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Abstract

This study aimed to identify clinical features for prognosing mortality risk using machine-learn-
ing methods in patients with coronavirus disease 2019 (COVID-19). A retrospective study of the
inpatients with COVID-19 admitted from 15 January to 15 March 2020 in Wuhan is reported.
The data of symptoms, comorbidity, demographic, vital sign, CT scans results and laboratory
test results on admission were collected. Machine-learning methods (Random Forest and
XGboost) were used to rank clinical features for mortality risk. Multivariate logistic regression
models were applied to identify clinical features with statistical significance. The predictors of
mortality were lactate dehydrogenase (LDH), C-reactive protein (CRP) and age based on 500
bootstrapped samples. A multivariate logistic regression model was formed to predict mortality
292 in-sample patients with area under the receiver operating characteristics (AUROC) of
0.9521, which was better than CURB-65 (AUROC of 0.8501) and the machine-learning-
based model (AUROC of 0.4530). An out-sample data set of 13 patients was further tested
to show our model (AUROC of 0.6061) was also better than CURB-65 (AUROC of 0.4608)
and the machine-learning-based model (AUROC of 0.2292). LDH, CRP and age can be used
to identify severe patients with COVID-19 on hospital admission.

Introduction

Since the outbreak of the novel coronavirus resulting in coronavirus disease 2019 (COVID-19)
in Wuhan, China, at the end of 2019, there have been more than 12.5 million individuals in
more than 200 countries with confirmed COVID-19, of whom more than 560 000 have died as
on 13 July 2020 [1]. The type of pneumonia caused by COVID-19 is highly infectious, and the
World Health Organization (WHO) has declared the ongoing outbreak as a pandemic with
high short-term mortality rate [1]. Several studies have already been reported regarding the
clinical course and outcomes of patients with COVID-19 pneumonia [2–6]. The mortality
of patients and risk factors of prognosis were studied [2, 3, 6–15]. The prognosis of patients
with COVID-19, and the identification of clinical variables of mortality risk after hospital
admission are still challenging problems [6–15]. Several prediction methods [7–15] were stud-
ied to guide clinical decisions. However, their analysed data sets may be limited, their proposed
methods may be poorly reported, or their reported performance may be optimistic [16].

In this study, we aimed to investigate machine-learning methods to rank clinical features,
and multivariate logistic regression method to identify clinical features with statistical signifi-
cance in prediction of mortality risk in patients with COVID-19 using their clinical data on
admission at the west campus of Union Hospital in Wuhan.

Methods

Study design

This was a single-centred, retrospective, observational study. We considered the medical infor-
mation of inpatients with COVID-19 collected between 15 January and 15 March 2020. The
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eligibility criteria were as follows: patients aged 14 years or older
and patients who were diagnosed with COVID-19 pneumonia
according to the interim guidelines from the World Health
Organization. The patients were labelled as survivor or non-
survivor. The study was approved by the Ethics Committee
Board of Beijing Chaoyang Hospital, Capital Medical University
and Union Hospital, Tongji Medical College, Huazhong
University of Science and Technology, and the requirement for
informed consent was waived.

Data collection

Symptoms, comorbidity, demographic, vital signs, CT scans and
laboratory were extracted from electronic medical records of inpa-
tients with COVID-19 in Union Hospital by using a standardised
data collection form. For all the patients included in the data set,
we only included patients with laboratory results within a 24-h
admission period.

We identified in-sample data of patients who had symptoms,
comorbidity, demographic, vital sign, CT scans and laboratory
on admission without missing values in the study. In addition
to the in-sample data set, we further collected samples with
COVID-19 for out-sample data. Note that out-sample patients
had some missing values in the other clinical measurement vari-
ables, they were not selected in the in-sample data set.

Statistical methods

On the basis of the in-sample data set, we implemented a series of
data analysing techniques and found the top laboratory features
highly related to the mortality rate of a patient. To test the stability
of our model, we made a comparison test with other models and
the out-sample data.

In this study, we employed supervised Random Forest [17] and
XGBoost [18] classifiers as the predictor models for ranking vari-
ables. Both Random Forest and XGBoost are machine-learning
algorithms based on tree-based classification models. Random
Forest utilises bagging in training, while XGBoost makes use of
re-labels in training. However, their black-box models are difficult
to interpret the mortality risk in patients. Here we only used them
to calculate the relative importance of each variable in the dis-
criminative model for the two labels survivor and non-survivor
of in-sample patients.

In the next step, we used multivariate logistic regression [19] to
identify variables by checking their statistical significance from
the list of selected variables in the output by the Random Forest
and XGBoost. Validation was assessed by the z-score of each vari-
able based on 500 bootstrapped samples. A P-value <0.05 was
considered statistically significant. The resulting multivariate
logistic regression was then constructed based on these statistically
significant variables of the in-sample patients to determine the
mortality prediction model. Here four-fold cross-validation
(75% training and 25% testing data of in-sample patients) is
employed to obtain the resulting mortality model. The
CURB-65 [7] method and the machine-learning-based model
on XGBoost [13] were also compared with the obtained mortality
prediction model. In addition to the in-sample data set, an out-
sample data set of out-sample patients were collected and used
to predict mortality by the determined prediction model, then
compared with the CURB-65 method and the machine-learning-
based model on XGBoost.

We used area under the receiver operating characteristics
(AUROC) as the precision measurement. By comparing the true-
positive and false-positive numbers, a receiver operating charac-
teristics (ROC) curve is a graph showing the performance of a
classification model at all classification thresholds. AUROC mea-
sures the entire two-dimensional area underneath the entire ROC
curve. It tells how much model is capable of distinguishing
between classes. Higher the AUROC, better will be the model at
predicting different classes, for example, distinguishing patients
with disease and no disease.

Results

We collected data from 305 patients (292 in-sample data and 13
out-sample data) with 33 variables each and the baseline charac-
teristics of patients are shown in Table 1. In-sample patients’ data
were further labelled as survivor and non-survivor. They included
57 non-survivor patients (19.5%) and 235 survivor patients
(79.5%). The study process is shown in the form of a flow chart
(Fig. 1).

Sixteen clinical variables and 17 clinical measurement vari-
ables of 292 patients are shown in Supplementary Table 1 and
Supplementary Table 2. Thus, they were used to build the mortal-
ity prediction model.

In the first step, based on the sample of 292 patients, the list of
relative importance (being greater than 1%) generated by Random
Forest and XGBoost is given in Table 2.

The two lists contained 18 variables, and they were the same
except for their relative importance of the variables. The two
lists were also confirmed by both machine-learning methods
that were shown to have high AUROC values (Random Forest:
0.9756 and XGBoost: 0.9462) in their average cross-validation
results.

In the second step, we conducted 500 bootstrapped samples
of 292 patients, and calculated z-scores of 18 variables in each
bootstrapped sample. Most of the 18 variables are not statistically
significant. There were only three variables with statistical signifi-
cance, namely lactate dehydrogenase (LDH) (z-score = 12.08),
C-reactive protein (CRP) (z-score = 7.24) and age (z-score =
21.11). The multivariate logistic regression for mortality predic-
tion based on these three variables are given in Table 3.

The ROC curve of the obtained mortality model is given in
Figure 2(a). For comparison, the ROC curves of CURB-65 and
the machine-learning-based model on XGBoost [13] are also
shown in Figure 2(a). It was found that our mortality prediction
model (AUROC = 0.9514) was better than both CURB-65
(AUROC = 0.8501) and the machine-learning-based model on
XGBoost (AUROC = 0.4530).

The results for the 13 patients out-sample data set with 10 sur-
vivor patients (76.9%) and three non-survivor patients (23.1%),
the ROC curves of the obtained mortality model, CURB-65 and
the machine-learning-based model on XGBoost are given in
Figure 2(b). Our mortality prediction model (AUROC = 0.9667)
was better than both CURB-65 (AUROC = 0.5500) and the
machine-learning-based model (AUROC = 0.3333).

We also compared our mortality prediction model with
National Early Warning Score (NEWS) which is a general scheme
to check and predict the severity of a patient based on SPO2, oxy-
gen inhalation, confusion, heart rate, temperature, respiratory rate
and systolic pressure. There were additional measurements of
SPO2 required, and there were only 200 patients available in the
in-sample and out-sample data sets for comparison. It was
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found that our mortality prediction model (AUROC = 0.9639)
was better than NEWS (AUROC = 0.7915) for the combined
200 patients in the in-sample and out-sample data sets.

Discussion

As for COVID-19, it is crucial to recognise and evaluate the sever-
ity of the disease quickly and accurately. This research study was
focused on the identification of clinical features of mortality risks
in patients with COVID-19 based on clinical data on hospital
admission, to find out the key predictive biomarkers which can
determine the severity of the disease. From the study we hope
to reduce the clinical parameters to be monitored and to use lim-
ited medical resources reasonably.

Two laboratory measurement variables (LDH and CRP) pro-
vide a reference for predicting a patient’s mortality. LDH mainly
exists in myocardium, liver, kidney, skeletal muscle or lung and
other animal tissues. The increase of LDH reflects, tissue/cell
destruction, which is considered as a common symptom of tis-
sue/cell damage [20]. LDH secretion is triggered by cell mem-
brane necrosis, suggesting viral infection or lung injury, such as
COVID-19 pneumonia [21]. Studies have shown that tissue dam-
age and inflammation are associated with increased levels of LDH.
LDH levels in patients with refractory COVID-19 increased sig-
nificantly [22]. In addition, when LDH levels are correlated
with CT scans, the significant increase in LDH levels reflects
the severity of pneumonia [23].

Higher serum CRP can also be used to predict the risk of death
in patients with severe COVID-19. CRP is a 21 kD protein, which
is mainly synthesised in the liver and found in plasma. It has been
considered that the plasma CRP level is an important biomarker to
detect the existence of systemic inflammation [24]. Measurement
of CRP levels has shown prognostic and/or diagnostic value for
many disease states, and in most cases, higher CRP levels are asso-
ciated with adverse outcomes [25]. In COVID-19, the autopsy
showed a large number of sticky secretions from alveolar spillage.
It is suggested that COVID-19 may cause inflammatory reactions
characterised by deep airway and alveolar injury [26]. Both studies
have shown that CRP levels are a powerful indicator reflecting the
presence and severity of COVID-19 infection [27, 28].

According to our multivariate regression coefficients (Table 2),
it is found that when the levels of LDH or CRP is high, the mor-
tality is high. These results were consistent in the literature [29,
30]. Here we derived the rate of change of mortality with respect
to each variable as follows:

∂Mortality
∂X

= (Coefficient of X)
Mortality
(1+ eZ)

where X = LDH, CRP or Age, and Z =−10.5772 + 0.0076 LDH +
0.00175 CRP + 0.0857 Age

Table 1. Baseline characteristics of the clinical variables of 305 patients with
COVID-19

Total (n = 305) Survivor (n = 245) Non-survivor (n = 60)

Sex

Men 109 (44.5%) 40 (66.7%)

Women 136 (55.5%) 20 (33.3%)

Fever

Yes 191 (78.0%) 47 (78.3%)

No 54 (22.0%) 13 (21.7%)

Dizziness

Yes 14 (5.7%) 3 (5.0%)

No 231 (94.3%) 57 (95.0%)

Fatigue

Yes 117 (47.8%) 34 (56.7%)

No 128 (52.2%) 26 (43.3%)

Nausea

Yes 24 (9.8%) 4 (6.7%)

No 221 (90.2%) 56 (93.3%)

Diarrhea

Yes 43 (17.6%) 12 (20.0%)

No 202 (82.4%) 48 (80.0%)

Muscle pain

Yes 49 (20.0%) 9 (15.0%)

No 196 (80.0%) 51 (85.0%)

Confusion

Yes 9 (3.7%) 9 (15.0%)

No 236 (96.3%) 51 (85.0%)

Difficulty in breathing

Yes 135 (55.1%) 41 (68.3%)

No 110 (44.9%) 19 (31.7%)

Cough

Yes 158 (64.5%) 41 (68.3%)

No 87 (35.5%) 19 (31.7%)

Expectoration

Yes 73 (29.8%) 24 (40.0%)

No 172 (70.2%) 36 (60.0%)

CT: exudative lesion

Yes 58 (23.7%) 12 (20.0%)

No 187 (76.3%) 48 (80.0%)

CT: ground glass shadow

Yes 52 (21.2%) 5 (8.3%)

No 193 (78.8%) 55 (91.7%)

Hypertension

Yes 41 (16.7%) 16 (26.7%)

No 204 (83.3%) 44 (73.3%)

(Continued )

Table 1. (Continued.)

Total (n = 305) Survivor (n = 245) Non-survivor (n = 60)

Accouchement

Yes 15 (6.1%) 0 (0.0%)

No 230 (93.9%) 60 (100.0%)
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The rate of change of mortality with respect to LDH, CRP or
Age is positive as the regression coefficients of LHD, CRP and
Age are all positive (see Table 3). It is clear that the mortality
increases when LDH, CRP or/and Age increase.

Here simulated examples are studied to understand the rate of
change of mortality predicted by our model with respect to the
different levels of LDH, CRP and Age. All the values of LDH,
CRP and Age here are hypothetical numbers. For example,
when Age = 50 and CRP = 80, LDH increases by 1 unit from
500 to 501, the mortality is increased by 0.0014 (from 0.2526 to
0.2512). However, when a patient is younger (Age = 40), the mor-
tality is increased only by 0.0008 (from 0.12464 to 0.12547). The
model tells that the rates of change of mortality with respect to
LDH can be different for different values of Age. Similarly,
when Age = 50 and LDH = 500, CRP increases by 1 unit from
80 to 81, the mortality is increased by 0.0033 (from 0.2512 to

0.2545); when Age = 40, the corresponding mortality is increased
by 0.0019 (from 0.1246 to 0.1265). Again, the rates of change of
predicted mortality with respect to CRP can be different at differ-
ent ages. Note that the increase of predicted mortality is 0.0033
with Age = 50 and that of 0.0019 with Age = 40 for 1-unit increase
in CRP. While the increase of predicted mortality is 0.0014 with
Age = 50 and that of 0.0008 with Age = 40 for 1 unit increase in
LDH. We see that the increase of 1 unit in CRP is more dominant
in risk than that in LDH.

On the other hand, the increase of the predicted mortality at
Age = 50 (0.0014 and 0.0033 for 1 unit increase in LDH and
CRP, respectively) is about 1.75 times than the increase of the pre-
dicted mortality at Age = 40 (0.0008 and 0.0019) for the 1 unit
increase in LDH and CRP, respectively. It is clear that age is the
key risk factor in the mortality of a patient which is consistent
with the recent study [31]. Previously, it was reported that old

Fig. 1. Flow chart of the study process.
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age was an important independent predictor of severe acute
respiratory syndrome and Middle East respiratory syndrome mor-
tality [4, 32]. This study confirmed that the increase in age is
related to the death of individuals with COVID-19.

In this study, we compared our mortality model with the two
methods: CURB-65, NEWS and the machine-learning-based
model on XGBoost. CURB-65 is required to calculate the score
based on confusion, blood urea nitrogen, respiratory rate, systolic
pressure/diastolic pressure and age. NEWS is required to calcul-
ate the score based on SPO2, oxygen inhalation, confusion,
heart rate, temperature, respiratory rate and systolic pressure.
The machine-learning-based model on XGBoost is required to
use LDH, CRP and lymphocyte count. Our ROC curves and
AUROC values obtained from our model are better than those
by the other three methods. CURB-65 and NEWS are general
schemes to predict and check the mortality of a patient. They
are not specifically designed for the mortality of a patient with
COVID-19.

The machine-learning-based model on XGBoost is a specific
scheme to predict the outcome of a patient with COVID-19,
i.e., a survivor (a patient is discharged) and a non-survivor (a
patient is dead). This machine-learning-based method on
XGBoost was trained by using a set of training and testing data
set of 404 patients. The data set contains 213 survivors (54.2%)
and 191 non-survivors (45.8%). The ratio of non-survivors over
the survivors is larger than that in our study and is also larger
than the current death rate of COVID-19. This may be the reason
why lymphocyte count is included in the XGBoost analysis. In
contrast, our machine-learning methods Random Forest and
XGBoost did not give the high relative importance in the list of
selected variables. Actually, lymphocyte count is not a statistically
significant variable in our study. The machine-learning-based
method on XGBoost gives a decision tree for predicting the out-
come of a patient, while it does not give the mortality risk of a
patient directly.

Therefore, our model can be used for early detection of high-
risk patients, enabling early intervention. To pave the way for doc-
tors for further prognosing patients with COVID-19. Based on
the factors we identified from the study, doctors would be able
to launch more appropriate treatment methods on controlling
the seriousness of the disease. Our model has the following con-
tributions/advantages. Firstly, the model is simple, concise and
easy to use as a guide at hospital admission. Secondly, the
model can be adapted to predicting low death rate patients’ popu-
lation’s mortality risk which is closer to current death rate of
COVID-19. Thirdly, by establishing the association between 24
h of admission and outcome, the model provides a prediction
after taking into account the effect of medical treatment during
the in-hospital period.

Table 2. Relative importance values by Random Forest and XGBoost

Random Forest result XGBoost result

Variable Relative importance by Random Forest (%) Variable Relative importance by XGBoost (%)

LDH 17.69 LDH 23.74

CRP 8.60 Age 12.10

Lymphocyte count 8.06 Neutrophil 7.09

Age 7.70 Aspartate transaminase 6.69

Blood urea nitrogen 6.69 Lymphocyte count 6.25

Aspartate transaminase 5.69 CRP 6.23

Neutrophil 5.37 Blood urea nitrogen 4.88

White blood cell 5.04 White blood cell 4.42

Creatinine 4.70 Normal platelet 3.61

Normal platelet 3.67 Respiratory rate 3.44

Respiratory rate 3.29 Alanine aminotransferase 3.13

Monocytes 3.24 Systolic pressure 3.12

Systolic pressure 3.21 Creatinine 3.07

Total bilirubin 3.02 Heart rate 2.32

Heart rate 2.82 Total bilirubin 2.18

Diastolic pressure 2.69 Monocytes 2.01

Alanine aminotransferase 2.41 Diastolic pressure 1.98

Temperature 1.92 Temperature 1.60

Table 3. Multivariate logistic regression of three selected variables for mortality
prediction

Model Coefficient
Standard

deviation error
Confidence Interval

(5%)

Constant −10.5772 1.794 (−14.093, −7.061)

LDH 0.0076 0.0016 (0.0045–0.0106)

CRP 0.0175 0.0060 (0.0060–0.0289)

Age 0.0857 0.0215 (0.0441–0.1280)
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Our model is based on a single-centred study. We also
excluded patients with missing values in their medical records.
The model can be further improved by implementing our meth-
ods to multi-centred, large data-based study.

This study had some limitations. Firstly, our number is relatively
small, which limits the possible conclusions. Secondly, the incidence,
infection rate and virulence of COVID-19 may be different in differ-
ent locations and stages of the pandemic, which may limit universal-
ity. Thirdly, this study involved only one centre, and the results may
not be generalisable to other settings and healthcare systems. Our

out-sample data came from the same centre with the in-sample
data. Thus, the validity of the comparison result may be question-
able. Also, the size of out-sample data is relatively small compared
to in-sample, which may reduce the power of model validation
too. Fourthly, based on our in-sample data, we could collect more
laboratory test results to further enrich our prognosis model.
Lastly, compared with the general situation, the percentage of the
non-survivors in our data set is still relatively high, we could include
more survivors in our study data set to further investigate which fac-
tors trigger mortality among COVID-19 patients.

Fig. 2. The ROC curves of the obtained mortality model, CURB-65 and the machine-learning-based model on XGBoost13 for different data sets. (a) In-sample data
set, (b) out-sample data set.
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Conclusion

LDH, CRP and age can be used for identification of severe
patients with COVID-19 on hospital admission. We presented a
method for predicting mortality risks in patients and providing
clinical suggestions for further clinical treatment.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0950268820001727.
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