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course (angle A) and the distance to the vertex (AV). It is straightforward thence to solve
right-angled triangle PVB for the distance (VB) and, if required, the final course (angle
B).

The great circle course at chosen intermediate points, such as X, along the great circle
track can be calculated in the usual way by applying Napier's rules to triangles such as
PVX.

j . CONCLUSIONS. The method discussed in this paper provides a simpler and more
direct way of calculating great circle track parameters than the usual practice, which
requires the application of the awkward cosine formula twice. The usual procedure (see,
e.g. Cotter 19531) uses the cosine formula to find first of all the great circle distance and
then the initial course, before the simpler Napier rules can be used to find the position
of the vertex.

It remains to be determined whether the title ' vertex circle ' is appropriate and what
is the nature of the curve on the surface of the Earth. Also, whether the concept has
further applications.
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The ' Two-Body Problem' At Sea

Mike Pepperday

Navigation by direct computation of position from observations to two bodies was used by the
author at sea. Calculation of the incorrect of the possible two solutions was avoided, but the
method was still found inconvenient because it copes only with two bodies; it cannot cope
with more than one sight to each body, and is of no use when there is only one body. The
standard intercept method copes with all these situations and is mathematically more elegant.

Many people have pointed out that, if the altitudes of two astronomical bodies are
measured, the observer's position can theoretically be directly calculated. How does the
approach work out in practice on the high seas?

Chicsa and Chicsa' give some mathematics to solve for position, mentioning that they
have published a manual with a BASIC program. Following from them Spencer,2

describes an approach using an 8K Sharp PCIJOO pocket computer. Bowditch3 set out
a proposal made by one Charles T. Dozier in 1949, Bennett4 set out a general solution
with a worked example and the Appendix here gives a short solution for a calculator.

The 'two-body problem' seems to surface periodically. Bennett quoted Sadler5 as
remarking in 1977 that it has been discussed and investigated often. I think what draws
us to a two-body solution is a perception that the Marcq St Hilaire or intercept method
is mathematically inelegant. Why use an estimate of your position if you can solve
directly for your true position? Spencer says it ' seems rather incongruous ' and expresses
the hope that small boats will use ' this convenient method'. Chiesa and Chiesa say,
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Fig. i. Four position line ' box '

' Simply by entering the sextant readings into the calculator the coordinates of the vessel
position are immediately obtained'.

That is how I reasoned too — and crossed an ocean with it.
In 1982, preparing for my first ocean voyage, I looked through some navigation texts,

concluded they were mathematically illiterate, and decided that there was not going to
be any pussyfooting around with estimated position for me. I would compute latitude and
longitude directly. I dug out some old surveying notes, chose some formulae and
programmed a Hewlett-Packard H-P34C calculator. I used it, along with the Nautical
Almanac, for an eight-day crossing of the Coral Sea from Gladstone to Noumea. Sextant
navigation was the sole means of position fixing.

When two bodies are observed, there are two places where the position circles
intersect, which means there are two possible solutions. Since the observer is only at one
of them, elegance is obviously not served by computing both. Computing both places
then rejecting the wrong one is the way everyone says to do it (as I have since found out)
but it is not necessary. You can compute the correct one merely by saying which body
is to your left hand and which is right. This is very simple, but no-one seems to have
thought of it before. Mathematically, it means determining one sign, plus or minus (see
Appendix).

That halved the calculating time which was good because this H-P was something of
a model T among calculators, keeping me waiting around for a minute and a half for each
computation, and because on my very first twilight I struck a snag. I had observed four
bodies, but the method only copes with two. I shot four because I was a surveyor and
that is what cautious, thorough surveyors did in pre-satellite times. [Aside : sailors should
do it too: four stars — not three, not seven — distributed evenly around the horizon at
azimuths 900 from one another, is the optimal pattern, whatever navigators have been
doing for the last two hundred years.] To cope with the four, I had to compute two sights
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at a time. This gave four intersections. Four lines actually give six intersections but only
four are good ' cuts '.

So there was a blemish on the elegance: instead of a fix, I had four fixes.
Take the simple average? No. The average of some or all intersections does not yield

the theoretically correct fix and (probably more importantly) the very purpose in doing
more than two sights is to catch mistakes. If I'd just computed the average I would not
know if it was distorted by a blunder. The way to tell was to plot the four points. Joining
the plotted points gave the four position lines — obviously, since the very definition of
the points is that they are the intersections of position lines. They form a box shape, the
centre of which is the fix. It is then plain whether the fix is consistently either behind
all lines or in front of all the lines. 'Behind' or 'in front of are with respect to the
direction of each body. If they aren't consistent it would indicate a mistake somewhere.

So the direct solution which I had originally aimed for not only did not give one
solution, but had me drawing position lines and inferring a fix graphically. It is an
unwieldy method of drawing the lines, too, because it requires plotting four sets of
latitude and longitude.

It occurred to me that sometimes there might only be one body. The weather was fine
so I was getting noon sights, but obviously it could happen that you observe one body
and need the position line from it. A running fix is all very well but you don't necessarily
want to hang around for some hours in the hope of getting another shot. How to get the
position line from the two-body program?

The solution was to introduce a fictitious sight of altitude 90° to a fictitious star with
declination and GHA which were the estimated latitude and longitude. I recall the
program 'crashed' because it was trying to divide by zero or something, but there was
a fiddle to get around that. The computation yielded a point on the position line. With
the azimuth available from another register, it was possible to plot the point and draw
the position line through it.

So now I was introducing the estimated position just as in the standard intercept
method. As I realized later, the point computed was simply the point where,
conventionally, the intercept meets the position line.

There was another complication. I would no more rely on one sight per body than I
would rely on one intersection. I was taking four sights to each body and averaging them
(i.e. averaging the times and altitudes) before beginning the two-body intersection
calculations. Averaging sights is fundamentally bad practice : it may conceal a mistake,
it allows poor sights to influence the result and is itself a mistake-prone operation. But
what option was there ? Imagine the chaos if I had computed the intersections of each
sight of each star with each sight of each other star!

By the time we arrived in New Caledonia the supposedly elegant two-body solution
had become a collage of ad hoc ' workarounds '.

In the light of this, consider the advantages of the intercept method:

(i) The intercept method covers all circumstances — a single sight for a position line
or a number of sights to several bodies. You always do the same thing.

(ii) An altitude intercept has intrinsic meaning since it is an expression of the error
in your estimated position. You have an immediate indication of how well you
are dead reckoning.

(iii) Averaging sights is unnecessary. Since the intercepts from multiple sights should
all be the same, their consistency is, quite directly, the consistency of your
shooting. Any actual misreading of clock or sextant is obvious.

(iv) If your position estimate was good — this will be apparent from small intercepts —
it is usually not necessary to plot the lines.
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(v) If you do plot the lines, a rough sketch will usually do, and it is convenient since
they all refer to the one point; namely, the estimated position which you have
probably already marked on your chart.

(vi) The rigorous ' best fit' fix from azimuths and intercepts is very easy to compute
for any number of sights (see, e.g. the Nautical Almanac, p. 282). It would
require less mathematics than computing a single two-body intersection.
Granted, if a calculator computes a fix then the actual formulae it is using are
academic; however, as far as I know, no-one has developed any method of
rigorously computing a.best fit fix other than via intercepts.

A claimed advantage of the two-body solution is that you don't ' need' an estimate of
position. This advantage is imaginary: you know your approximate position. Why not
use it?

Some object that Marcq St Hilaire gives an error because the lines are assumed straight
whereas they are really curved. Over the years this has been put to me in correspondence
many times. I always write back and ask for an example — place, time, altitude, etc., and
error incurred. Nobody has ever given me one. I am beginning to think this error is also
imaginary.

All that should be persuasive — but, of course, it is written with the wisdom of
hindsight.

Meanwhile, back in Noumea, I bought a faster, if otherwise more primitive, Sharp
EL j i2 calculator and abandoned two-body for modified Sumner, or 'long by chron'.
That is computing the longitude for a specified latitude and drawing the position line
through it perpendicular to the computed azimuth. A calculator makes this approach
feasible even for bodies near the meridian. In November 1982 I crossed the Coral Sea
from north to south with it, and found it effective. This was followed by another journey
with modified Sumner and another year or so of rumination before I finally joined all the
right-thinking people and settled on the intercept method.

Ironically, it wasn't really the above arguments that persuaded me. What convinced
me was the realization that estimating an answer and computing an improvement to it
is a standard and fundamental mathematical approach. It has been for hundreds of years.
In short, I became satisfied that the Marcq St Hilaire, or intercept, method was
mathematically elegant.

APPENDIX

To find latitude and longitude from two bodies solve in sequence:

1. -dG = GHA,-GHA2

2. tan (A 1 2 - 180°) = sin dG/(cos dG sin dec, - tan dec2 cos dec,)
3. sin (900 — S) = cos dec, cos dec2 cos dG + sin dec, sin dec2

4. cos W = sin alt2/(cos alt, cos (9o°-S))-tan alt, tan (9o°-S)
5. A' = A,2 + W Subtract if body, was right hand
6. tan (LHA, - 180°) = sin (-A')/(cos A' sin dec, - tan alt, cos dec,)
7. sin lat = cos dec, cos alt, cos A' + sin dec, sin alt,
8. long = LHA,-GHA,

Lat and dec are negative south and longitude is negative west. Al2 is the azimuth from
body, to body2 ; S is the interstellar distance; W is the clockwise angle at body, from
the body2 to the observer; A' is the azimuth to the observer from body,. There are no
trigonometrical ambiguities and the denominator in formula 4 can never be zero.

Formulae 6 and 7 are the same as 2 and 3 except for the exchange of - A ' for dG and
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alt, for dec2, which means that one routine will do both if it includes a couple of memory
swaps. The tangents of formulae 2 and 6 must be solved rigorously - on a calculator use
the rectangular-to-polar function and do not execute the division.

If GHA Aries is programmed then when both bodies are stars for convenience modify
1 and 8 to:

1. -dG = SHA,-SHA2+15-041 (GMT,-GMT2)
8. long = LHA, -SHA, -GHA Aries at GMT,

Solution by sine rule may be substituted for cosine formulae 3 and 7, viz:

3. cos (900 — S) = cos dec2 sin dG/sin A12

7. cos lat = cos alt, sin (-A')/sin LHA,

On a calculator these save space because they are a by-product of the ' polar'
arctangent of formulae 2 and 6. However, signs for (9o°-S) and latitude must be
inserted manually. By doing this, I managed to fit the whole task, along with an Aries
almanac, on the 128 step Sharp EL 512 calculator. On Casio, Texas Instruments and
Hewlett-Packard calculators, the polar-to-rectangular function accepts a negative value
for the ' radius' which makes it possible to write a very brief program using the
unambiguous cosine forms.

The reversed tan values aren't actually necessary here, but programming them like
this makes them general solutions for humans. An idiosyncrasy of calculators and
computers is that they yield arctan between -1800 and +1800, hence solving for the
reverse direction and adding 1800 yields the result in the range 0-3 6o°. The point of
this would be that if the above formulae are programmed to take data from memories,
then by storing other numbers in the memories they will solve nearly every spherical
problem: prediction, position line, long by chron, star identification and great circles.
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