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CENTRAL LIMIT THEOREM FOR
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Abstract

The Hawkes process is a self-exciting point process with clustering effect whose intensity
depends on its entire past history. It has wide applications in neuroscience, finance, and
many other fields. In this paper we obtain a functional central limit theorem for the
nonlinear Hawkes process. Under the same assumptions, we also obtain a Strassen’s
invariance principle, i.e. a functional law of the iterated logarithm.
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1. Introduction and main results

1.1. Introduction

The Hawkes process is a self-exciting simple point process first introduced by Hawkes [10].
The future evolution of a self-exciting point process is influenced by the timing of past events.
The process is non-Markovian except for some very special cases. In other words, the Hawkes
process depends on the entire past history and has a long memory. The Hawkes process has
wide applications in neuroscience, seismology, genome analysis, finance, and many other fields.
It has both self-exciting and clustering properties, which is very appealing to some financial
applications. Errais et al. [9] stated the following.

The collapse of Lehman Brothers brought the financial system to the brink of a breakdown.
The dramatic repercussions point to the existence of feedback phenomena that are channeled
through the complex web of informational and contractual relationships in the economy ….
This and related episodes motivate the design of models of correlated default timing that
incorporate the feedback phenomena that plague credit markets.

The self-exciting and clustering properties of the Hawkes process make it a viable candidate
in modeling the correlated defaults and evaluating the credit derivatives in finance; see, for
example, [8] and [9].

Most of the literature on Hawkes processes has been restricted to the linear case, which has
an immigration-birth representation (see [11]). The stability, law of large numbers, central limit
theorem, large deviations, Bartlett spectrum, etc. have all been studied and well understood.
Almost all of the applications of the Hawkes process in the literature focus exclusively on
the linear case. Because of the lack of immigration-birth representation and computational
tractability, the nonlinear Hawkes process is much less studied. However, some efforts have
already been made in this direction; see, for instance, [4], [15], and [16]. In this paper, we will
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prove a functional central limit theorem for the nonlinear Hawkes process. Hopefully, in the
future, nonlinear Hawkes processes will also be used in applications in various fields.

For a list of references on the theories and applications of the Hawkes process, we refer the
reader to [6], [7], and [14].

1.2. Nonlinear Hawkes processes

Let N be a simple point process on R, and let F −∞
t := σ(N(C), C ∈ B(R), C ⊂ (−∞, t])

be an increasing family of σ -algebras. Any nonnegative F −∞
t -progressively measurable

process λt with

E[N(a, b] | F −∞
a ] = E

[∫ b

a

λs ds

∣∣∣∣ F −∞
a

]

almost surely (a.s.) for all intervals (a, b] is called an F −∞
t -intensity of N . We use the notation

Nt := N(0, t] to denote the number of points in the interval (0, t].
A general Hawkes process is a simple point process N admitting an F −∞

t -intensity

λt := λ

(∫ t

−∞
h(t − s)N(ds)

)
, (1)

where λ(·) : R
+ → R

+ is locally integrable and left continuous, h(·) : R
+ → R

+, and
we always assume that ‖h‖L1 = ∫ ∞

0 h(t) dt < ∞. In (1),
∫ t

−∞ h(t − s)N(ds) stands for∫
(−∞,t)

h(t − s)N(ds) = ∑
τ<t h(t − τ), where the τ are the occurrences of the points before

time t . In the literature, h(·) and λ(·) are usually referred to as the exciting function and the rate
function, respectively. A Hawkes process is linear if λ(·) is linear and it is nonlinear otherwise.

Brémaud and Massoulié [4] proved that, under the assumption that λ(·) is α-Lipschitz
with α‖h‖L1 < 1, there exists a unique stationary and ergodic version of the Hawkes process
satisfying the dynamics (1). They also studied the stability of the nonlinear Hawkes process in
great detail, including the existence, uniqueness, stability in distribution and in variation, etc.
Later, Brémaud et al. [5] studied the rate of convergence of the nonlinear Hawkes process to
its stationary version.

1.3. Limit theorems for Hawkes processes

When λ(·) is linear, say λ(z) = ν + z for some ν > 0, and ‖h‖L1 < 1, the Hawkes process
has a very nice immigration-birth representation; see, for example, [11]. For the linear Hawkes
process, limit theorems are very well understood. There is the law of large numbers (see, for
instance, [6] and [7]), i.e.

Nt

t
→ ν

1 − ‖h‖L1
as t → ∞ a.s.

Moreover, Bordenave and Torrisi [3] proved a large deviation principle for (Nt/t ∈ ·) with rate
function

I (x) =
⎧⎨
⎩

x log

(
x

ν + x‖h‖L1

)
− x + x‖h‖L1 + ν if x ∈ [0, ∞),

+∞ otherwise.

Recently, Bacry et al. [1] proved a functional central limit theorem for the linear multivariate
Hawkes process under certain assumptions. They included the linear Hawkes process as a
special case and proved that

N·t − ·µt√
t

→ σB(·) as t → ∞,
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where B(·) is a standard Brownian motion. The convergence is the weak convergence on
D[0, 1], the space of càdlàg functions on [0, 1], equipped with the Skorokhod topology. Here

µ = ν

1 − ‖h‖L1
and σ 2 = ν

(1 − ‖h‖L1)3 .

Very recently, Karabash and Zhu [13] obtained a central limit theorem and large deviation
principle for the linear Hawkes process with random marks. In a nutshell, the linear Hawkes
process satisfies very nice limit theorems and the limits can be computed more or less explicitly.

When λ(·) is nonlinear, the usual immigration-birth representation no longer works and you
may have to use some abstract theory to obtain limit theorems. Some progress has already been
made for the nonlinear Hawkes process.

Brémaud and Massoulié’s [4] stability result implies that, by the erogdic theorem,

Nt

t
→ µ := E[N [0, 1]]

as t → ∞, where E[N [0, 1]] is the mean of N [0, 1] under the stationary and ergodic measure.
When h(·) is exponential (and λ(·) is nonlinear), the Hawkes process is Markovian and Zhu

[15] obtained a large deviation principle for (Nt/t ∈ ·) in this case. Zhu [15] also proved the
large deviation principle for the case when h(·) is a sum of exponentials and used that as an
approximation to recover the result for the linear case proved in [3].

For the most general h(·) and λ(·), Zhu [16] proved a process-level, i.e. level-3, large
deviation principle for the Hawkes process and used the contraction principle to obtain a large
deviation principle for (Nt/t ∈ ·).

In this paper we will prove a functional central limit theorem and a functional law of the
iterated logarithm for the nonlinear Hawkes process.

1.4. Main results

The following is the assumption we will use throughout this paper.

Assumption 1. We assume that

• h(·) : [0, ∞) → R
+ is a decreasing function and

∫ ∞
0 th(t) dt < ∞,

• λ(·) is positive and increasing and α-Lipschitz (i.e. |λ(x) − λ(y)| ≤ α|x − y| for any
x, y) such that α‖h‖L1 < 1.

Brémaud and Massoulié [4] proved that if λ(·) is α-Lipschitz with α‖h‖L1 < 1, there exists
a unique stationary and ergodic Hawkes process satisfying the dynamics (1). Hence, under our
Assumption 1 (which is slightly stronger than that in [4]), there exists a unique stationary and
ergodic Hawkes process satisfying the dynamics (1).

Let P and E denote the probability measure and expectation for a stationary, ergodic Hawkes
process, and let P(· | F −∞

0 ) and E[· | F −∞
0 ] denote the conditional probability measure and

conditional expectation for the Hawkes process given the past history.
The following theorems are the main results of this paper.

Theorem 1. Under Assumption 1, let N be the stationary and ergodic nonlinear Hawkes
process with dynamics (1). We have

N·t − ·µt√
t

→ σB(·) as t → ∞ (2)
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with B(·) a standard Brownian motion and 0 < σ < ∞, where

σ 2 := E[(N [0, 1] − µ)2] + 2
∞∑

j=1

E[(N [0, 1] − µ)(N [j, j + 1] − µ)]. (3)

The convergence in (2) is the weak convergence on D[0, 1], the space of càdlàg functions on
[0, 1], equipped with the Skorokhod topology.

Remark 1. By a standard central limit theorem for martingales, i.e. Theorem 4 below, it is
easy to see that

N·t − ∫ ·t
0 λs ds√
t

→ √
µB(·) as t → ∞,

where µ = E[N [0, 1]]. In the linear case, say λ(z) = ν + z, Bacry et al. [1] proved that
σ 2 in (3) satisfies σ 2 = ν/(1 − ‖h‖L1)3 > µ = ν/(1 − ‖h‖L1). This is not surprising because
N·t − ·µt ‘should’ have more fluctuations than N·t − ∫ ·t

0 λs ds. Therefore, we guess that, for
nonlinear λ(·), σ 2 defined in (3) should also satisfy σ 2 > µ = E[N [0, 1]]. However, it might
not be very easy to compute and say something about σ 2 in such a case.

In the classical case for a sequence of independent and identically distributed random
variables Xi with mean 0 and variance 1, we have the central limit theorem n−1/2∑n

i=1 Xi →
N(0, 1) as n → ∞, and we also have

∑n
i=1 Xi/

√
n log log n → 0 in probability as n → ∞,

but the convergence does not hold a.s. The law of the iterated logarithm says that

lim sup
n→∞

∑n
i=1 Xi√

n log log n
= √

2 a.s.

A functional version of the law of the iterated logarithm is called Strassen’s invariance principle.
It turns out that we also have a Strassen’s invariance principle for nonlinear Hawkes processes

under Assumption 1.

Theorem 2. Under Assumption 1, let N be the stationary and ergodic nonlinear Hawkes
process with dynamics (1). Let Xn := N [n − 1, n] − µ, Sn := ∑n

i=1 Xi , s2
n := E[S2

n],
g(t) = sup{n : s2

n ≤ t}, and, for t ∈ [0, 1], let ηn(t) be the usual linear interpolation, i.e.

ηn(t) = Sk + (s2
nt − s2

k )(s2
k+1 − s2

k )−1Xk+1√
2s2

n log log s2
n

, s2
k ≤ s2

nt ≤ s2
k+1, k = 0, 1, . . . , n − 1.

Then g(e) < ∞, {ηn, n > g(e)} is relatively compact in C[0, 1], the set of continuous functions
on [0, 1] is equipped with the uniform topology, and the set of limit points is the set of absolutely
continuous functions f (·) on [0, 1] such that f (0) = 0 and

∫ 1
0 f ′(t)2 dt ≤ 1.

2. Proof of Theorem 1

This section is devoted to the proof of Theorem 1. We use a standard central limit theorem,
i.e. Theorem 3 below. In our proof, we need the fact that E[N [0, 1]2] < ∞, which is proved
in Lemma 2 below. Lemma 2 is proved by proving a stronger result first, i.e. Lemma 1 below.
We will also prove Lemma 3 below to guarantee that σ > 0, so that the central limit theorem
is not degenerate.

Let us first quote the two necessary central limit theorems from [2]. In both Theorem 3
and Theorem 4, the filtrations are the natural ones, i.e. given a stochastic process (Xn)n∈Z,
F a

b := σ(Xn, a ≤ n ≤ b) for −∞ ≤ a ≤ b ≤ ∞.
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Theorem 3. ([2, p. 197].) Suppose that Xn, n ∈ Z, is an ergodic stationary sequence such
that E[Xn] = 0 and ∑

n≥1

‖E[X0 | F −∞−n ]‖2 < ∞,

where ‖Y‖2 = (E[Y 2])1/2. Let Sn = X1 + · · · + Xn. Then S[n·]/
√

n → σB(·) weakly,
where the weak convergence is on D[0, 1] equipped with the Skorokhod topology and σ 2 =
E[X2

0] + 2
∑∞

n=1 E[X0Xn]. The series converges absolutely.

Theorem 4. ([2, p. 196].) Suppose that Xn, n ∈ Z, is an erogdic, stationary sequence of
square-integrable martingale differences, i.e. σ 2 = E[X2

n] < ∞, and let E[Xn | F −∞
n−1 ] = 0.

Let Sn = X1 + · · · + Xn. Then S[n·]/
√

n → σB(·) weakly, where the weak convergence is on
D[0, 1] equipped with the Skorokhod topology.

Now we are ready to prove our main result.

Proof of Theorem 1. Since in the stationary regime, E[N [n, n + 1]] = E[N [0, 1]] for any
n ∈ Z, let E[N [0, 1]] = µ. In order to apply Theorem 3, let us first prove that

∞∑
n=1

{E[(E[N(n, n + 1] − µ | F −∞
0 ])2]}1/2 < ∞. (4)

Let E
ω−

1 [N(n, n + 1]] and E
ω−

2 [N(n, n + 1]] be two independent copies of E[N(n, n +
1] | F −∞

0 ]. It is easy to check that

1
2 E[(Eω−

1 [N(n, n + 1]] − E
ω−

2 [N(n, n + 1]])2]
= 1

2 E[Eω−
1 [N(n, n + 1]]2] + 1

2 E[Eω−
2 [N(n, n + 1]]2]

− E[Eω−
1 [N(n, n + 1]]Eω−

2 [N(n, n + 1]]]
= E[E[N(n, n + 1] | F −∞

0 ]2] − µ2

= E[(E[N(n, n + 1] − µ | F −∞
0 ])2].

Therefore, we have

E[(E[N(n, n + 1] − µ | F −∞
0 ])2]

= 1
2 E[(Eω−

1 [N(n, n + 1]] − E
ω−

2 [N(n, n + 1]])2]
≤ E[(Eω−

1 [N(n, n + 1]] − E
∅[N(n, n + 1]])2]

+ E[(Eω−
2 [N(n, n + 1]] − E

∅[N(n, n + 1]])2]
= 2E[(Eω−

1 [N(n, n + 1]] − E
∅[N(n, n + 1]])2],

where E
∅[N(n, n + 1]] denotes the expectation of the number of points in (n, n + 1] for the

Hawkes process with the same dynamics (1) and empty history, i.e. N(−∞, 0] = 0.
Next, let us estimate E

ω−
1 [N(n, n + 1]] − E

∅[N(n, n + 1]]. Here E
ω−

1 [N(n, n + 1]] is
the expectation of the number of points in (n, n + 1] for the Hawkes process with intensity
λt = λ(

∑
{τ : τ∈ω−

1 ∪ω[0,t)} h(t − τ)). It is well defined for almost every ω−
1 under P because,

under Assumption 1,

E[λt ] ≤ λ(0) + αE

[∫ t

−∞
h(t − s)N(ds)

]
= λ(0) + α‖h‖L1E[N [0, 1]] < ∞,

which implies that λt < ∞, P-a.s.

https://doi.org/10.1239/jap/1378401234 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1378401234


CLT for nonlinear Hawkes processes 765

It is clear that E
ω−

1 [N(n, n + 1]] ≥ E
∅[N(n, n + 1]] a.s., so we can use a coupling method

to estimate the difference. We will follow the ideas of Brémaud and Massoulié [4] and use the
Poisson embedding method. Consider (�, F , P ), the canonical space of a point process on
R

+ × R
+ in which N̄ is Poisson with intensity 1 under the probability measure P . Then the

Hawkes process N0 with an empty past history and intensity λ0
t satisfies

λ0
t = λ

(∫
(0,t)

h(t − s)N0(ds)

)
, t ∈ R

+,

N0(C) =
∫

C

N̄(dt × [0, λ0
t ]), C ∈ B(R+).

For n ≥ 1, let us define recursively λn
t , Dn, and Nn as follows:

λn
t = λ

(∫
(0,t)

h(t − s)Nn−1(ds) +
∑

τ∈ω−
1

h(t − τ)

)
, t ∈ R

+, (5)

Dn(C) =
∫

C

N̄(dt × [λn−1
t , λn

t ]), C ∈ B(R+), (6)

Nn(C) = Nn−1(C) + Dn(C), C ∈ B(R+).

Following the arguments in Brémaud and Massoulié [4], we know that each λn
t is an

F N̄
t -intensity of Nn, where F N̄

t is the σ -algebra generated by N̄ up to time t . By our
Assumption 1, λ(·) is increasing, and it is clear that λn(t) and Nn(C) increase in n for all
t ∈ R

+ and C ∈ B(R+). Thus, Dn is well defined and, as n → ∞, the limiting processes λt

and N exist. N counts the number of points of N̄ below the curve t �→ λt and admits λt as an
F N̄

t -intensity. By the monotonicity properties of λn
t and Nn, we have

λn
t ≤ λ

(∫
(0,t)

h(t − s)N(ds) +
∑

τ∈ω−
1

h(t − τ)

)
,

λt ≥ λ

(∫
(0,t)

h(t − s)Nn(ds) +
∑

τ∈ω−
1

h(t − τ)

)
.

Letting n → ∞ (which is valid since we assume that λ(·) is Lipschitz and, thus, continuous),
we conclude that N and λt satisfy the dynamics (1). Therefore, with intensity λt , N = N0 +∑∞

i=1 Di is the Hawkes process with past history ω−
1 .

We can then estimate the difference by noting that

E
ω−

1 [N(n, n + 1]] − E
∅[N(n, n + 1]] =

∞∑
i=1

E
P [Di(n, n + 1]].

Here E
P denotes the expectation with respect to P , the probability measure on the canonical

space that we defined earlier.
We have

E
P [D1(n, n + 1]] = E

P

[∫ n+1

n

(λ1(t) − λ0(t)) dt

]

= E
P

[∫ n+1

n

λ

( ∑
τ<t, τ∈N0∪ω−

1

h(t − τ)

)
− λ

( ∑
τ<t, τ∈N0∪∅

h(t − τ)

)
dt

]

≤ α

∫ n+1

n

∑
τ∈ω−

1

h(t − τ) dt, (7)
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where the first equality in (7) is due to the construction of D1 in (6), the second equality in (7)
is due to the definitions of λ1 and λ0 in (5), and, finally, the inequality in (7) is due to the fact
that λ(·) is α-Lipschitz by Assumption 1. Similarly,

E
P [D2(n, n + 1]] ≤ E

ω−
1

[
α

∫ n+1

n

∑
τ∈D1,τ<t

h(t − τ) dt

]

≤
∑

τ∈ω−
1

α2
∫ n+1

n

∫ t

0
h(t − s)h(s − τ) ds dt.

Iteratively, we have, for any k ∈ N,

E
P [Dk(n, n + 1]] ≤

∑
τ∈ω−

1

αk

∫ n+1

n

∫ tk

0
· · ·

∫ t2

0
h(tk − tk−1)h(tk−1 − tk−2) · · ·

× h(t2 − t1)h(t1 − τ) dt1 · · · dtk

=:
∑

τ∈ω−
1

Kk(n, τ ).

Now let K(n, τ) := ∑∞
k=1 Kk(n, τ ). Then

E[(Eω−
1 [N(n, n + 1]] − E

∅[N(n, n + 1]])2]

≤ E

[( ∑
τ∈ω−

1

K(n, τ)

)2]

≤ E

[ ∑
i,j≤0

K(n, i)K(n, j)N [i, i + 1]N [j, j + 1]
]

=
∑
i,j≤0

K(n, i)K(n, j)E[N [i, i + 1]N [j, j + 1]]

≤
∑
i,j≤0

K(n, i)K(n, j)
1

2
{E[N [i, i + 1]2] + E[N [j, j + 1]2]}

= E[N [0, 1]2]
(∑

i≤0

K(n, i)

)2

.

Here, E[N [0, 1]2] < ∞ by Lemma 2. Therefore, we have

∞∑
n=1

{E[(E[N(n, n + 1] − µ | F −∞
0 ])2]}1/2

≤
√

2E[N [0, 1]2]
∞∑

n=1

0∑
i=−∞

K(n, i)

≤
√

2E[N [0, 1]2]
∞∑

k=1

αk

∫ ∞

0

∫ tk

0
· · ·

∫ t2

0

∫ 0

−∞
h(tk − tk−1)h(tk−1 − tk−2) · · ·

× h(t2 − t1)h(t1 − s) ds dt1 · · · dtk.
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Let H(t) := ∫ ∞
t

h(s) ds. It is easy to check that
∫ ∞

0 H(t) dt = ∫ ∞
0 th(t) dt < ∞ by Assump-

tion 1. We have

αk

∫ ∞

0

∫ tk

0
· · ·

∫ t2

0

∫ 0

−∞
h(tk − tk−1)h(tk−1 − tk−2) · · · h(t2 − t1)h(t1 − s) ds dt1 · · · dtk

= αk

∫ ∞

0

∫ tk

0
· · ·

∫ t2

0
h(tk − tk−1)h(tk−1 − tk−2) · · · h(t2 − t1)H(t1) dt1 · · · dtk

= αk

∫ ∞

0
· · ·

∫ ∞

tk−2

∫ ∞

tk−1

h(tk − tk−1) dtkh(tk−1 − tk−2) dtk−1 · · · H(t1) dt1

= αk‖h‖k−1
L1

∫ ∞

0
H(t1) dt1

= αk‖h‖k−1
L1

∫ ∞

0
th(t) dt.

Since α‖h‖L1 < 1, we conclude that
∞∑

n=1

{E[(E[N(n, n + 1] − µ | F −∞
0 ])2]}1/2 ≤

∞∑
k=1

√
2E[N [0, 1]2]αk‖h‖k−1

L1

∫ ∞

0
th(t) dt

=
√

2E[N [0, 1]2] α

1 − α‖h‖L1

∫ ∞

0
th(t) dt

< ∞.

Hence, by Theorem 3 we have

N[·t] − µ[·t]√
t

→ σB(·) as t → ∞,

where

σ 2 = E[(N [0, 1] − µ)2] + 2
∞∑

j=1

E[(N [0, 1] − µ)(N [j, j + 1] − µ)] < ∞. (8)

By Lemma 3, σ > 0. Now, finally, for any ε > 0 and sufficiently large t ,

P

(
sup

0≤s≤1

∣∣∣∣N[st] − µ[st]√
t

− Nst − µst√
t

∣∣∣∣ > ε

)

= P

(
sup

0≤s≤1
|(N[st] − Nst ) + µ(st − [st])| > ε

√
t
)

≤ P

(
sup

0≤s≤1
|N[st] − Nst | + µ > ε

√
t
)

≤ P

(
max

0≤k≤[t], k∈Z

N [k, k + 1] > ε
√

t − µ
)

≤ ([t] + 1)P(N [0, 1] > ε
√

t − µ)

≤ [t] + 1

(ε
√

t − µ)2

∫
N [0,1]>ε

√
t−µ

N [0, 1]2 dP

→ 0

as t → ∞ by Lemma 2. Hence, we conclude that (N·t − ·µt)/
√

t → σB(·) as t → ∞.
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The following lemma is used to prove Lemma 2 below.

Lemma 1. There exists some θ > 0 such that supt≥0 E
∅[exp{∫ t

0 θh(t − s)N(ds)}] < ∞.

Proof. Note first that, for any bounded deterministic function f (·),

exp

{∫ t

0
f (s)N(ds) −

∫ t

0
(ef (s) − 1)λ(s) ds

}

is a martingale. Therefore, using the Lipschitz assumption of λ(·), i.e. λ(z) ≤ λ(0) + αz, and
applying Hölder’s inequality, for 1/p + 1/q = 1, we have

E
∅

[
exp

{∫ t

0
θh(t − s)N(ds)

}]

= E
∅

[
exp

{ ∫ t

0
θh(t − s)N(ds) − 1

p

∫ t

0
(epθh(t−s) − 1)λ(s) ds

+ 1

p

∫ t

0
(epθh(t−s) − 1)λ(s) ds

}]

≤ E
∅

[
exp

{
q

p

∫ t

0
(epθh(t−s) − 1)λ(s) ds

}]1/q

≤ E
∅

[
exp

{
q

p

∫ t

0
(epθh(t−s) − 1)(λ(0) + α

∫ s

0
h(s − u)N(du)) ds

}]1/q

≤ E
∅

[
exp

{∫ t

0

q

p
(epθh(t−s) − 1)α

∫ s

0
h(s − u)N(du) ds

}]1/q

× exp

{
1

p

∫ ∞

0
(epθh(s) − 1)λ(0) ds

}
.

Let C(t) = ∫ t

0 qp−1(epθh(t−s) − 1)α ds. Then, for any t ∈ [0, T ],

E
∅

[
exp

{∫ t

0

q

p
(epθh(t−s) − 1)α

∫ s

0
h(s − u)N(du) ds

}]

= E
∅

[
exp

{
1

C(t)

∫ t

0

q

p
(epθh(t−s) − 1)αC(t)

∫ s

0
h(s − u)N(du) ds

}]

≤ E
∅

[
1

C(t)

∫ t

0

q

p
(epθh(t−s) − 1)α exp

{
C(t)

∫ s

0
h(s − u)N(du)

}
ds

]

≤ sup
0≤s≤T

E
∅

[
exp

{
C(∞)

∫ s

0
h(s − u)N(du)

}]
, (9)

where in the first inequality in (9) we used Jensen’s inequality since x �→ ex is convex and
(C(t))−1 ∫ t

0 qp−1(epθh(t−s) − 1)α ds = 1, and in the second inequality in (9) we used the facts
that C(t) ≤ C(∞) and, again, (C(t))−1 ∫ t

0 qp−1(epθh(t−s) − 1)α ds = 1. Now choose q > 1
so small that qα‖h‖L1 < 1. Once p and q are fixed, choose θ > 0 so small that

C(∞) =
∫ ∞

0

q

p
(epθh(s) − 1)α ds < θ.
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This implies that, for any t ∈ [0, T ],

E
∅

[
exp

{∫ t

0
θh(t − s)N(ds)

}]

≤ sup
0≤s≤T

E
∅

[
exp

{
θ

∫ s

0
h(s − u)N(du)

}]1/q

exp

{
1

p

∫ ∞

0
(epθh(s) − 1)λ(0) ds

}
.

Hence, we conclude that, for any T > 0,

sup
0≤t≤T

E
∅

[
exp

{
θ

∫ t

0
h(t − s)N(ds)

}]
≤ exp

{∫ ∞

0
(epθh(s) − 1)λ(0) ds

}
< ∞.

Lemma 2. There exists some θ > 0 such that E[eθN [0,1]] < ∞. Hence, E[N [0, 1]2] < ∞.

Proof. By Assumption 1, h(·) is positive and decreasing. Thus, δ = inf t∈[0,1] h(t) > 0.
Hence,

E
∅[eθN [t−1,t]] ≤ E

∅

[
exp

{
θ

δ

∫ t

0
h(t − s)N(ds)

}]
.

By Lemma 1, we can choose θ > 0 so small that

lim sup
t→∞

E
∅[eθN [t−1,t]] < ∞.

Finally, E[eθN [0,1]] ≤ lim inf t→∞ E
∅[eθN [t−1,t]] < ∞.

It is intuitively clear that σ > 0. However, we still require a proof.

Lemma 3. It holds that σ > 0, where σ is defined in (8).

Proof. Let ηn = ∑∞
j=n E[N(j, j + 1] − µ | F −∞

n+1 ], where µ = E[N [0, 1]]. Here ηn is
well defined because we proved (4). To see this, note that

‖ηn‖2 =
∥∥∥∥

∞∑
j=n

E[N(j, j + 1] − µ | F −∞
n+1 ]

∥∥∥∥
2

≤
∞∑

j=n

‖E[N(j, j + 1] − µ | F −∞
n+1 ]‖2 < ∞,

by (4). Also, it is easy to check that

E[ηn+1 − ηn + N(n, n + 1] − µ | F −∞
n+1 ]

= E

[ ∞∑
j=n+1

E[N(j, j + 1] − µ | F −∞
n+2 ]

∣∣∣∣ F −∞
n+1

]

− E

[ ∞∑
j=n

E[N(j, j + 1] − µ | F −∞
n+1 ]

∣∣∣∣ F −∞
n+1

]
+ N(n, n + 1] − µ

=
∞∑

j=n+1

E[N(j, j + 1] − µ | F −∞
n+1 ] −

∞∑
j=n+1

E[N(j, j + 1] − µ | F −∞
n+1 ]

− N(n, n + 1] + µ + N(n, n + 1] − µ

= 0.
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Let Yn = ηn−1 −ηn−2 +N(n− 2, n− 1]−µ. Then Yn is an ergodic, stationary sequence such
that E[Yn | F −∞

n−1 ] = 0. By (4), E[Y 2
n ] < ∞ and, by Theorem 4, S′[n·]/

√
n → σ ′B(·), where

S′
n = ∑n

j=1 Yj . It is clear that σ = σ ′ < ∞ since, for any ε > 0,

P

(
max

1≤k≤[n], k∈Z

1√
n

k∑
j=1

(ηj−1 − ηj−2) > ε

)

= P

(
max

1≤k≤[n], k∈Z

(ηk−1 − η−1) > ε
√

n
)

≤ P

({
max

1≤k≤[n], k∈Z

|ηk−1| >
ε
√

n

2

}
∪

{
|η−1| >

ε
√

n

2

})

≤
[n]∑
k=1

P

(
|ηk−1| >

ε
√

n

2

)
+ P

(
|η−1| >

ε
√

n

2

)

= ([n] + 1)P

(
|η−1| >

ε
√

n

2

)

≤ 4([n] + 1)

ε2n

∫
|η−1|>ε

√
n/2

|η−1|2 dP

→ 0 as n → ∞,

where we used the stationarity of P, Chebychev’s inequality, and (4).
Now, it becomes clear that

σ 2 = (σ ′)2

= E[Y 2
1 ]

= E(η0 − η−1 + N(−1, 0] − µ)2

= E

( ∞∑
j=0

E[N(j, j + 1] − µ | F −∞
1 ] −

∞∑
j=0

E[N(j, j + 1] − µ | F −∞
0 ]

)2

.

Consider D = {ω : ω− = ∅, ω(0, 1] = ∅}. Note that P(ω− = ∅) = 0. By Jensen’s
inequality and Assumption 1, we have

P(D) =
∫

P
ω−

(N(0, 1] = 0)P(dω−)

= E

[
exp

{
−

∫ 1

0
λ

( ∑
τ∈ω−

h(t − τ)

)
dt

}]

≥ exp

{
−E

∫ 1

0
λ

( ∑
τ∈ω−

h(t − τ)

)
dt

}

≥ exp

{
−λ(0) − αE

∫ 1

0

∑
τ∈ω−

h(t − τ) dt

}

≥ exp{−λ(0) − αE[N [0, 1]] · ‖h‖L1}
> 0.
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It is clear that, given the event D,

∞∑
j=0

E[N(j, j + 1] − µ | F −∞
1 ] <

∞∑
j=0

E[N(j, j + 1] − µ | F −∞
0 ].

Therefore,

P

( ∞∑
j=0

E[N(j, j + 1] − µ | F −∞
1 ] =

∞∑
j=0

E[N(j, j + 1] − µ | F −∞
0 ]

)
> 0,

which implies that σ > 0.

Proof of Theorem 2. By [12], Strassen’s invariance principle holds if we have (4) and σ > 0.
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