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PROPERTIES OF A CLASS OF (0,1) -MATRICES 
COVERING A GIVEN MATRIX 

R. P. ANSTEE 

1. Introduction. We wish to consider the class of (0,1)-matrices with 
prescribed row and column sums. Let R = (ri} r2, . . . , rm) and S = 
(si, 52, . . . , sn) be vectors with nonnegative integral entries and r\ + r2 + 
• • • + rm = si + s2 + . . . + sn. We define the class °tt (R, S) to be the 
set of m X n (0, 1)-matrices with ith row sum rt and 7 th column sum Sj 
for 1 ^ i ^ m and 1 ^ j ^ n. 

Gale and Ryser independently found simple necessary and sufficient 
conditions for fyl (R, S) to be nonempty [9, 14]. From R, we form an 
m X n (0, 1)-matrix Â as follows. The i th row sum of Â is rt and the l 's 
are as far to the left as possible. Let Sj be the j t h column sum of A. We 
define the sequence (s{) to be the conjugate of the sequence (r*). Define 
S to be monotone if s\ ^ s2 ^ . . . ^ 5W. The same definition applies to i?. 

THEOREM 1.1 (Gale, Ryser). There exists a matrix A Ç °tt(R, S) if 
and only if 

(i.i) ÉS^ÉJ, (im«), 

wfeere /fee sequence (st) is the conjugate of the sequence {rt) and S is 
monotone. 

The class & (R, S) has been studied extensively and most of the basic 
results can be found in [17]. Brualdi has recently written an excellent 
survey article [3]. Some of the work in this paper can be found in [1]. 

We can now describe the matrices that will be studied in this paper. 
Let A = (an) and B = (bij). Then we say A ^ B or A covers B if and 
only if a,ij ^ bij for all pairs i,j. Let P be an m X n (0, 1)-matrix with 
column sums at most 1. Define 

(1.2) ^P(R,S) = {A £ <%(R,S)\ A ^ P } . 

Thus °UP(R, S) consists of the matrices in °tt(R, S) which cover P. We 
aim to generalize some results in °tt{R, S) to %P(R, S). Note that for 
P = 0, the zero matrix, the two coincide. In Section 2, we prove a 
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generalization of Theorem 1.1 for °tt P(R, S). It also generalizes a result 
of Fulkerson on matrices with zero trace [7]. 

In Section 3, we state a theorem in % P(R, S) that involves inter­
changes and triangle interchanges. These consist of small changes in a 
matrix which preserve row and column sums. There are a number of 
interesting corollaries to our result. We obtain that given A,B £ 
^p(R}S)y one can get from A to B by a series of interchanges and 
triangle interchanges. This reduces to Ryser's Interchange Theorem 
when P = 0 [17]. Let R' = (r/ , r2', . . . , rm') with r( ^ rt and S' = 
(si, s2', . . . , sn

f) with s/ = Si — k for some given k. We show there 
exists a n i t <%P(R, S) and a 5 £ <2fp(£', 50 with 4 è S if and only 
if ^p ( i ? , 5) and <% P(R!, S') are nonempty. Setting P = 0 and letting 
5/ = sf — & or s*; — & — 1, we obtain the same result which generalizes 
a result of [4]. 

Digraphs with specified indegree and outdegree sequences correspond 
to °ll 7(i?, S) where I is the identity matrix. We may obtain an inter­
change theorem in this setting which can be specialized to undirected 
graphs and tournaments and prove results due to Fulkerson et al [6] and 
Ryser [1]. Our other result translates into a theorem of Kundu [12]. 

In Section 4 we prove the result stated in Section 3. Section 5 deter­
mines minimal and maximal possible columns in °tt P{R, S). This provides 
a generalization of Ford and Fulkerson's (0, 1)-matrix rule [5]. 

2. Existence theorem. Consider a class % (R, S). Define a matrix P 
to be acceptable if it is an m X n (0, 1)-matrix with column sums at 
most 1. In addition, we require that no row (column) sum of P is greater 
than the corresponding row (column) sum in <% (R, S). We will derive 
necessary and sufficient conditions under which °U P{R, S) is nonempty. 
Our results have appeared in [1]. 

From P and R, we define an m X n (0, 1)-matrix A* as follows. Let 
A* have ith row sum rt (1 ^ i ^ m) and let A* have l's wherever P has 
l's with the remaining l's as far to the left as possible. Define s/* to be 
the 7th column sum ^4*. Let the sequence (s*) be the P-required conjugate 
of the sequence {rt). 

THEOREM 2.1. Let P be an acceptable matrix. There exists a matrix 
A 6 °ti(R, S) with A è P {i.e., A Ç <%P(R, S)) if and only if 

(2.1) 2>i*èZ*< ( u ^ « ) , 
t = l 1=1 

where the sequence (sz*) is the P-required conjugate of the sequence (r*) and 
S is monotone. 

Proof. Assume there is a matrix A € °ttP(R, S). Then (2.1) holds since 
A can be obtained from A* by shifting l's to the right. 
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Assume (2.1) holds and that P is acceptable. Following the spirit of 
Ryser's proof of the Gale-Ryser Theorem [17], we give an algorithm for 
constructing an A £ °tiP(R, S). We define a 1 in a m X n (0, 1)-matrix 
to be free if it is not in the same position as a 1 of P . 

Algorithm. 
Step 1. B±-A*;j<-n. 
Step 2. If B has at least s ; l 's in column j then go to Step 5. 
Step 3. Among those rows of B which do not have a 1 in column j and 

among columns 1, 2, . . . , j — 1 we select a free 1 in B such that the 
following holds. Let C be the matrix obtained from B by shifting the 
selected 1 to the right into column j . Let C have j t h column sum Cj. We 
require 

(2.2) Éc , è2>< (lût^n). 
i= i t=i 

Step 4. J5 <- C; go to Step 2. 
Step o. j <— j — 1; if j > 1 then go to Step 2. Otherwise halt and 

output B. 

The process of shifting l 's is clearly finite, thus the algorithm will 
terminate as long as Step 3 can always be performed. We will verify this 
shortly. We claim that the output is a matrix A £ °U'P(R, S). We note 
that at every stage, B has row sums given by R since A* does and l 's 
are never shifted between rows. The column sums of A are given by 5 
unless, at some Step 2, column j has more than Sj l 's. Consider B in such 
a case where bf is the ith column sum of B. We have bn — sn, bn-i = 
5n_i, . . . , bj+i = Sj+i and bj > Sj. Counting all the l's we have 

bi + b2 + • . . + bn = si + 52 + . . . + sn 

and thus 

(2.3) I > i < 2 > « -
1=1 *=1 

This contradicts (2.2) (or (2.1) in the case B = 4*) . Thus 4 Ç^(JR,S) . 
We note that A* ^ P and only free l 's are shifted in the algorithm, thus 
B ^ P. We deduce that A ^ P , establishing our claim. 

We must now verify that Step 3 can always be performed. Let B be 
a matrix at some stage in the algorithm and let B have ith column sum 
bt. Then by (2.2) (or (2.1) if B = A*), we obtain 

(2.4) 2 > , è l > , ( 1 ^ ^ ) . 
i=*i i= i 

We claim that among the free l 's under consideration in Step 3, the one 
in column p, where p is as large as possible, will work. At the end of this 
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proof we consider the case that no such free 1 exists. Consider C to be 
the matrix obtained by shifting that 1 and let C have ith column sum ct. 
Since column i of C is the same as column i of B for 1 :g i ^ p and 
j ^ i ^ n, we obtain 

(2.5) Éc, = £ & « è l > i (i ^'</>;./'^'£ »)• 
î = l î = l z = l 

We have ^ < Sj by Step 2. We claim bq ^ sQ for p < q < j . Now 5 is 
monotone, so Sj S sqfor p < q < j . There is at most one 1 of P in column 
q since P is acceptable. Free l's in column q can occur only in the bj rows 
where column^ of B has l's. Thus bq ^ b3-, + 1 for p < q < j - Combining, 
we obtain 

bQ ^ bj + 1 ^ ^ ^ 5Ç 

as claimed. Considering the effect of shifting the 1, we obtain 

(2.6) Zci^i^i (P£t<j). 
2 = 1 1=1 

Combining this with (2.5) yields (2.2) as desired. 
We can now dispose of the remaining case that there are no free l's 

in the given rows and columns. We have bn = sn, bn-\ = sn-i, . . . , bj+i — 
Sj+i, and bj < sj since we are at Step 3. By our above arguments 

bj-i ^ Sj-i, bj-2 S Sj-2, • • . , bi ^ 5i. 

This contradicts that 

bi + b2 + . . . + bn = si + s2 + . . . + sn 

and so we may conclude that there is some free 1 which can be selected 
in Step 3. 

COROLLARY 2.2. Gale-Ryser Theorem (Theorem 1.1). 

Proof. Simply take P = 0 and note that st = s*. 

A quick examination of the algorithm reveals that any matrix 
A £ ^P(R, S) can be generated in this way. We may restate Theorem 
2.1 in terms of finding a matrix A £ <% (R, S) with A + P ^ / where / 
is the matrix of l's. We say that A avoids P. Define P to be avoidable 
if it is an m X n (0, 1)-matrix with column sums at most 1 and if the ith 

row sum (jth column sum) does not exceed n — rt (m — sj) for 1 ^ i ^ m 
(1 ^ j ^ n). From P and R, we define an m X n (0, 1)-matrix A** as 
follows. Let A** have ith row sum rt (1 ^ i' g m) and let A** have 0's 
wherever P has l's with the l's of ^4** as far to the left as possible. Define 
Sj** to be the j t h column sum of A**. Let the sequence (s**) be the 
P-restricted conjugate of the sequence (/%•). 
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COROLLARY 2.3. Let P be an avoidable matrix. There exists a matrix 
A £<%(R, S) with A + P ^ J if and only if 

(2.8) Z 5,** ^ É 5, ( l g ^ n ) , 
1=1 i= l 

where the sequence (s***) is the P-restricted conjugate of the sequence (rt) 
and S is monotone. 

Proof. Let P have ith row sum r (' and j t h column sum s/'. Define 
R' = (r / , r2', . . . , rj) and 5 ' = (s / , S2, . . . , sn') as follows 

/OQN ' / = '< + '<" ( U i ^ w ) , 
^ • y j */ = *, + 5 / ' ( l = g j £ » ) . 

There exists an yl £ rffc (R, S) with 4̂ + P ^ / if and only if there exists 
a B £ °UP(R!, S') with B ^ P . If such an 4 exists, take B = A + P. If 
such a 5 exists, take A = B — P . By Theorem 2.1, such a 5 exists if 
and only if 

(2.10) i ^ ^ t ^ ' (l^t^n), 
t=i Ï = I 

where the sequence (st*) is the P-required conjugate of the sequence 
( r / ) . We note that 5,* = sf* + st" and 5/ = Si + s/' for 1 S i S n. 
Thus (2.10) holds if and only if (2.8) holds and the result is proven. 

We can use Corollary 2.3 to prove a result of Fulkerson on matrices 
with zero trace. Simply set P = I, the identity matrix. 

COROLLARY 2.4 (Fulkerson [7]). Consider °tt{R, S) with m = n. There 
exists a matrix A 6 & (R, S) with tr(A) = 0 if and only if 

(2.11) ]•><** è £ * i (1 £t^n), 
Ï = I t=i 

where the sequence (s**) is the I-restricted conjugate of the sequence (r{) 
and S is monotone. 

There are a number of applications of Theorem 2.1 and Corollary 2.3. 
One could determine the minimum and maximum value of the trace and 
the maximum term rank for matrices in °ll (P, S) [1]. The formulas 
obtained are different but approximately as easy as those of Ryser 
[15, 16]. The case of P being a permutation matrix is the most interesting. 
Ryser proved the following. 

THEOREM 2.5 (Ryser [17]). Consider °U{R,S) with m = n. If there 
exists a matrix A £ °tt (P, S) which covers a permutation matrix, then there 
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exists a matrix in °tt (R, S) which covers 

0 1 

(2.12) M = 

0 

A companion result can be proven using Theorem 2.1 [1]. 

COROLLARY 2.6. Consider ^(R, S) with m — n. If there is a matrix 
A G & (R, S) with A ^ I, then for any permutation matrix P of order n, 
there exists a matrix in % {R, S) which covers P. 

Thus M and I are, respectively, the easiest and hardest permutations 
to cover. 

3. A theorem on interchanges and triangle interchanges. Con­
sider a matrix A G ^(R,S) with a submatrix B G fy{R',S'). Then 
replacing B by any B' G <% (R', S') results in a new matrix A' G <%(R,S). 
Row and column sums are unaffected. The simplest possibility is with 
R' = S' = (1, 1) and the two matrices in <%(R', S') are 

(3.1) i) 1 0 
0 U ii) 

0 1 
1 0 

|~0 1 c 1 0 c\ 
! 1 b 0 , iv) 0 6 1 
[a 0 1_ _a 1 OJ 

Replacing a submatrix i) by ii) or vice versa is called an interchange. 
We will also use a more complicated version in %P(R, S). Consider the 

following two matrices. 

(3.2) iii) 

Replacing a submatrix iii) by iv) or vice versa leaves the row and column 
sums unchanged. We restrict ourselves to the case a = b = c = 1 and 
that these are Ts of P. Thus iii) and iv) are both triangles as defined 
by Ryser [19]. A triangle interchange is such a replacement or any version 
of (3.2) obtained by applying the same row permutation to both iii) 
and iv). 

Our main result in this section unifies some previous results as well as 
providing new ones. The theorem is messy to state but it has simple 
corollaries. We will use some proof techniques introduced by Brualdi and 
Ross [4]. Define m (A, B) to be the number of — l's in A — B. We note 
that if m (A, B) = 0 then A ^ B, which is the object of some of our 
corollaries. 
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THEOREM 3.1. Let WP(R, S) be nonempty. Let Rf = (r/, r2', . . . , rm') 
with r l g Ti and let S' = (s / , s2', • • • , sn') with s / = st — korst—k — I 
for some given k. Assume % F(R!, Sf) is nonempty. Then there is an A G 
°àp(R, S) and a B £ °tt P{R!, S') with m (A, B) no larger than the number 
of columns i with s/ = st — k and no larger than the number of columns i 
with s/ = Si — k — 1 and containing a 1 of P. For an arbitrary pair 
A e ^P(R,S)} B 6 <%p(R\S') with m{A,B) larger than this bound, 
there is an interchange or a triangle interchange resulting in a pair 
A' G <%P(R, S), B' e <%p(R', S') with m(A', B') < m(A} B). 

We postpone the proof to Section 4 and proceed to consider the 
corollaries. Our first result appears in [1]. 

COROLLARY 3.2. Given a pair A, B £ °llP{R, 5), one can get from A to 
B by a series of interchanges and triangle interchanges without leaving 
<%P{R,S). 

Proof. Let R' = R and S' = S with k = 0 in Theorem 3.1. Thus there 
are no columns with s/ = s* — 1. Then any pair A, B £ &P(R, S) can 
be changed by a series of interchanges or triangle interchanges, without 
leaving %P{R, S), to a pair A', W with m(A,

1B
t) = 0 i . e . , 4 ' = B'. This 

proves the result. 

We note that the interchanges and triangle interchanges can be chosen 
so that m {A, B) is reduced at each step. Since m(A, B) = 1 is impossible 
when Ay B £ &P(R, S), we deduce that m(A,B) — 1 is an upper bound 
on the number of operations required to obtain B from A. As the next 
corollary shows, only interchanges are required in & (R, S). Exact lower 
bounds on the number of interchanges required in this case were given 
by Walkup [20]. 

COROLLARY 3.3 ([17]). Interchange theorem. Given a pair of matrices 
A, B £ °U {R, S), one can get from A to B by a series of interchanges. 

Proof. Set P = 0 in Corollary 3.2. We note that triangle interchanges 
require l 's of P and there are none. 

COROLLARY 3.4. Let R' = (r / , r2', • • • , fm) with r( ^ rt and S' = 
(s / , s2', • . . , sn

f) with s/ = Si — k. Then there exists an A £ tflp(R, S) 
andaB e <W P(Rr, 5') with A ^ B if and only if°tiP(R, S) and°UF{R!, S') 
are nonempty. 

Proof. One direction is obvious. For the other direction, we note that 
the number of columns i with s/ = st — k — l i s zero. Thus by Theorem 
3.1, there is a pair of matrices A G ^ P ( i ^ , 5 ) , B G <%P(R',S') with 
m(A,B) = 0, i.e., A ^ B. 
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Let k = (k, ky . . . , k) be the vector with n k's. Then a version of 
BirkhofFs Theorem, stated in (0, 1)-matrix terms, says that any matrix 
in ^ ( k , k) is the sum of k disjoint permutation matrices [17]. If we 
take P = 0 and S' = S — k, then Corollary 3.4 can answer the question: 
does there exist a matrix in % (R, S) which covers k disjoint permutation 
matrices? If we take P to be a permutation matrix and Sf = S — k, then 
Corollary 3.4 can answer the question: does there exist a matrix in 
tf/P(R} S) which covers k disjoint permutation matrices all disjoint from 
P? Thus we answer in the whole class the question considered by Fulker-
son for a specific (0, 1)-matrix [8]. 

We may obtain a generalization of a result of Brualdi and Ross [4], 
which appears in [1]. The following result is akin to several results in 
graph theory concerning the existence of subgraphs with vertex degrees 
k or k + 1 [10, 11, 12]. In fact the proof of Brualdi and Ross was derived 
from a paper of Lovasz on 1-factors [13]. 

COROLLARY 3.5. Let R' = (r/ , r2\ . . . , rm') with r( S rt and let 
S' = (si, s2', • • . , Sn) with sî = Si — k or Si — k — 1. Then there exists 
anA € (%{R,S)andaB Ç °U {R!, S') with A ^ B if and only if ^ (R, S) 
and °tt {R!, S') are nonempty. 

Proof. Set P = 0. Then the number of columns i with l's of P is zero. 
Thus by Theorem 3.1, there is a pair of matrices A G °à (R, S) 
B £ <%(R', S') with m(A, B) = 0, i.e., A ^ B. 

We can apply some of our results to directed graphs (digraphs). For 
suitable definitions, see [2]. Associated with any (0, 1)-matrix A = {a if) 
of order n is a digraph D on n vertices where there is an edge from vt to 
Vj {Vi—ïvf) if and only if ai3• = 1. We only consider digraphs with no 
multiple edges (edges from vt to Vj and from Vj to vt can occur) and no 
loops. The indegree {outdegree) of a vertex is the number of edges directed 
into (out from) a vertex. Thus the class of all digraphs with a given 
indegree sequence 5 and outdegree sequence R corresponds directly to 
°lt j(R, S). For any B G %i(R, S) we take the digraph associated with 
B — I. Corollary 2.4, due to Fulkerson, gives necessary and sufficient 
conditions for the existence of a digraph with given indegree and out­
degree sequences. Corollary 3.4, with P = I, yields the following result 
due to Kundu. 

COROLLARY 3.6 (Kundu [12]). There exists a digraph with indegree 
sequence S and outdegree sequence R containing a k-factor (subgraph 
including all vertices with all degrees k) if and only if there exists a digraph 
with indegree sequence S and outdegree sequence R and a digraph with 
indegree sequence S — k and outdegree sequence R — k. 

We obtain the following interesting result using Corollary 3.2 with 
P = I. 

https://doi.org/10.4153/CJM-1982-029-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1982-029-3


446 R. P. ANSTEE 

COROLLARY 3.7. Consider two digraphs with the same indegree sequences 
and the same outdegree sequences. Then one can be obtained from the other 
by a series of transformations of Type I and Type II, as given in Figure 1, 
in which certain edges are llswitched". 

TYPE I: 

TYPE II 

FIGURE 1 

In Figure 1, the dotted edges are edges not in the digraph. 

Proof. Apply Corollary 3.2 to °tti(R, S). The interchange translates 
into Type I transformations and the triangle interchange translates into 
Type II transformations. 

We can apply Corollary 3.7 to undirected graphs and tournaments. 
An undirected graph (or simply graph) corresponds to a digraph where 
there is an edge from vt to Vj whenever there is an edge from Vj to vt and 
the two together are called the edge joining vt and Vj The indegree and 
outdegree sequences are equal and are called the degree sequence. Thus a 
graph with a given degree sequence R corresponds to a matrix 
A G &i(R, R) with AT = A, where AT denotes the transpose of A. The 
matrix A — I is called the adjacency matrix. Consider another graph 
B G °tti(R,R) with BT = B and m(A,B) > 0. Transformations of 
Type II are not possible in A. Thus a transformation of Type I in A is 
possible, using Theorem 3.1, which reduces m (A, B). Using the symmetry 
AT = Ay we deduce that there is another interchange which, combined 
with the first one, corresponds to the transformation in Figure 2 and 
reduces m (A, B). 

\ 

/ 

\ / 
V 

/ 

\ 
\ 

- > 
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\ / 
\ / 

\ / 
\ / 

\ / 
X 

/ \ 
/ \ 

+ ^ FIGURE 2 

In Figure 2, dotted edges are not in the graph. The above argument 
proves a result of [6]. 

COROLLARY 3.8 (Fulkerson, Hoffman and McAndrew [6]). Given two 
graphs with the same degree sequence, one can get from one to the other 
by "switching" edges as in Fig. 2. 

A tournament is a digraph in which any pair of vertices are joined by 
exactly one directed edge. We refer to the outdegree sequence as the 
score sequence. A tournament on n vertices with score sequence R is 
an A Ç &i(R, n — R) with A + AT = J + I. Consider another tourna­
ment B with the same score sequence. An interchange of Type I in 
Figure 1 in A which reduces m(A,B) has a corresponding one, using 
A -\- AT — J — I, which also reduces m (A, B). Together they corre­
spond to reversing the edges of a four cycle V\ •—» v2 —> vz —» z/4 —» V\. If 
there is an edge v2 —> y4, then one could first reverse the edges of the three 
cycle V2—+V4-+V1-+ v2 and then reverse the three cycle vx —> v2 —> vz —> v^ 
which corresponds to two transformations of Type II. The same works 
in the remaining case that there is an edge VA —» v2. Corollary 3.7 was 
proven by Ryser for tournaments [18]. We have proven a slightly 
stronger result. 

COROLLARY 3.9. Given two tournaments with the same score sequence, one 
can get from one to the other by transformations of Type II in Figure 1. 

4. Proof of t he theorem. 

Proof of Theorem 3.1. We combine the techniques used to prove 
Corollary 3.2 and Corollary 3.5 in [1]. To conserve space, we will take 
the transposed version of Theorem 3.1 in the proof that follows. We now 
have 

(4.1) r( = rt — k or rt — k — 1, 
s/ ^ St, 

and P has row sums at most 1. 
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Take A G <%P{R,S) and B Ç <%P(R',S') with m(A,B) > 0. Let 
A = ( a 0 ) , B = (è 0 ) , and P = (£^). Assume yl has no interchange or 
triangle interchange that would result in a matrix A' G %F{R, S) with 
m(A',B) <m(A,B). Assume the same for B. We consider the im­
plications of these assumptions in the following two cases. 

Case I. Let A and B have corresponding 2 X 2 submatrices of the 
form 

! 0 1 " 
Ll atj. 

1 

~1 0 " 
.0 btil 

If atj = 0, then an interchange in A will result in a matrix A' with 
m(A', B) < m(A,B) and A' Ç ^ P ( i ? , 5). If btj = 1 and £ „ = 0, then 
an interchange in B will result in a matrix 5 ' G °UP(R', 5") with 
tn(A, B') < m(Ay B). Thus under our assumptions, either a 0 = 1 and 
6 -̂ = 0 or atj = 6^ = pij = 1. 

Case II. Let A and 5 have corresponding 2 X 2 submatrices of the 
form 

"l 0 ' 
-0 atj. J 

0 1 " 
-1 bn. 

By similar arguments, we conclude that either a^ = 0 and btj = 1 or 
aa = bij = pij = 1. 

We now apply these arguments and try to reduce the number of — l's 
in A — B. Let row p of A — B have the most number of nonzero entries. 

Case 1. Row p has t —l's and t + k + 1 l's. 
Since A — B has positive column sums (s/ ^ s*), there must be a 1 

in some row q in the same column as a — 1 of row p. Using Case I, we 
deduce that row q has l's in the columns containing the Ts of row p with 
one exception where aqi = bqi = pQi = 1. If they were all l's, then row 
q would have t + k + 2 l 's and, by (4.1), at least t + 1 —l's which 
contradicts the choice of row p. We also note that P has at most one 1 
per row. Thus row q has t + k + 1 l 's and so has t — l 's. Using Case II, 
the —l's of row q lie in columns with a — 1 in row p and in a column 
with a 1 of P in row p. We may write out rows p and q (after a column 
permutation and deleting columns of 0's) as follows. The symbol 0 refers 
to a 1 of P which is a 0 in A — B. 

row p: 0 - 1 - 1 • • • - 1 1 1 ••• 1 
(4.4) 

row ç: - 1 1 - 1 •- . - 1 0 1 ••• 1. 

We know that A — B has nonnegative column sums. Since any row 
with a 1 in the same column as a — 1 of row p must take the form of 
row g, we deduce that t = 1. 

There must be some row r with a 1 in the same column as the — 1 in 
row q. The remaining entries of row r occur as shown forced by the same 
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arguments tha t determined row q (we ignore columns of 0's). 

row p: 0 — 1 1 1 ••• 1 

(4.5) rowq: - 1 1 0 1 ••• 1 

row r: 1 0 — 1 1 • • • 1. 

We note t ha t a triangle interchange in A or B in rows p,q,r and the first 
three columns in (4.5) will reduce m(A, B) by 3. This is a contradiction 
and so Case 1 does not occur. 

Cases 2, 3, and 4 consider the possibility tha t row p has / — l ' s and 
/ + k l ' s . We deduce tha t row q, chosen as before, has either t + k or 
/ + k + 1 l ' s . Now t + k + 1 l ' s forces a t least / — l ' s which is a con­
tradiction. T h u s row q has / + k l ' s . We consider the three variat ions of 
this possibility. 

Case 2. Row p has t —l ' s and t + k l ' s . Row q, chosen as before, has 
t — 1 — l ' s and t + k l ' s . There is a 0 in row q in the same column as a — 1 
in row p. 

There is freedom in choosing a column for the 0 for there is a t most 
one such 0 otherwise there couldn' t be t — 1 —l ' s . Using arguments as 
in Case 1, we may write the entries of rows p and q as follows (ignoring 
columns of 0's) 

rowp: 0 - 1 - 1 - 1 ••• - 1 1 1 ••• 1 
(4.6) 

r o w ? : - 1 1 0 - 1 ••• - 1 0 1 ••• 1. 

We need t è 2 for this case to occur. In order for the column sums in 
A — B to be nonnegative, we deduce tha t / = 2 considering the possi­
bilities for any additional row with a 1 in the same column as a — 1 
of row p (Case 2, 3, or 4) . Consider a row r with a 1 in the same column 
as the — 1 in row q. We obtain the following entries for row r (ignoring 
columns of 0's) 

VOVJ p: 0 - 1 - 1 1 1 • • • 1 

(4.7) r o w ? : - 1 1 0 0 1 ••• 1 

r o w r : 1 0 0 - 1 1 ••• 1. 

Other than the first 1 in row r, the remaining entries are forced as 
follows. There are k + 2 l ' s in row r and a t most one — 1 , so the —1 is 
forced by (4.1). Comparing row q and row r in the first and second 
column in (4.7), we deduce t ha t the position in row r with a 0 is either 
a 0 or a 1. If it were a 1 then comparing rows p and r, we would have 
k + 3 l ' s in row r which is impossible. T h u s the 0 of row r is forced. 
Comparing rows p and r, we deduce tha t the only place for the — 1 in 
row r is as shown. The remaining entries are now forced. We note t ha t 
the first, second, and fourth columns of rows p, q, and Y yield a triangle 
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interchange in A or B which reduces rn(A,B) by 3. This contradiction 
ensures that Case 2 does not occur. 

Case 3. Row p has t — l 's and t + k Vs. Row q, chosen as before, has 
/ - l ' s and t + k Vs. 

This is similar to Case 1. We immediately obtain that the entries of 
rows p and q can be written as follows (ignoring columns of O's) 

row p: 0 - 1 - 1 • • • - 1 1 1 • • • 1 
(4-8) 

row g: - 1 1 - 1 ••• - 1 0 1 •• 1. 
With Case 2 eliminated, we deduce that t = 1 in order that A — B have 
nonnegative column sums. Consider a row r with a 1 in the same column 
as the — 1 of row g. If that row also has a — 1 then we can get a contra­
diction using the arguments of Case 1 with k + 1 replaced by k. In the 
remaining case that row r has no — 1 , we obtain 

row p: 0 - 1 1 1 ••• 1 

(4.9) row g: - 1 1 0 1 ••• 1 
row r: 1 0 0 1 • • • 1. 

This follows by comparing rows q and r and noting that row r has k l 's 
and one 1 of P in the k + 1 columns where row q has l 's. The 0 in row 
r is now forced. Comparing rows p and r in the second and third columns 
of (4.9), we see that the 0 is forced. Consider the first three columns of 
(4.9). The 0 indicates that either both A and B have O's in that position 
or both A and B have l's. In the former case, a triangle interchange in 
A will reduce m (A, B) by 2. In the latter case, a triangle interchange in 
B will reduce rn(A, B) by 2. Both possibilities are a contradiction and 
we conclude that Case 3 does not occur. 

We conclude the proof with Case 4 which is the only remaining 
possibility. 

Case 4. Row p has / — l's and t + k l 's. Row q, chosen as before, has 
t — 1 —l's and t + k l 's. There are no O's in the same column as a — 1 
of row p. 

Using similar arguments, we may write the entries of rows p and q as 
follows (ignoring columns of O's) 

row£: - 1 - 1 ••• - 1 1 1 ••• 1 
(4.10) 

rowç: 1 - 1 ••• - 1 0 1 ••• 1. 

In order that the column sums be nonnegative, we deduce that t = 1. 
Thus (4.10) may be written 

1 1 . . . 1 

0 1 •• 1. 

- B occurs once per row in a row with row sum k 

row p: — 1 
(4.11) 

row q: 1 
Thus each — 1 in A — 
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and that row can be paired off with a row with row sum k + 1 and 
having a 1 of P . This yields the bound in Theorem 3.1, after taking 
transposes, and completes the proof. 

5. Results on possible columns. We define a column a of m entries 
to be a possible kth column in °tt P{R, S) if there is a matrix in °ll'P(R, S) 
with a as its kth column. Certainly a must have l's where column k of P 
has l's and in rows i where r% = n. Let P' be the matrix obtained from 
P by deleting the kth column. Define 5 = (s/ , s2', . . . , V-i') by s/ — st 

for i < k and s/ = 5 ^ + 1 for i ^ k. Let R' = (r / , r2', . . . , rm
f) with 

R' = R — aT. Then a: is a possible kth column if and only if °k' P>{R>', S') 
is nonempty and a has l's wherever the kth column of P has l's. 

It is useful to define tt to be the column of the free 1 in row i of A* 
which is furthest to the right and zero if there is no free 1. We permute 
the rows so that h ̂  h ̂  . . . ̂  tm in the results that follow and wre 
call R t-monotone with this ordering. We wish to form a partial order on 
possible columns. We define a 1 to be moveable if it is not a 1 in the kth 

column of P and it is not in a row i for which rt = n. Then for two 
columns a, £, we define a :§ fi if the ith moveable 1 of a (from the top) 
is in row j and the ith moveable 1 of 0 is in row k with j ^ k (tj ^ tk). 
The following result on minimal columns in this ordering occurs in [1]. 

THEOREM 5.1. Let a be a column of m entries and skl's with l 's wherever 
column k of P has l 's and l's in rows i for which rt = n. The remaining 
l's are as high as possible. Then a is the minimal possible kth column for 
°tiP(R, S), with R being t-monotone, if &P(R, S) is nonempty. 

Proof. Let B G °tiP(R, S) and let 0 be its kth column. Let R" = 
Oi", r2", . . . , rm") with R" = R - pT. Let the sequence ($/') be the 
P'-required conjugate of the sequence ( / / ' ) . Using Theorem 2.1, we have 

(5.1) É*,"è i s / { l ^ t ^ n - 1). 
Z = l 1 = 1 

Using the definition of a, we consider the matrix A* associated with each 
sequence (s/) and (5/ ;) and deduce 

(5.2) ih'^ih" (l£t£n-l). 

Combining (5.1) and (5.2), we obtain that °ttP>(R!,S') is nonempty, 
using Theorem 2.1. Hence a is a possible kth column. It is certainly 
minimal. 

This result provides us with the analogue of the (0, 1)-matrix rule of 
Ford and Fulkerson [5], We can generate a matrix in °llP(R, 5), if one 
exists, as follows. For column k we choose a as described and then repeat 
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on the smaller class °llP>{R!, S1). Since a is so easy to determine, it 
would be a useful algorithmic tool. It could be applied, as was the 
(0, l)-matrix rule in [1], to determining whether there is a matrix in 
°UP(R, S) with a submatrix in °UP>{R!, Sf) in certain rows and columns. 

We can also find the maximal column in this ordering. Let 

L i t \ 
(5.3) dj = m i n ^ 2 > < * - £ st'\ j £ t ^ n) , 

where the sequence (s*) is the P-required conjugate of the sequence 
(rt). Define a column w of m entries and sk l 's as follows. It has l 's 
wherever column k of P has l 's and in rows i for which rt = n. The 
remaining l 's are placed as far down in the column as possible subject 
to the following condition: There are no more than d3•, ~ b l 's in rows i 
for which tt ^ j (apart from the l's of P in co) where 5 — 1 if j ^ k and 
column k of P has a 1 and 6 = 0 otherwise. 

THEOREM 5.2. Let co be the column of m entries and sk l 's as defined 
above. Then w, if it exists, is the maximal possible ktli column in °ltP(R, S) 
where R is t-monotone. If œ does not exist then &P(R, S) is empty. 

Proof. Let p be a possible kth column and let ft have Cj l 's in rows i for 
which tt ^ j (apart from l's of P in 0). Let R" = (r / ' , r2", . . . , rn") 
with R" = R — 0T'. Let the sequence (s/') be the P-required conjugate 
of the sequence (r/') and have it arise from Â (A* in the notation used 
before Theorem 2.1). Let the sequence (s*) be the P-required conjugate 
of the sequence (rt) and have it arise from ^4*. We note that Â can be 
obtained from A* by deleting l's. A 1 of P in column k must be deleted, 
reducing sk* by 1. A 1 of /3 (not a 1 of P) in row i causes a 1 in row i and 
column tt to be deleted, reducing s* by 1 where t = tt. Let c be the 
number of l's in P in column k. Thus c = 0 or 1. We obtain 

\is^-ct i^t<k 
(5.4) ZV'^VT 1 

Thus 

(5.5) èv'âè*i' (1^^«), 
1 = 1 * = 1 

only if c ; ̂  dj — ô, where ô is as defined in the theorem, using (5.3). 
This is true for any possible kth column f3 and so we deduce that co is 
the maximal possible kth column. 

If co did not exist, then no such @ could exist because co could be obtained 
from any possible kth column by shifting l 's down. Thus ^?/P(P, S) is 
empty. This completes the proof. 
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Let P be a column of m entries and sk l's with l's where the kth column 
of P has l's and in rows i for which rt = n. By Theorem 5.2, if j3 ^ w, 
then 0 is a possible &th column. Thus all possible columns can be deter­
mined. Our arguments do not apply to rows (unless P also has row sums 
at most 1) since we have used Theorem 2.1 heavily. 

We note that we could use these results to generate all possible 
matrices in tftP{R, S) by generating all possible kth columns and then 
repeating this on what is left, °ttP>{R, S'). Ignoring any row and column 
permutations which would give isomorphisms, this process would 
generate each matrix in %p(R, S) exactly once. 
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