for the following reasons: 
1. The telescopes have very little instrumental polarisation because the feeds 
are axi-symmetric. 2. The sky does not rotate with respect to the telescopes, 
because of the equatorial mounts. 3. Model-independent internal calibration 
is possible with the help of redundant baselines. 4. The closure errors are very 
small (typically 0.01%). 

Unfortunately, this conference has come too early for the presentation of 
wonderful results, but some progress has been made: it turns out to be possible 
to eliminate the socalled "offset- difference" problems by using redundant 
spacing calibration. But the solution is degraded by the interaction of the 4 
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different types of dipole errors (phase, gain, dipole angle and ellipticity) with 
each other. This is a serious problem, which may or may not be fundamental. 

BACKGROUND 

Some formulas 
Each of the 14 WSRT telescopes has two perpendicular dipoles, X and Y, 
which can be rotated as a unit. Usually the units in different telescopes are 
parallel (++), but it is also possible to rotate the dipole unit over an arbitrary 
angle. If the unit of a telescope are rotated over 45 degr, we talk of "crossed" 
(+x) dipoles. The correlation product Mi2 between two dipoles with posi- tion 
angles fa and fa can be written as (see Weiler, 1973): 

M12 = 0.5 G\i ( / [cos(fa — fa) — An sin(fa — fa)] 

+ Q [cos(fa + fa) - 5i2 sin(fa + fa)] 

+ U [sin(fa + fa) + .012 cos(fa + fa)] 

- i V [sin(fa - fa) + A12 sin(fa - fa)] ) (1) 

in which the G , A and B factors contain the four different kind of dipole 
errors: phase(p), gain(g = log(g)), dipole angle error (6) and ellipticity(0): 

Aa = («! - S2) - i (0i+02) (2) 

5i2 = (fii + «j) - i (0i - 92) (3) 

G12 = (1 + 9i + ?2) - «' (Pi - P 2 ) (4) 

Note that the real (q, S) and imaginary (p, 8) dipole errors appear in the 
equations with opposite sign (at least in the A-factors, which dominate because 
of their association with I), so that they can be distinguished from each other 
in principle. The Stokes parameters (I,Q,U,V) are calculated with the help of 
the 4 possible combinations between the X and Y dipoles of two telescopes. For 
parallel dipoles (++), the equations reduce to a particularly simple form: 

Mxx = 0.5 G„ (I - Q) (5) 

Myy = 0.5 Gyy (I + Q) (6) 

Mxy = 0.5 Gxy (-U - iV - Axy I) (7) 

Myx = 0.5 Gyx (-U - iV - Ayx I) (8) 

Of course the formulas for left (L) and right (R) circularly polarised dipoles, 
like the VLA has, look very similar (see Thompson et al, 1986) and lead to 
simular conclusions. 

Current calibration strategy 
In all but exceptional cases, the dipoles will be parallel (++). The usual 
calibration strategy consists of the following steps: 

https://doi.org/10.1017/S0252921100013324 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100013324


208 

[1] The dipole gain and phase errors are determined with the help of a 
"known" calibrator, using equation (5) for the X- dipoles, and (6) for the Y-
dipoles. Any inaccuracy in the assumed value for Q will be interpreted as a 
gain error. 
[2] The dipole angle errors and ellipticities are determined, using equations 
(7) and (8). Note that they will be inaccurate by the value of the "phase-offset 
difference (POD)" between the X and Y dipoles, which has not been measured 
in step [1]. 
[3] The POD is determined with the help of a calibrator with strong U. It 
is assumed that Axy and Ayx are negligible in this stage, and that V = 0. 
If this assumption is incorrect, this will translate into a spurious V in later 
observations. 
[4] Finally, the estimated dipole error values are assumed to be stable during 
the observations, which may take several hours. Instrumental effects like 6 and 
$ will usually be stable to 0.01%, and dipole gains and the POD to 0.1%, but 
the dipole phases will vary by a few percent at least, due to the atmosphere. 
At the lower frequencies, there will also be ionospheric Faraday rotation. 

Thus, even if the polarisation of the calibrators were known to high accuracy, 
the dipole errors could be determined with confidence, but the error variability 
would still be the limiting factor. A possible solution may be the use of 
SELFCAL, which implies continuous calibration during the observations. But 
the he introduction of more source parameters (polarisation) into a SELFCAL 
model may not be helpful for convergence to the correct result. 

THE USE OF REDUNDANT BASELINES 

Redundancy calibration (see Noordam & De Bruyn, 1982) is a way to estimate 
the four types of dipole errors without the help of a tentative SELFCAL 
model of the observed object. The method is based on the observation that, 
if two interferometers have the same baseline length and orientation, and 
look at the same object with the same beam, bandpass and dipole position 
angles, their measured outputs should be identical if there are no instrumental 
errors. If there is sufficient redundancy in the array, it is possible to find a 
solution for dipole errors of the various telescopes relative to each other. But 
since it is a comparative method, absolute offsets of gain and ellipticity, and 
absolute gradients over the array for the phase and the dipole angle have to be 
determined in some other way, e.g. with the help of a known calibrator or a 
SELFCAL model. 

For parallel dipoles (++), the redundancy solutions for the X- dipoles 
and the Y-dipoles are independent, which means that they have different 
unknown absolute offsets (see fig la) . Since these include the unknown phase 
offset difference (POD) and the gain offset difference mentioned before, 
the calibration accuracy will still be limited by our uncertainty about the 
polarisation characteristics of calibrator sources. But at least the use of 
redundancy will reduce the variation during the observations of the absolute 
error values by a factor \/I5, and any SELFCAL models will have less freedom 
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to converge to the wrong result, because of the reduced number of free 
parameters. 

Further improvement may be achieved by rotating the dipole-units of some 
of the telescopes by 45 degr. Although the individual interferometers will no 
longer be redundant, the Stokes parameters (I,Q,U,V) measured by equal 
baselines must be equal. It turns out that for "crossed" dipoles (+x) there 
is a single combined solution for the X- and Y-dipoles, thus eliminating the 
troublesome offset- differences (see fig lb). 

H 1 1—1 1 1 0> 1 1 1—I 1 1 

•• TELESCOPE POSITION » TELESCOPE POSITION 

Fig. 1. Illustration of the nature of the absolute errors that cannot 
be determined with redundancy calibration, for the case of parallel 
dipoles (left) and crossed dipoles (right). For the latter, a single combined 
solution exists for both X- and Y-dipoles, eliminating the "offset-
difference" problems. 

In principle, we are now in a very favourable position: not only is the accurate 
calibration of the various dipole errors much less dependent on our knowledge 
of the polarisation of the calibrator source, but also the number of degrees of 
freedom on the SELFCAL model has been reduced to a minimum. Absolute 
gain and phase offsets may now be eliminated by dividing by I. The resulting 
model-independent values of Q/I, U/I and V/I will only depend on 
variations of "mechanical" quantities like absolute ellipticity and dipole angle 
gradient over the array, which will very likely be stable to better than 0.01%. 

Unfortunately, there is a problem. Although the solution with crossed dipoles 
may be perfectly consistent, it is degraded by interactions between the two 
real errors (dipole angle and gain), and also between the two imaginary ones 
(phase and ellipticity). Simulations show, that the estimated errors (of all 
four types) for the X- and Y-dipoles per telescope are wrong by equal but 
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opposite amounts. Because in the case of the dipole angle errors, it is as if the 
two perpendicular dipoles per telescope are forced apart, the effect is called the 
"Samson-effect", after the Biblical hero who forced the pillars apart and caused 
the temple to come crashing down. At the time of this conference, no "Delilah-
strategy" has been found to deal with the Samson-effect, and it may or may 
not be fundamental. The Samson-effect does not occur for parallel dipoles, 
which may be seen from the fact that equations (5) and (6) contain only two 
of the four types of dipole errors. 

DISCUSSION 

It is clear that the single redundancy solution for all X- and Y-dipoles, is 
potentially very powerful, and may lead to polarisation measurements with 
a very high accuracy. But even if the Samson-effect proves fundamental, 
and crossed dipoles cannot be used, redundant spacing calibration will be an 
improvement over current practice. 

The investigation is not finished. There is an, as yet unexplored, intermediate 
case, where the dipoles are parellel, but the object has strong linear U 
polarisation. The resulting signal strength in Mxy and Myx gives a better 
solution than normally with parallel dipoles, but the case is not very general. 

Effects like instrumental polarisation for off-axis objects have also not been 
taken into account yet. Crossed dipoles may introduce undesirable effects here, 
which partly negate the better calibration of dipole errors. In that case, the 
most promising application will be variability measurements of the quantities 
Q/I, U/I and V/I in on-axis compact objects. 
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Peter Dewdney: Since the Redundancy Solution for antenna gains in the 
WSRT must be done for each increment of hour angle, and each such solution 
may produce an offset of the centroid of emission, what method do you use in 
the absence of a model (model independent) to tie together the solutions at 
different hour angles? 
J. Noordam: We have to use a model, unfortunately. But thanks to the 
redundancy constraint, we only have to solve for one independent gain and 
phase error per HA-cut rather than 14 (the number of telescopes). 

Ray Norris: An alternative approach to determine the PZD (and that 
adopted on the A.T.) is to fire a noise diode at an intermediate position angle 
and continuously measure the phase difference between the X and Y dipoles. 
This at least removes the instrumental problem. 
Jan Noordam: Yes, but not the atmosphere, and anything that happens in 
the telescope before injection (e.g. standing waves). Moreover, the injection 
process itself may introduce errors that are not in the data. Don't forget that 
we are trying to reach 0.01% accuracy, which is only possible by using the 
object itself. 
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