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Abstract

Surface ozone is an air pollutant that contributes to hundreds of thousands of premature deaths annually. Accurate
short-term ozone forecasts may allow improved policy actions to reduce the risk to human health. However,
forecasting surface ozone is a difficult problem as its concentrations are controlled by a number of physical and
chemical processes that act on varying timescales. We implement a state-of-the-art transformer-based model, the
temporal fusion transformer, trained on observational data from three European countries. In four-day forecasts of
daily maximum 8-hour ozone (DMA8), our novel approach is highly skillful (MAE = 4.9 ppb, coefficient of
determination R2 = 0:81) and generalizes well to data from 13 other European countries unseen during training
(MAE = 5.0 ppb, R2 = 0:78). The model outperforms other machine learning models on our data (ridge regression,
random forests, and long short-term memory networks) and compares favorably to the performance of other
published deep learning architectures tested on different data. Furthermore, we illustrate that themodel pays attention
to physical variables known to control ozone concentrations and that the attentionmechanism allows themodel to use
the most relevant days of past ozone concentrations to make accurate forecasts on test data. The skillful performance
of the model, particularly in generalizing to unseen European countries, suggests that machine learning methods may
provide a computationally cheap approach for accurate air quality forecasting across Europe.

Impact Statement

Ozone is a harmful air pollutant that contributes to hundreds of thousands of deaths every year. Making accurate
short-term forecasts of ozone is necessary to provide the public with timely and accurate air quality warnings.We
propose a forecasting system for ozone air pollution using a transformer model, a machine learning architecture
that allows accurate and computationally cheap forecasts of ozone using meteorological variables as inputs. The
model performs skillfully in countries across Europe, highlighting its transferability.

1. Introduction

Ozone is a secondary pollutant that is not directly emitted by anthropogenic activities but formed in the
troposphere via a series of photochemical reactions (Finlayson-Pitts and Pitts, 1997). Once formed, ozone
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can be transported over long distances and across continents (Lin et al., 2015). There are a number of
relationships between ozone and other variables, such as other pollutants and temperature (Laña et al.,
2016), which are, for example, relevant for severe ozone pollution during major heat waves (Archibald
et al., 2020). Ozone at the surface is estimated to contribute to between 365,000 and 1,100,000 premature
deaths worldwide annually (Anenberg et al., 2010; Silva et al., 2013; Malley et al., 2017; Murray et al.,
2020), primarily by causing cardiovascular and respiratory diseases (Filippidou and Koukouliata, 2011;
Kim et al., 2020; Sun et al., 2022). The impacts of ozone pollution have been linked to both long- and
short-term exposure (Bell et al., 2004; Nuvolone et al., 2018).

Ozone air pollution is both a global and a local issue. Background levels of ozone in remote areas often
exceed guidelines set by the World Health Organization (WHO), while local ozone concentrations in
urban and peri-urban areas can far exceed these guidelines. The WHO estimates that 99% of the world’s
population lives in areas where pollutant concentrations routinely exceed guidelines (WHO and ECE,
2021).

Due to the phytotoxicity of ozone, the negative effects of ozone air pollution on vegetation,
ecosystems, and crop yields are also significant (Emberson et al., 2001; Fowler et al., 2009; Emberson,
2020). This damage leads to both considerable economic losses from reduced crop yields (Burney and
Ramanathan, 2014), and the potential for increased climate change as damaged vegetation has a reduced
capacity to sequester carbon dioxide from the atmosphere (Sitch et al., 2007; Ainsworth et al., 2012;
Lombardozzi et al., 2015; Wang et al., 2016; Oliver et al., 2018).

There is strong evidence that ozone levels increase with increasing temperature (Porter et al., 2015),
leading to the suggestion that under climate change, some regions will become more polluted with ozone
(Bloomer et al., 2009; Rasmussen et al., 2013; Schnell et al., 2016; Brown et al., 2022), in turn leading to
increased risk to human health. This effect is known as the ozone “climate penalty” (Rasmussen et al.,
2013). The risks of increased ozone are compounded as extreme ozone episodes are often accompanied by
high temperatures, leading to a combination of risks that further increase mortality (Dear et al., 2005;
Filleul et al., 2006; Lei et al., 2012). These compound events are also associated with increased levels of
other pollutants, such as PM2:5, and therefore, understanding and predicting their impact is a fruitful
avenue to mitigate risks to health (Galindo et al., 2011; Schnell and Prather, 2017).

In addition to chemical effects under climate change, the lifetime of ozone, which is of the order of
weeks in the free troposphere (Jacob et al., 1996; Fiore et al., 2002), means that transport andmeteorology
are also important when determining local ozone levels (Thompson et al., 1996; Zhang et al., 2008). For
example, transport between North America and Europe has been purported to lead to increased ozone
concentrations in Europe (Li et al., 2002; Derwent et al., 2004).

Regional scale features such as blocking result in extended periods of stagnant conditions, which may
also lead to increased ozone (Garrido-Perez et al., 2019; Otero et al., 2021). These meteorological effects
typically cause changes in other environmental variables, leading to compound effects, such as the
combined effect of heat waves and pollution (Li et al., 2020).

In order to mitigate the impacts of ozone pollution on human health, skillful short-term forecasts of
ozone concentrations, particularly at extrema, would allow preventative government policy, such as
providing air quality warnings (Kelly et al., 2012; Iordache et al., 2015). To reduce ozone concentrations,
a better quantitative understanding of the causes and drivers of ozone would provide a basis for
governmental interventions to reduce ozone and hence risk to human health, and provide better
understanding of how ozone may evolve under changing climates (Archibald et al., 2020).

Due to the transport of ozone precursors and the strong diurnal cycle of ozone concentrations, it was
recognized that severe ozone episodes can last for up to 8 hours. In 1997, the United States Environmental
ProtectionAgency updated their guideline ozonemetric to the dailymaximum8-hourmean concentration
(DMA8) (Chameides et al., 1997; EPAU, 1997). Since this decision, the DMA8metric has typically been
used to evaluate the risk of ozone pollution to human health and is used by the WHO to set target ozone
concentrations (WHO and ECE, 2021). This metric has been found to be more strongly associated with
adverse health outcomes such as respiratory and cardiovascular diseases than other metrics (Bell et al.,
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2005; Yang et al., 2012; Li et al., 2018). As the most widely used daily metric for ozone, including by the
WHO (WHO and ECE, 2021), it is DMA8 that we focus on.

1.1. Air pollution forecasting

Traditionally, numerical chemical transport models (CTMs) have been used for air pollution forecasting.
However, these models are typically highly computationally expensive, and resolution is often an issue
requiring parameterizations, which can introduce inconsistencies in model predictions (Weng et al.,
2023). Machine learning (ML) may provide a complement to existing numerical CTMs and simple
statistical approaches to modeling air pollution, and climate phenomena in general, as ML allows
automatic learning of the behavior of a complex system from data.

In this work, we evaluate the short-term forecasting skill of a transformer-basedML architecture across
a range of European countries. The model makes 4-day forecasts of ozone in both urban and rural
environments. We build on existing work by applying ML to forecast ozone air pollution, by applying a
novel transformer-based method, and by evaluating the skill of the method across a wider range of test
data than has been studied previously.

Previous studies focusing on forecasting surface ozone with ML have largely focused on predicting
ozone in specific regions, often with relatively short time series of data. A variety of methods have been
used, including bias-correctedCTMs (Neal et al., 2014; Ivatt and Evans, 2020), linear regression (Olszyna
et al., 1997; Thompson et al., 2001), and feed-forward neural networks (Comrie, 1997; Cobourn et al.,
2000).More recently, recurrent neural networks (RNNs) and convolutional neural networks (CNNs) have
been used in an effort to better capture spatial and temporal dependencies (Biancofiore et al., 2015; Eslami
et al., 2020; Ma et al., 2020; Sayeed et al., 2020; Kleinert et al., 2021). These studies illustrate the
promising advances in short-term ozone forecasting possible with ML methods, in some cases outper-
forming state-of-the-art CTMs (Table 1).

To our knowledge, this is the first study that uses a purely transformer-based model to make accurate
forecasts at a large number of stations across different environments and countries, and furthermore, that

Table 1. The relative performance of different ML and numerical approaches to ozone forecasting

Method (paper) r (Pearson) RMSE/ppb Stations

Chemical transport models
GEOS-Chem (Ivatt and Evans, 2020) 0.48 16.2 2,200
AQUM (Neal et al., 2014) 0.64 20.9 61
Bias-corrected AQUM (Neal et al., 2014) 0.76 16.4 61
Bias-corrected GEOS-Chem (Ivatt and Evans, 2020) 0.84 7.5 2,200
ML methods
DRR (Debry and Mallet, 2014) 0.70 6.3 729
CNN (Sayeed et al., 2020) 0.77 8.8 21
CNN (Eslami et al., 2020), 0.79 12.0 25
RNN (Biancofiore et al., 2015) 0.86 12.5 1
CNN-transformer (Chen et al., 2022) NA 7.8 14
Our dataset 1,012
Persistence 0.67 10.9
Ridge regression 0.69 10.8
Random forest 0.80 9.0
LSTM 0.84 8.3
TFT 0.91 6.6

Note.Methods in italics were tested on our dataset, while others used different data. The difficulty of comparing methods tested on different datasets is
shown by the varying RMSE values.
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evaluates the capacity of anMLmodel tomake forecasts on data drawn from countries outside the training
dataset. In addition, as far as we are aware, only one other study has applied an architecture with a
transformer-based component to ozone forecasting (Chen et al., 2022).

2. Methods and Data

2.1. Model

Transformers have been shown to be highly effective in sequential domains such as natural language
processing (Brown et al., 2020; Ji et al., 2021), in part due to their ability to attend to long-term
dependencies in the data. Therefore, a transformer-based model may provide an intrinsic advantage over
otherMLmodels (such as random forests) and convolutional and recurrent neural networks that have been
previously explored in the ozone forecasting literature (Biancofiore et al., 2015; Eslami et al., 2020;
Kleinert et al., 2021).

Therefore, to complement existing numerical CTMs and ML methods for ozone forecasting, we
implement a state-of-the-art transformer-based deep learning architecture, temporal fusion transformer
(TFT) (Lim et al., 2021). The TFTcombines gated residual networks, variable selection networks, a long
short-termmemory (LSTM) encoder–decoder layer, and multi-head attention and is described in detail in
Appendix A.5.

The TFT is able to ingest both static (e.g., local population density, altitude, and landcover) and
dynamic (e.g., temperature, wind speed, and cloud cover) features to make forecasts. In order to extract
prediction intervals from the TFT, a quantile loss function was implemented (Appendix A.7), which
provides a direct means to estimate forecast uncertainty as part of our methodology (Lim et al., 2021).
Where the median quantile is predicted in the quantile loss, the loss is the mean absolute error loss. The
quantile loss function is described in more detail in Appendix A.7.

Despite being a relatively computationally expensiveMLmethod, training the TFTon our dataset took
less than an hour using 2 Tesla V100 GPUs. Once trained, making consecutive 4-day forecasts for a year
of data across 1012 individual stations takes around a minute. This illustrates the substantial time savings
compared to CTMs. Hyperparameters were optimized using Bayesian optimization, a method to robustly
find optimal hyperparameters (e.g., number of layers and learning rate, as shown in Table A2) from ranges
of possible values (Mockus, 2012). Hyperparameter optimization was carried out on awithheld validation
dataset, which was then not used subsequently for model testing.

2.2. Data

The Tropospheric Ozone Assessment Report (TOAR) dataset (Schultz et al., 2017) was selected as a
suitable dataset for our forecasting model due to its global coverage and high fidelity and quantity of data,
with daily measurements stretching back to the 1980s in some locations. The dataset is hosted by the
Jülich Supercomputing Centre and provides around 2.6 billion observations of ozone concentrations in
total.

Data from three European countries were collected: the UK, France, and Italy. These were chosen to
represent three different domains in order to test whether a single model could be trained tomake accurate
forecasts across domains. Data from all months of the year and from urban and rural environments were
included in our dataset. This dataset therefore provides a larger sample of different environments than
have been studied in previous work (Biancofiore et al., 2015; Kleinert et al., 2021), with data from 1997 to
2014, from 1012 individual stations. Our final dataset contains more than 2 million individual days
of data.

We processed the data to select features relevant to ozone to use as predictive inputs to the MLmodel.
As the TOAR dataset is designed to include variables relevant for ozone, this streamlined data processing.
The data include both static and dynamic features relevant to ozone concentrations. The static features
relate to characteristics of a particular station, such as the local population density, while the dynamic
features are environmental variables that change through time, such as temperature. The inputs used are
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described in full in Table A1. ML algorithms typically require clean datasets without missing values. We
therefore removed days of data with missing values and compared summary statistics of the two datasets
to ensure this did not introduce bias. Furthermore, if we had missing days of data during a particular
25-day sequence (as used for forecasting by the model), the sequence was dropped. Due to the large size
and relative completeness of our dataset, imputing missing values with algorithms such as k-nearest
neighbors (Batista et al., 2002) was deemed unnecessary. By simply removing missing data, we removed
the risk of bias from data imputation. All dynamic features were scaled with robust scaling (Appendix
A.1), and both planetary boundary layer height and ozone were log-transformed to improve model
performance (Jayalakshmi and Santhakumaran, 2011).

To train, validate, and test our models, we first optimized hyperparameters (e.g., number of layers and
learning rate) on data from the year 2013, training on all non-test years. The computational expense of
Bayesian optimization for hyperparameter tuning meant that we were limited to optimizing the hyper-
parameters on a single year of validation data.We then trained this fixed architecture on 5 different sets of
training data using 1 year at a time as the test data (2008 to 2012) to evaluate the predictive performance of
the model across a range of years. For example, when testing on 2008 data, all other years (1997 to 2014,
excluding 2008 and 2013) were used as training data, and themodel skill was then evaluated on 2008. The
same procedure was followed for years 2008 to 2012, and then the model skill metrics were averaged
across these five test years to give final model skill metrics.

This temporal splitting of data resulted in an approximately 80%-10%-10% (e.g., testing on 2012,
hyperparameter optimization on 2013, and training all other years) split between training, validation, and
test data. The previous 21 days of station-specific observations of ozone and dynamic covariates and
4 days of future dynamic covariate data (emulating available weather forecasts at the time) were used to
make ozone forecasts up to 4 days ahead at the same station. 21 days was chosen as a suitable trade-off
between computational expense and performance, retaining the capacity to account for extended air
quality events. The sensitivity of using more previous time-steps of data as inputs to the model was found
to be small beyond using the previous 21 days (Appendix A.2).

3. Results and Discussion

3.1. Forecasting ozone

When forecasting ozone concentrations, the TFT was skillful (MAE = 4.9 ppb, R2 = 0:81, RMSE = 6.6
ppb, r = 0.91). These predictions, which use previous ozone observations and ERA5 meteorological
reanalysis data as a proxy for both previous and forecasted meteorological data (Table A1), are therefore
suitable for short-term future forecasts withmeteorological forecasts as input and also for infillingmissing
ozone values in historical datasets.

While we cannot make direct comparisons with all similar methods due to differing test datasets, the
skill of ourmethod compares favorably to otherMLmethods and numerical air quality forecastingmodels
such as AQUM (Neal et al., 2014; Im et al., 2015), especially given the size and variety of our test dataset
(Table 1). In addition, a number of other ML algorithms (ridge regression, random forests, and LSTMs)
were trained and tested on our data to evaluate the relative skill of the TFT.

A correlation plot of TFT predictions on the test set, against observations, is given in Figure 1a. The
model was more accurate than other ML approaches such as random forests and LSTMs and approxi-
mately 40% more accurate than a persistence model (which predicts ozone as the same value as the
previous day ozone) in terms of RMSE (Table 1).

We can further visualize the skill of the TFT by looking at predictions and observations at individual
stations in our dataset. Figure 1b shows the previous days that the attention mechanism in the model used
to inform the predictions, shown by the gray line denoting attention. Themodel pays attention to previous
high ozone days to make future forecasts of high ozone concentrations. Similarly, when forecasting future
low ozone, the model pays attention to previous days of low ozone concentrations (Figure A.6). Figure 1b
also illustrates the prediction intervals generated by the quantile loss function, which are useful to evaluate
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trust in the model. As expected, the prediction intervals generally increase for longer lead times, as shown
in Figure 4.

The TFT’s capacity to make skillful predictions of ozone concentrations at urban and rural stations
(as denoted in the TOAR dataset) was also tested. The TFT performed similarly on both urban and rural
data (MAE = 5.0, R2 = 0:81 andMAE = 4.8, R2 = 0:81, respectively), which suggests that architectures of
this type are able to generalize across these two environments given sufficient training data.

As seen in Table 1, the TFT is the most skillful model on our test data, followed by the LSTM. The TFT
and LSTM are designed to deal with sequential data and are able to learn from large quantities of data,
which likely contributes to thesemodels performing better than othermethods. Ridge regression is a linear
model that likely limits its performance; however, it is computationally cheap and provides direct
interpretability. The TFT and LSTM also outperform the random forest model, a nonlinear tree-based
model. While neural network models are typically not as interpretable as linear models like ridge
regression, the TFT does facilitate interpretability studies that provide insight into the model’s behavior
beyond what is possible in RNNs and LSTMs. Furthermore, the TFT is better adapted to ingesting static
features than other machine learning methods tested.

3.2. Forecasting extreme ozone

Ozone concentrations in Europe tend to peak in spring and summer months, typically between April and
June (Monks, 2000). Making accurate forecasts of high ozone is important as these high ozone
concentrations pose a great threat to health (Bell et al., 2004) and may occur more frequently in some
regions in future climates (Doherty et al., 2013; Orru et al., 2019). We therefore evaluated the skill of the
TFT during these high ozone periods. Figure 2b illustrates that the TFT was able to make reasonably
skillful forecasts on spring and summertime ozone concentrations (MAE = 5.4 ppb, R2 = 0:64). However,
the performance was worse than forecasting on data from the rest of the year (MAE = 4.8 ppb, R2 = 0:85).
The variability of ozone is significantly higher in spring and summer months, which makes accurate
forecasting more difficult, and may require more inputs to the model, such as soil NOx emissions (Porter
and Heald, 2019).

Furthermore, model performance across countries was evaluated during just spring (March, April, and
May) and just summer months (June, July, and August). When testing across countries (Figure 3),
performance in terms of mean absolute percentage error (MAPE), MAE, and R2 was significantly better
for spring than for summer for most countries. The latitude of the country appeared to have little
relationship with R2 or MAPE; however, unsurprisingly, MAE was higher for the countries where ozone

Figure 1. (a) illustrates predictions against observations on 2012 test data for forecasting ozone with the
TFT. The number of data points in each bin is shown by the color bar, using a log scale. (b) shows a 4-day
forecast on test data at a single station. The gray line shows the attention that the transformer is paying to
different days in the time history. The prediction intervals generated with the quantile loss are also shown,
with the 7 different quantiles illustrated by orange shading.
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levels are greater on average in summer. The poorer performance of the model in summer points to
variables affecting ozone in summer months that are unaccounted for in the model. This could be caused
by a number of factors, including the effect of biogenic VOCs (Porter and Heald, 2019; Cao et al., 2022),
or the calculation of planetary boundary layer height in the reanalysis data, as planetary boundary layer
height is driven by convection, a parameterized process. For example, it has recently been shown that the
European Centre for Medium-Range Weather Forecasts’ Integrated Forecast System overestimates
planetary boundary layer height over the Eastern Mediterranean in summertime compared to ceilometer
observations (Uzan et al., 2020).

3.3. TFT generalizes better than other ML approaches

While the improved skill of the TFT in the domain of the data it was trained on (UK, France, and Italy) is
impressive, it is important for production MLmodels to perform accurately on data outside the country

Figure 2. (a) illustrates the performance of the TFTwhen predicting on 2012 test data from 13 European
countries unseen during training. (b) shows that when forecasting on spring and summertime test data,
the performance of the TFT was poorer (MAE = 5.4 ppb, R2 = 0:64) than predicting on the whole year.

Figure 3. (a) illustrates the difference in performance of themodel in different countries, in terms ofMAE,
between spring and summer, while (b) illustrates the same for MAPE. The countries are plotted by the
mean ozone during spring and summer in the country.

Environmental Data Science e43-7

https://doi.org/10.1017/eds.2023.37 Published online by Cambridge University Press

https://doi.org/10.1017/eds.2023.37


or domain that they are trained on. The TFTwas not only better able to perform within the domain of its
training data, it also better generalized to new domains than the other MLmethods, which suggests that
the model is better able to capture the underlying dynamics of the system controlling ozone concen-
trations (Table 2). To evaluate the skill of our model in generalizing to unseen data, we deployed the
model, trained solely on data from the UK, France, and Italy, to make forecasts in a separate test set
comprising 13 other European countries with the same covariates. The model was able to generalize
impressively on data from these unseen countries when evaluated on a single year of test data (R2 = 0:78,
MAE = 5.0 ppb, RMSE = 6.6 ppb), as shown in Figure 2a. This suggests that the model could act as a
Europe-wide predictive model, without requiring retraining. The predictive uncertainty for the model
on the unseen countries was marginally wider but, similar to the training countries, was in line with the
skill of the predictions. Furthermore, the predictive uncertainty was reasonably well calibrated with the
accuracy of the model—in countries where the model performed poorly, the predictive uncertainty was
larger (Figure 4).

Figure 4. (a) shows the width of prediction intervals generated by the model on the test data for the
countries used for training (UK, France, Italy) and for test data from the unseen European countries. The
prediction intervals are marginally wider for the unseen countries, in line lower model performance in
these countries. (b) illustrates that the prediction intervals increase as the MAE of the predictions
increases, consistent with well-calibrated prediction intervals.

Table 2. The relative performance of different ML approaches to ozone forecasting for different
domains within our data

Performance on UK, IT, FR R2 RMSE / ppb MAE/ppb

Persistence 0.53 10.9 8.8
Ridge regression 0.54 10.8 8.6
Random forest 0.66 9.0 6.9
LSTM 0.70 8.3 6.1
TFT 0.81 6.6 4.9
Rest of Europe
Persistence 0.55 9.3 7.3
Ridge regression 0.21 12.5 9.9
Random forest 0.14 12.8 10.1
LSTM 0.68 8.5 6.2
TFT 0.78 6.6 5.0

Note. The values show the ability of the LSTM and the TFT to generalize well to new countries across Europe, while other methods fail to generalize as
effectively. Detailed results for each testing country are available in Appendix A.3.
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In previous work, when testing in a new domain, the similarity of the domain to the training domain
appeared to significantly affect performance. This is likely due to correlations learned from the training set
that do not hold in the new domain, or country. Such inconsistencies in the relationships point to an issue
related to the models being able to identify the generic causal drivers of ozone, rather than spurious
correlations specific to individual locations (Runge et al., 2019). At least, we empirically find that the TFT
performance is more robust to being deployed away from its spatial training domain than, for example,
random forest models, which often poorly generalize to out-of-distribution data. We highlight this
important result for two of the unseen European countries, Spain and Poland, to illustrate the relative
skill in terms of R2 different methods in Figure 5a.

4. What is the TFT Paying Attention To?

We extracted feature importances, derived from the weights of attention mechanism in our ozone
forecasting model, to examine which dynamic features are the most important for the model when
making forecasts with our data (Figure 6). These importances correspond well with expected physical
drivers: Both temperature and planetary boundary layer height are key variables (Porter andHeald, 2019).
The skillful performance of the TFT suggests that good forecasting skill can be achieved with only the
meteorological variables used by the model, which may simplify implementation of this method
operationally, similar to recent results using random forests (Weng et al., 2022). Static feature importances
are shown in Figure A.7.When training and testing themodel without static features, we found only slight
degradation of model performance (R2 = 0:81, MAE = 5.0 ppb, RMSE = 6.7 ppb), suggesting that
the inclusion of these variables is not essential for high model skill, further simplifying operational
implementation.

5. Conclusions

Despite decades-long model development, ozone remains challenging to forecast with existing numer-
ical methods. Our ML model, the TFT, makes skillful forecasts of ozone concentrations at stations
across Europe. The model requires only static features and dynamic variables available from weather
forecasts and could therefore feasibly be used operationally to forecast ozone at observational stations.
The model is able to make accurate forecasts across environments and performs reasonably well when

Figure 5. (a) shows the accuracy of different ML methods on the test data for the countries used for
training (UK, France, Italy) and for a pair of unseen countries (Spain and Poland). The performance of
the LSTM and the TFT is relatively stable when forecasting in new countries, while the random forest and
ridge regression models perform poorly. (b) shows a density plot of ozone concentrations observed in the
test data for the countries used for training (UK, France, Italy) and for 2 of the 13 unseen test countries
(Spain and Poland).

Environmental Data Science e43-9

https://doi.org/10.1017/eds.2023.37 Published online by Cambridge University Press

https://doi.org/10.1017/eds.2023.37


predicting extrema. The model is able to generalize well to data from 13 European countries unseen in
training, outperforming other ML methods in these new domains. This suggests, in combination with
feature importances, that the model is learning sound physical relationships in the data. The model
provides a promising, computationally cheap method to make accurate forecasts of ozone across
Europe.

However, further work is required to ensure the model can make accurate predictions of extrema, such
as explicitly encoding known physical relationships in the model, and furthermore that operational
forecasts at short lead times can be used instead of reanalysis data. In addition, while we have
demonstrated that the model generalizes well to other European countries, it would be a worthwhile
question to explore how far the model can be taken across to countries and world regions with even more
pronounced differences in meteorology and emission regulations. However, an initial extension of this
work could be to evaluate the skill of the model in locations with similar ozone levels and meteorological
conditions, such as other regions in the Northern Hemisphere midlatitudes.
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Figure 6. The variable importances of the TFT when making forecasts, derived from the weights of the
attention mechanism. These are largely in line with expected physical relationships.
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A. Appendix

A.1. Features from the TOAR dataset
Table A1 describes the data used as features for the machine learning model. The features are split into static and dynamic features.
Static features describe the characteristics of a particular station, while dynamic features vary through time. Due to the large size and
relative completeness of our dataset, imputing missing values was deemed unnecessary, and rows with missing data were dropped.
The way these features are ingested by the TFTare described by Figure A.4. The static features are used as shown, and the dynamic
features (apart from ozone) are treated as known future inputs. The reanalysis data are taken in this case to be a proxy for a
meteorological forecast, which would be used operationally. All features were scaled with robust scaling (Equation A.1), following
testing with standard and min–max scaling on the validation data. Ozone was log-transformed, as was planetary boundary layer
height, which improved model performance.

Scaled =
original�median

IQR
(A.1)

Table A1. Relevant data extracted from the TOAR database

Variable name Description

Static
station type Characterization of site, e.g., “background,” “industrial,” and “traffic”
landcover The dominant IGBP landcover classification at the station location extracted

from the MODIS MCD12C1 dataset (original resolution: 0.05 degrees)
toar category A station classification for the Tropospheric Ozone Assessment Report based

on the station proxy data that are stored in the database. One of
unclassified, low elevation rural, high elevation rural, or urban

pop density Year 2010 human population per square km from CIESIN GPW v3 (original
horizontal resolution: 2.5 arc minutes)

max 5km pop density Maximum population density in a radius of 5 km around the station location
max 25km pop density Maximum population density in a radius of 25 km around the station location
nightlight 1km Year 2013 Nighttime lights brightness values from NOAA DMSP (original

horizontal resolution: 0.925 km)
nightlight max 25km Year 2013 Nighttime lights brightness values (original horizontal resolution:

5 km)
alt Altitude of station (in m above sea level). Best estimate of the station altitude,

which frequently uses the elevation from Google Earth
station etopo alt Terrain elevation at the station location from the 1 km resolution ETOPO1

dataset
nox emi Year 2010 NOx emissions from EDGAR HTAP inventory V2 in units of

gm�2yr�1 (original resolution: 0.1 degrees)
omi nox Average 2011-2015 tropospheric NO2 columns from OMI at 0.1 degree

resolution (Env. Canada) in units of 1015 molecules cm�2

Dynamic
o3 (forecasted variable) Ozone concentration, daily maximum 8-hour average statistics according to

the EU definition of the daily 8-hour window starting from 17 h of the
previous day. Measured at the station, with UVabsorption

cloudcover Daily average cloud cover fromERA5 reanalysis for the grid cell containing a
particular station

Continued
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A.2. Model hyperparameter optimization
Table A2 details the hyperparameters used for the TFT model. These hyperparameters were determined with Bayesian
optimization, implemented with weights and biases (Biewald, 2020). Bayesian optimization is a method used to determine
the optimal hyperparameters of amodel, by defining aGaussian process that describes the function controlling the performance of
the model with respect to the hyperparameters. This function is evaluated and updated as the hyperparameter space is explored, as
shown in Figure A.1. We found that the most influential hyperparameters were the learning rate and the choice of optimizer.
Furthermore, we also evaluated the optimal number of past time-steps necessary for skillful prediction. While increasing the
number of past time-steps past 21 days did improve performancemarginally, there was little improvement relative to the increased
computational burden. Additionally, decreasing the number of time-steps below 21 days did hinder performance considerably,
especially at very low numbers (fewer than 5 days). The hyperparameters of the ridge regression, random forest, and LSTM
models were optimized with grid search.

Table A1. Continued

Variable name Description

relhum Daily average relative humidity from ERA5 reanalysis for the grid cell
containing a particular station

press Daily average pressure from ERA5 reanalysis for the grid cell containing a
particular station

temp Daily average temperature from ERA5 reanalysis for the grid cell containing
a particular station

v Daily average meridional wind speed from ERA5 reanalysis for the grid cell
containing a particular station

u Daily average zonal wind speed from ERA5 reanalysis for the grid cell
containing a particular station

pblheight Daily average planetary boundary layer height from ERA5 reanalysis for the
grid cell containing a particular station

Figure A.1. Plot illustrating the hyperparameter optimization and the skill, in terms of the loss on the
validation data, of various hyperparameter combinations for the TFT.
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A.3. Performance across countries
The performance of the optimized model in forecasting O3 in different countries is given in Figure A.2 below.While some European
countries had very little data available, others provided a good quantity of data. Performance is relatively good across countries, with
some poorer skill in Norway (which has little data) and Portugal.

A.4. Comparison of model performance in spring and summer across countries
To evaluate the processes that might be poorly represented by our model, we tested the trained model across all countries, using just
spring and then just summer data. We found that in general, the model performance was poorer in summer than in spring.
Furthermore, we found that there was little correlation between the latitude of the country and the difference in performance between
spring and summer. The findings are described in Figure 3; however, an analysis of the spring–summer difference in just the UK,
France, and Italy dataset is provided in Figure A.3. In terms of RMSE andMAE, we found the performance of the TFTwas better in
spring but poorer in terms of R2.

A.5. Architecture of the temporal fusion transformer
The temporal fusion transformer (Lim et al., 2021) is designed to carry out multi-horizon (multiple time-step) forecasting of a target
variable using both static and dynamic covariates. The fundamental setup of this forecasting task is described in Figure A.4. Both
dynamic and static inputs are passed to the model, which then makes forecasts.

The TFT is an attention-based ML model that uses the attention mechanism (Vaswani et al., 2017) to learn long-term
dependencies in data, combined with recurrent layers to learn short-term dependencies. The TFT also deploys gating layers to
minimize the effect of less relevant predictors. The architecture of the model is given in Figure A.5.

As described in Lim et al. (2021), the TFT offers a number of key features to improve upon existing models for multi-horizon
forecasting.

The first is the use of gated residual networks (GRNs) to suppress nonlinear relationships in the model. Variable selection
networks are deployed to identify and reduce the effect of poor predictors. Inputs are passed first through a GRN, followed by a
Softmax layer, a function that converts the output vector to a probability distribution, to yield weights describing how relevant a
feature is for predicting an output. The original features are then weighted by the variable selection weights to yield appropriately
weighted features. Static covariates (the covariates which do not vary through time, such as landcover), are encoded with GRNs to
produce 4 context vectors, which are then combined with the dynamic features. The TFT then uses a long short-term memory
network (LSTM) encoder–decoder to provide an alternative to the positional embeddings used in traditional transformer architec-
tures. The context vectors from the static covariates are used to initialize the cell and hidden state (a representation of the previous
data in the sequence seen by the model) in the first LSTM in the layer.

The TFT then uses multi-head attention, as detailed in Vaswani et al. (2017), which allows the model to learn long-term
dependencies in data. The weights of the attention mechanism allow us to interpret that features and previous time-steps that are the

Table A2. Hyperparameters for the final TFT and LSTM models used for model evaluation

Model Hyperparameter value

TFT
attention head size 8
dropout 0.110
hidden continuous size 14
hidden size 50
learning rate 0.0099
lstm layers 3
optimizer Ranger
LSTM
dropout 0.100
hidden size 100
learning rate 0.023
layers 5
optimizer Ranger

Note. We carried out 120 runs of Bayesian optimization for the TFT.
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most important for prediction, aidingmodel interpretability. The decoder deploysmasking to ensure that it can only attend to features
preceding it. The outputs from the attention layer are then passed to a feed forward GRN, which also takes inputs via a gated residual
connection that skips the attention layer providing a simpler model if the attention layer is unnecessary for accurate predictions (this
behavior is learned during training), as shown in Figure A.5. Finally, prediction intervals from the outputs of the final GRN are
generated by making predictions at different quantiles, using a linear transformation of the output.

The TFT is trained by minimizing the sum of the quantile loss across quantile outputs.

Figure A.2. Plots illustrating the skill of the model in predicting ozone in different countries across
Europe.
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A.6. Attention in the temporal fusion transformer
The attention values in the TFT are calculated as in Lim et al. (2021). In the TFT architecture, standard multi-head attention is
additively aggregated to interpretable multi-head attention. In this formulation, each attention head learns different temporal
relationships from the same set of input features, and then the aggregation of these attention weights can be viewed as an ensemble,
allowing interpretability studies. We refer the reader to Lim et al. (2021) for full details.

In the context of this study, we generally see that the model, as expected, pays more attention to the more recent past days when
making future forecasts and that the model is able to attend to recent low days of ozone when making forecasts of low ozone and,
similarly, to recent days of high ozone when forecasting future high ozone.

Since the attention values for the dynamic and the static features are calculated separately, we include the feature importances for
the static variables here.

Figure A.3. (a) Performance of the TFTwhen predicting on 2012 spring test data from the UK, France,
and Italy. (b) Performance of the TFTwhen predicting on 2012 summer test data from the UK, France,
and Italy.

Figure A.4. Setup of a typical multi-horizon forecasting problem. Source: ’Temporal Fusion
Transformers for interpretable multi-horizon time series forecasting’, Lim et al. (2021), licensed under
CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).
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A.7. Quantile loss
The quantile loss function is used in this work to extract prediction intervals from the TFTmodel. The quantile loss function is given
as follows:

Lq y, ŷð Þ = q y� ŷð Þþ þ 1�qð Þ ŷ� yð Þþ (A.2)

where :ð Þþ is equal to max 0, :ð Þ (Wen et al., 2017). Note that when q = 0.5, the quantile loss is the same as using themean absolute
error loss function. The model is trained to find the weights of the model that minimize the total loss of the quantile loss over various
values of q for various prediction horizons.

Figure A.5. Architecture of the temporal fusion transformer model. The model consists of a combination
of RNN encoders, followed by an attention layer, and then a fully connected decoder layer. Source:
’Temporal Fusion Transformers for interpretable multi-horizon time series forecasting’, Lim et al.
(2021), licensed under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).

Figure A.6. Left-hand plot shows the attention paid to different days in the past, averaged over the whole
test set. The right-hand plot illustrates an example of themodel attending to previous low ozone dayswhen
making forecasts of future low ozone. This example is from a station in one of the unseen countries.
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A.8. Benchmark models
We used 4 other approaches to compare with the TFT. The first of these is a persistence model, which simply predicts the next
timestep of ozone to be equal to the previous time-step. This provides our baseline model.

We also evaluated a ridge regressionmodel. Ridge regression (Tikhonov regularization) is often deployed in multiple regression
tasks where covariates are correlated.

Y�X βð ÞT Y�Xβð Þþ λβTβ (3)

Ridge regression uses the L2 penalty on the coefficients of the model, similar to LASSO regression, which uses the L1 penalty.
Ridge regression is a standard benchmark used in the environmental sciences but is a linear method, which limits its flexibility.

Random forests are a widely used nonlinear ensemble machine learning technique, which construct multiple decision trees
during training, using bootstrap aggregating (bagging) to reduce instability during training. Bagging generates new training datasets
from the original training data by sampling from the original data, with replacement. Decision trees are then trained on these new
training sets, and the output of the model is determined by aggregating the predictions of the individual trees on the new training
datasets. Random forests are prone to overfitting training data, which can lead to poor out-of-distribution performance.

While random forests are a nonlinear model and therefore may be able to better fit data with nonlinear relationships, they do not
necessarily exploit temporal dependencies in data well.

Long short-term memory networks are a form of recurrent neural network that have been shown to perform very well on time
series data, aided by the use of memory cells which improve on vanilla recurrent neural networks. However, recent work in fields
such as natural language processing has illustrated that transformers perform better on sequential data, in part due to their capacity to
model long-term dependencies in data. Furthermore, the temporal fusion transformer is adapted to ingest both static and dynamic
features, unlike the other models, which provides a small improvement in model skill.

Cite this article: Hickman SHM, Griffiths PT, Nowack PJ and Archibald AT (2023). Short-term forecasting of ozone air
pollution across Europe with transformers. Environmental Data Science, 2: e43. doi:10.1017/eds.2023.37

Figure A.7. Plot illustrating the feature importances for the static features.
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