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Uniqueness of Almost Everywhere
Convergent Vilenkin Series

W. R. Wade

Abstract. D. J. Grubb [3] has shown that uniqueness holds, under a mild growth condition, for Vilen-

kin series which converge almost everywhere to zero. We show that, under even less restrictive growth

conditions, one can replace the limit function 0 by an arbitrary f ∈ Lq, when q > 1.

1 Introduction

Let N := {0, 1, 2, . . .}, and P := {p0, p1, . . . } be any sequence of integers which

satisfies pn ≥ 2. For each n ∈ N set Pn := p0 p1 · · · pn−1, where the empty product

is by definition 1. The multiplicative Vilenkin group associated with P is the set G :=

{(x0, x1, . . . ) : xk ∈ N and 0 ≤ xk < pk} together with the operation

x
•

+ y := (x0 ⊕ y0, x1 ⊕ y1, . . . ),

where x = (x0, x1, . . . ), y = (y0, y1, . . . ) and, for each k, xk ⊕ yk represents the sum

of xk and yk modulo pk. The dual group of G is the system (wn, n ∈ N), defined for

x = (x0, x1, . . . ), by

(1) wn(x) :=

∞∏

k=0

exp
( 2πinkxk

pk

)
,

where the coefficients nk are integers which satisfy 0 ≤ nk < pk and n =

∑
∞

k=0 nkPk

(see Vilenkin [4] for details). When pk := 2 for all k, the group G is called the dyadic

group and the characters wn are called the Walsh system. When pk = O(1), the system

{wn} is called a (multiplicative) Vilenkin system of bounded type.

It is well known that G is a compact group for each collection of radices P, and

that the corresponding Vilenkin system {wn} is a complete orthonormal system on

G. Moreover, the group G can be identified with the interval [0, 1) by taking an

x = (x0, x1, . . . ) ∈ G to the number

x :=

∞∑

k=0

xkP−1
k+1

.

Under this identification, Haar measure on G is taken to Lebesgue measure on [0, 1).
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A Vilenkin series is a series of the form S :=
∑

∞

k=0 akwk, where ak is some sequence

of complex numbers. For each x ∈ G and n ∈ N, the partial sums of a Vilenkin series

S are defined by

Sn(x) :=

n−1∑

k=0

akwk(x).

The partial sums SPn
form a martingale in L1(G) which allows one to use martingale

convergence theorems on Vilenkin series.

A Vilenkin-Fourier series S f is a Vilenkin series whose coefficients can be com-

puted by the following formula for some integrable function f :

ak = f̂ (k) :=

∫

G

f wk dm, k ∈ N.

We shall prove the following theorem.

Theorem 1 Suppose that S is a Vilenkin series, {nν} is a subsequence of positive inte-

gers, f ∈ Lq(G) for some q > 1, and E is a countable subset of G. If

(2) lim
ν→∞

SPnν
(x) = f (x)

for almost every x ∈ G,

(3) lim sup
ν→∞

|SPnν
(x)| < ∞, x /∈ E,

and if

(4) lim
n→∞

P−1
n SPn

(x) = 0, x ∈ E,

then S is the Vilenkin-Fourier series of f .

Theorem 1 is known when f is a finite-valued, integrable function and (2) holds

off a countable set rather than almost everywhere (see D. J. Grubb [3], and Bokaev

and Skvortsov [1]). Grubb [3] has also shown that if SPn
→ 0 almost everywhere on G

and (3) holds everywhere on G, then S is the zero series. Clearly, Theorem 1 contains

all these results when f ∈ Lq, q > 1, i.e., shows that uniqueness holds under mild

growth conditions for simultaneously almost everywhere convergence and nonzero

limits.

The proofs of Grubb and Bokaev and Skvortsov rely heavily on differentiation

theory and do not seem to generalize to the case when the almost everywhere limit

is nonzero, i.e., cannot be used to prove Theorem 1. Our proof is more primitive (a

proof by contradiction), but reveals the essential nature of the growth condition (4)

(see the lemma in Section 2).
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2 Preliminaries

For each nonnegative integer n, define intervals of rank n on G by I0(0) := G, and

In( j) :=
{

x = (x0, x1, . . . ) ∈ G :

n−1∑

k=0

xkP−1
k+1

=

j

Pn

}

for j = 0, 1, . . . , Pn − 1, n = 1, 2, . . . . Recall that {In(0)}∞n=0 is a nested sequence

of subgroups of G which forms a neighborhood base at the origin, and for each n,

{In( j)}Pn−1
j=0 is a collection of pairwise disjoint compact sets in G whose union is G

(see [4]). In particular, given x ∈ G and n ∈ N, there is a unique 0 ≤ j < Pn such

that x ∈ In( j). We shall denote this interval by In(x).

Denote the Haar measure of a subset E of G by m(E) and Lebesgue measure of

a subset E of [0, 1) by |E|. Notice that under the identification of G with [0, 1), the

interval In( j) corresponds to the interval [ jP−1
n , ( j+1)P−1

n ). In particular, m(In( j)) =

P−1
n for 0 ≤ j < Pn and n ∈ N.

It is well known that the partial sums of the Vilenkin-Fourier series of an inte-

grable f satisfy

(5) (SPn
f )(x) = Pn

∫

In(x)

f dm

for n ∈ N. Hence by Lebesgue’s differentiation theorem, SPn
f → f almost every-

where, in Lq(G) norm, q ≥ 1, and since the indefinite integral is absolutely continu-

ous, we also have

(6) lim
n→∞

P−1
n (SPn

f )(x) = 0 for all x ∈ G.

To prove Theorem 1, we shall construct a sequence of intervals on which SPn
is

nonzero. The following result shows that under hypothesis (4), this construction of

intervals can proceed indefinitely, and can do so to avoid any unwanted point x∗.

Lemma Let x∗ ∈ G and S be a Vilenkin series which satisfies (4) at x = x∗. If SPn0

is nonzero on some I0 := In0
(y0), then there is an interval J ⊆ I0 of rank m0 such that

x∗ /∈ J and SPm0
is nonzero on J.

Proof If x∗ /∈ I0, there is nothing to prove. If x∗ ∈ I0, then I0 = In0
(x∗). By

hypothesis SPn0
is nonzero on I0. Since each Vilenkin function wk whose index k

satisfies k < Pn0
is constant on I0, it follows that SPn0

(x) =: α0 for all x ∈ I0, where

α0 is some fixed nonzero constant. In particular, if β0 := α0/Pn0
, then

(7) SPn0
(x) = Pn0

β0 for all x ∈ I0.

For each nonnegative integer k, let Ik := In0+k(x∗) and let jk be the index which

satisfies Ik+1 = In0+k+1( jk). Set Wk := {ℓ : In0+k+1(ℓ) ⊂ Ik, ℓ 6= jk}. Then Wk

contains exactly pn0+k − 1 integers, x∗ /∈ In0+k(ℓ) for all ℓ ∈ Wk, and

(8) In0+k = In0+k+1 ∪
⋃

ℓ∈Wk

In0+k+1(ℓ).
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For each ℓ ∈ Wk, fix a point xℓ in In0+k+1(ℓ). Suppose for a moment that ν is an

integer which satisfies Pn0+k ≤ ν < Pn0+k+1. By (8) and (1), the set {wν(x) : x = x∗

or x = xℓ for some ℓ ∈ Wk} contains every pn0+kth root of unity. Since, for any p,

the sum of pth roots of unity is zero, it follows that wν(x∗) = −
∑

ℓ∈Wk
wν(xℓ) for

each ν ∈ [Pn0+k, Pn0+k+1). In particular

(9) SPn0+k+1
(x∗) − SPn0+k

(x∗) = −
∑

ℓ∈Wk

(SPn0+k+1
− SPn0+k

)(xℓ).

Suppose that the lemma is false. Since x∗ /∈ In0+k+1(ℓ), it follows that

(10) SPn0+k+1
(x) = 0, x ∈ In0+k+1(ℓ)

for all ℓ ∈ Wk. We shall use this to prove that

(11) SPn0+k
(x∗) = Pn0+kβ0

for k = 0, 1, . . . . Notice that this will lead to a contradiction. Indeed, by (11),

lim
k→∞

SPn0+k
(x∗)

Pn0+k

= β0 6= 0

contrary to hypothesis. It remains to prove (11).

We shall prove (11) by induction on k. By (7), (11) holds for k = 0. Suppose that

(11) holds for some k ≥ 1. Fix ℓ ∈ Wk and x ∈ In0+k+1(ℓ). By (10),

0 = SPn0+k+1
(x) = (SPn0+k+1

(x) − SPn0+k
(x)) + SPn0+k

(x).

Since SPn0+k
is constant on In0+k(x∗), it follows from this identity and (11) that

SPn0+k+1
(x) − SPn0+k

(x) = −SPn0+k
(x∗) = −Pn0+kβ0.

Substituting x = xℓ into this last identity, and summing over ℓ ∈ Wk, we have by (9)

that

(12) SPn0+k+1
(x∗) − SPn0+k

(x∗) = −
∑

ℓ∈Wk

(−Pn0+kβ0) = (pn0+k − 1)Pn0+kβ0.

Combining (11) and (12), we finally obtain

SPn0+k+1
(x∗) = (pn0+k − 1)Pn0+kβ0 + SPn0+k

(x∗) = pn0+kPn0+kβ0 = Pn0+k+1β0.

Thus (11) holds for all k ≥ 0.
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3 A Proof of Theorem 1

For simplicity, we assume that nν = n. Obvious modifications change this proof into

one which holds for subsequences. Suppose to the contrary that S is not the Vilenkin-

Fourier series of f . Then the series S − S f is not the zero series, i.e., we can find an

integer n0 such that SPn0
− SPn0

f is nonzero on some interval In0
of rank n0.

Let E := {x1, x2, . . . }. Then (4) holds for x = x1, and it follows from (6) that (4)

holds for the series S − S f at x = x1. Hence by the lemma, we can choose an interval

Im0
of rank m0 > n0 such that x1 /∈ Im0

and SPm0
− SPm0

f is nonzero on Im0
. We claim

that there is an interval In1
, of rank n1, such that In1

⊆ Im0
and

(13) |SPn1
(x)| > 1 + |(SPn1

f )(x)| for all x ∈ In1
.

Suppose the claim is false. Then given any interval J ⊆ Im0
, of rank j ≥ m0, there

is at least one point x ∈ J such that |SP j
(x)| ≤ 1 + |(SP j

f )(x)|. But SP j
is constant on

intervals of rank j, hence

(14) |SP j
| ≤ 1 + |SP j

f |

on J for all j ≥ m0 and all J ⊆ Im0
. Hence (14) holds everywhere on Im0

for all

j ≥ m0.

Since SP j
f → f in Lq(G) norm, (14) implies that ξ j := SP j

− SP j
f is bounded

in Lq(Im0
) norm. Since by (2), ξ j → f − f = 0 almost everywhere on Im0

, as

j → ∞, it follows from a generalized Bounded Convergence Theorem (see [5]) that∫
Im0

ξ j dm → 0 as j → ∞. But by orthogonality and the fact that ξm0
is constant on

Im0
, we have

0 = lim
j→∞

∫

Im0

ξ j dm =

∫

Im0

ξm0
dm = m(Im0

)ξm0
(y0)

for any y0 ∈ Im0
. Therefore, ξm0

:= SPm0
−SPm0

f is zero on Im0
, contrary to the choice

of m0. This contradiction proves (13).

Inequality (13) contains two consequences which hold everywhere on In1
:

|SPn1
| > 1 + |SPn1

f | ≥ 1 + 0 = 1,

and

|SPn1
− SPn1

f | ≥ |SPn1
| − |SPn1

f | > 1 > 0.

Thus we have found an interval In1
⊂ In0

such that x1 /∈ In1
, |SPn1

| > 1, and SPn1
−

SPn1
f 6= 0 on In1

. Continuing this construction, we generate nested intervals Ink
such

that

(15) xk /∈ Ink

and

(16) |SPnk
| > k on Ink

.

Since the intervals Ink
are compact, there is a point x0 which belongs to all Ink

. By (16),

then, lim supk→∞
|SPnk

(x0)| = ∞. In view of (4), this forces x0 ∈ E, i.e., x0 = xk for

some k. Thus xk ∈ Ink
, which contradicts (15).
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