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Abstract
The K-theoretic Schur P- and Q-functions 𝐺𝑃𝜆 and 𝐺𝑄𝜆 may be concretely defined as weight-generating func-
tions for semistandard shifted set-valued tableaux. These symmetric functions are the shifted analogues of stable
Grothendieck polynomials and were introduced by Ikeda and Naruse for applications in geometry. Nakagawa and
Naruse specified families of dual K-theoretic Schur P- and Q-functions 𝑔𝑝𝜆 and 𝑔𝑞𝜆 via a Cauchy identity involving
𝐺𝑃𝜆 and 𝐺𝑄𝜆. They conjectured that the dual power series are weight-generating functions for certain shifted plane
partitions. We prove this conjecture. We also derive a related generating function formula for the images of 𝑔𝑝𝜆 and
𝑔𝑞𝜆 under the 𝜔 involution of the ring of symmetric functions. This confirms a conjecture of Chiu and the second
author. Using these results, we verify a conjecture of Ikeda and Naruse that the 𝐺𝑄-functions are a basis for a ring.
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1. Introduction

The main results of this paper are to derive explicit combinatorial generating functions for certain
families of ‘dual’ power series defined indirectly by Cauchy identities. The formulas that we establish
were originally conjectured in [4, 19]. This introduction gives a very quick summary of the power series
involved and the generating functions to be derived. We also explain one application of our formulas to
resolve a conjecture of Ikeda and Naruse from [10].

1.1. Shifted set-valued generating functions

The shifted Young diagram of a strict integer partition 𝜆 = (𝜆1 > 𝜆2 > · · · > 𝜆𝑘 > 0) is the set of pairs

SD𝜆 := {(𝑖, 𝑖 + 𝑗 − 1) ∈ [𝑘] × Z : 1 ≤ 𝑗 ≤ 𝜆𝑖} where[𝑘] := {1, 2, . . . , 𝑘}.

Elements of SD𝜆 are called positions or boxes. A shifted set-valued tableau of shape 𝜆 is a filling 𝑇 of
SD𝜆 by finite, nonempty subsets of 1

2Z. Throughout, we let 𝑖′ := 𝑖 − 1
2 for 𝑖 ∈ Z and refer to half-integers

as primed numbers .
Let 𝑇𝑖 𝑗 denote the entry assigned by T to box (𝑖, 𝑗) ∈ SD𝜆, and write (𝑖, 𝑗) ∈ 𝑇 to indicate that

(𝑖, 𝑗) is in the domain of T. The diagonal positions of T are the boxes (𝑖, 𝑗) ∈ 𝑇 with 𝑖 = 𝑗 . A shifted
set-valued tableau T is semistandard if all of the following conditions hold:

(S1) its entries 𝑇𝑖 𝑗 are nonempty finite subsets of {1′ < 1 < 2′ < 2 < . . . },
(S2) max(𝑇𝑖 𝑗 ) ≤ min(𝑇𝑖+1, 𝑗 ) and max(𝑇𝑖 𝑗 ) ≤ min(𝑇𝑖, 𝑗+1) for all relevant (𝑖, 𝑗) ∈ 𝑇 ,
(S3) no unprimed number appears in different boxes within the same column, and
(S4) no primed number appears in different boxes within the same row.

We draw shifted tableaux in French notation; for example, both

345

2′ 3′

1 2′ 2 3′3

and

5

3′ 3

12 2 23′ 34

are semistandard shifted set-valued tableaux of shape (4, 2, 1). Let 𝛽, 𝑥1, 𝑥2, 𝑥3, . . . be commuting
indeterminates. Define |𝑇 | :=

∑
(𝑖, 𝑗) ∈𝑇 |𝑇𝑖 𝑗 | and x𝑇 :=

∏
𝑖 𝑥

𝑎𝑖+𝑏𝑖

𝑖 , where 𝑎𝑖 and 𝑏𝑖 are the number of
times that i and 𝑖′ appear in the shifted set-valued tableau T, respectively. Our examples above both have
|𝑇 | = 10 and x𝑇 = 𝑥1𝑥

3
2𝑥

4
3𝑥4𝑥5. When 𝜆 is a partition (or more generally, any sequence with finite sum),

we write |𝜆 | for the sum of its entries.

Definition 1.1. The K-theoretic Schur P- and Q-functions indexed by a strict partition 𝜆 are the formal
power series

𝐺𝑃𝜆 :=
∑

𝑇 ∈ShSVT𝑃 (𝜆)

𝛽 |𝑇 |− |𝜆 |x𝑇 and 𝐺𝑄𝜆 :=
∑

𝑇 ∈ShSVT𝑄 (𝜆)

𝛽 |𝑇 |− |𝜆 |x𝑇 ,
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where ShSVT𝑄 (𝜆) is the set of all semistandard shifted set-valued tableaux of shape 𝜆 and ShSVT𝑃 (𝜆)
is the subset of such tableaux with no primed numbers in any diagonal positions.1

These expressions belong to ring Z[𝛽]�𝑥1, 𝑥2, . . .�. If deg 𝛽 = −1, then 𝐺𝑃𝜆 and 𝐺𝑄𝜆 are homoge-
neous of degree |𝜆 |, but if deg 𝛽 = 0, then the power series have unbounded degree. Both 𝐺𝑃𝜆 and 𝐺𝑄𝜆

are symmetric in the 𝑥𝑖 variables [10, Thm. 9.1]. Setting 𝛽 = 0 turns 𝐺𝑃𝜆 and 𝐺𝑄𝜆 into the classical
Schur P- and Q-functions 𝑃𝜆 and 𝑄𝜆. It follows that as 𝜆 ranges over all strict partitions, the sets {𝐺𝑃𝜆}
and {𝐺𝑄𝜆} are linearly independent. While 𝑄𝜆 = 2ℓ (𝜆)𝑃𝜆, each 𝐺𝑄𝜆 is a more complicated but still
finite Z[𝛽]-linear combination of 𝐺𝑃𝜇’s [4, Thm. 1.1].

Ikeda and Naruse first introduced these symmetric functions in [10] for applications in geometry.
Specializations of 𝐺𝑃𝜆 and 𝐺𝑄𝜆 represent the structure sheaves of Schubert varieties in the torus
equivariant K-theory of the maximal isotropic Grassmannians of orthogonal and symplectic types [10,
Cor. 8.1]; see also [18, 19, 20]. These power series further appear as ‘stable limits’ of K-theory classes
of certain orbit closures in the type A flag variety [16, 17].

1.2. Dual functions via Cauchy identities

Our main results concern the following dual forms of 𝐺𝑃𝜆 and 𝐺𝑄𝜆.

Definition 1.2. The dual K-theoretic Schur P- and Q-functions 𝑔𝑝𝜆 and 𝑔𝑞𝜆 are the unique elements of
Z[𝛽]�𝑥1, 𝑥2, . . .� indexed by strict partitions 𝜆 satisfying the Cauchy identities∑

𝜆

𝐺𝑄𝜆 (x)𝑔𝑝𝜆 (y) =
∑
𝜆

𝐺𝑃𝜆 (x)𝑔𝑞𝜆 (y) =
∏
𝑖, 𝑗≥1

1−𝑥𝑖 𝑦 𝑗

1−𝑥𝑖 𝑦 𝑗
, (1.1)

where we set 𝑥 := −𝑥
1+𝛽𝑥 .

The power series 𝑔𝑝𝜆 and 𝑔𝑞𝜆 are special cases of Nakagawa and Naruse’s dual universal factorial
Schur P- and Q-functions, which are defined via a more general version of (1.1) [19, Def. 3.2]. Both
{𝑔𝑝𝜆} and {𝑔𝑞𝜆} are linearly independent families of functions that are symmetric in the 𝑥𝑖 variables
and homogeneous if deg 𝛽 = 1 [19, Thm. 3.1]. These properties let one define the following conjugate
symmetric functions, which were first considered in [4]:

Definition 1.3. Write𝜔 for theZ[𝛽]-linear involution of the ring of symmetric functions (in the variables
𝑥1, 𝑥2, . . . with coefficients in Z[𝛽]) acting on Schur functions as 𝜔(𝑠𝜆) = 𝑠𝜆� . The conjugate dual
K-theoretic Schur P- and Q-functions of a strict partition 𝜆 are 𝑗 𝑝𝜆 := 𝜔(𝑔𝑝𝜆) and 𝑗𝑞𝜆 := 𝜔(𝑔𝑞𝜆).

1.3. Shifted plane partition generating functions

Our first main result is a generating function formula for 𝑔𝑝𝜆 and 𝑔𝑞𝜆 that was predicted in [19].
Let 𝜆 be a strict partition. A shifted plane partition of shape 𝜆 is a filling of SD𝜆 by elements of
{1′ < 1 < 2′ < 2 < . . . } with weakly increasing rows and columns. Examples include

3
2 3

1 2′ 2
1′ 1′ 1 1 5′

and

3′

2′ 2
1 2′ 2

1 1 1 1 5

,

1The functions 𝐺𝑃𝜆 and 𝐺𝑄𝜆 are sometimes defined by these formulas with 𝛽 set to −1 or 1. There is no loss of generality
in this since we can recover 𝐺𝑃𝜆 from

∑
𝑇 ∈ShSVT𝑃 (𝜆) (−1) |𝑇 |−|𝜆|x𝑇 by substituting 𝑥𝑖 ↦→ −𝛽𝑥𝑖 and then dividing by 𝛽 |𝜆| (and

likewise for 𝐺𝑄𝜆). Similar comments apply to all other power series in this paper involving 𝛽.

https://doi.org/10.1017/fms.2024.8 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.8


4 J. Lewis and E. Marberg

which both have shape (5, 3, 2, 1). Given such a filling T, let 𝑐𝑖 be the number of distinct columns of T
containing i, and let 𝑟𝑖 be the number of distinct rows of T containing 𝑖′. Define

wtPP (𝑇) := (𝑐1 + 𝑟1, 𝑐2 + 𝑟2, 𝑐3 + 𝑟3, . . . ) and xwtPP (𝑇 ) :=
∏

𝑖≥1 𝑥
𝑐𝑖+𝑟𝑖
𝑖 .

Both examples above have |wtPP(𝑇) | = 9 and xwtPP (𝑇 ) = 𝑥4
1𝑥

3
2𝑥3𝑥5.

Theorem 1.4. Let ShPP𝑄 (𝜆) be the set of all shifted plane partitions of shape 𝜆, and define ShPP𝑃 (𝜆)
to be the subset of such fillings with no unprimed diagonal entries. Then

𝑔𝑝𝜆 =
∑

𝑇 ∈ShPP𝑃 (𝜆)

(−𝛽) |𝜆 |− | wtPP(𝑇 ) |xwtPP(𝑇 ) and 𝑔𝑞𝜆 =
∑

𝑇 ∈ShPP𝑄 (𝜆)

(−𝛽) |𝜆 |− | wtPP(𝑇 ) |xwtPP(𝑇 ) .

This result was conjectured by Nakagawa and Naruse as [19, Conj. 5.1]. We will actually prove a
more general formula for the skew versions of 𝑔𝑝𝜆 and 𝑔𝑞𝜆; see Theorem 4.24. These formulas make it
possible to compute the terms in 𝑔𝑝𝜆 and 𝑔𝑞𝜆, which is not straightforward from (1.1).

1.4. Shifted bar tableaux generating functions

Our second main result is a generating function formula for 𝑗 𝑝𝜆 and 𝑗𝑞𝜆 that was predicted in [4].
Continue to let 𝜆 be a strict integer partition. Suppose V is a shifted tableau2 of shape 𝜆 with no
unprimed entries repeated in any column and no primed entries repeated in any row. Let Π be a partition
of the diagram SD𝜆 into (disjoint, nonempty) subsets of adjacent boxes containing the same entry in V.
Each block of Π is a contiguous ‘bar’ of positions in the same row or column, and we refer to the pair
𝑇 = (𝑉,Π) as a shifted bar tableau of shape 𝜆.

If V is semistandard in the sense of having weakly increasing rows and columns, then we say that T
is also semistandard. We draw shifted bar tableaux as pictures like

to represent

𝑇 = (𝑉,Π) =

(
2 2 3′

1 1 1 3′ 3
,

· · ·

· · · · ·

)
.

These objects are the shifted analogues of what are called valued-set tableaux in [11]. The word ‘valued-
set’ is just a formal transposition of ‘set-valued’; we believe that the name ‘bar tableau’ is more intuitive
and descriptive.

Given a shifted bar tableau 𝑇 = (𝑉,Π), let |𝑇 | := |Π | and x𝑇 :=
∏

𝑖≥1 𝑥
𝑏𝑖

𝑖 , where 𝑏𝑖 is the number of
blocks in Π containing i or 𝑖′. Our example above has |𝑇 | = 5 and x𝑇 = 𝑥2

1𝑥2𝑥
2
3.

Theorem 1.5. Let ShBT𝑄 (𝜆) denote the set of all semistandard shifted bar tableaux of shape 𝜆, and let
ShBT𝑃 (𝜆) be the subset of such tableaux with no primed diagonal entries. Then

𝑗 𝑝𝜆 =
∑

𝑇 ∈ShBT𝑃 (𝜆)

(−𝛽) |𝜆 |− |𝑇 |x𝑇 and 𝑗𝑞𝜆 =
∑

𝑇 ∈ShBT𝑄 (𝜆)

(−𝛽) |𝜆 |− |𝑇 |x𝑇.

2That is, a shifted set-valued tableau whose entries are all singleton sets.
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This result was conjectured by Chiu and the second author as [4, Conj. 7.2]. We will actually prove
a more general formula for the skew versions of 𝑗 𝑝𝜆 and 𝑗𝑞𝜆; see Theorems 4.13 and 4.20.

1.5. Application to conjectures of Ikeda and Naruse

Consider the modules consisting of all infinite Z[𝛽]-linear combinations of the functions {𝐺𝑃𝜆} and
{𝐺𝑄𝜆}, with 𝜆 ranging over all strict partitions. Ikeda and Naruse proved that these modules are both
rings [10, Props. 3.4 and 3.5]. Concretely, this means that 𝐺𝑃𝜆𝐺𝑃𝜇 (respectively, 𝐺𝑄𝜆𝐺𝑄𝜇) always
expands as a (possibly infinite) Z[𝛽]-linear combination of 𝐺𝑃𝜈’s (respectively, 𝐺𝑄𝜈’s).

Ikeda and Naruse conjectured that these expansions are actually finite [10, Conj. 3.1 and 3.2]. For the
𝐺𝑃-functions, this stronger ring property was established by Clifford, Thomas and Yong in [5]; other
proofs have subsequently been given in [9, §4], [15, §1.2] and [21, §8]. The problem of showing the
same property for the 𝐺𝑄-functions appears to still be open. Building on [4], we are able to resolve this
problem:

Theorem 1.6. The free Z[𝛽]-modules with bases {𝐺𝑃𝜆} and {𝐺𝑄𝜆} (where 𝜆 ranges over all strict
partitions) are subrings of Z[𝛽]�𝑥1, 𝑥2, . . .�. If 𝜆 and 𝜇 are strict partitions, then

𝐺𝑃𝜆𝐺𝑃𝜇 =
∑
𝜈

𝑎𝜈
𝜆𝜇𝛽

|𝜈 |− |𝜆 |− |𝜇 |𝐺𝑃𝜈 and 𝐺𝑄𝜆𝐺𝑄𝜇 =
∑
𝜈

𝑏𝜈
𝜆𝜇𝛽

|𝜈 |− |𝜆 |− |𝜇 |𝐺𝑄𝜈

for integer coefficients 𝑎𝜈
𝜆𝜇 and 𝑏𝜈

𝜆𝜇 that are

(a) nonzero for only finitely many strict partitions 𝜈,
(b) zero whenever |𝜈 | < |𝜆 | + |𝜇 | or ℓ(𝜈) > ℓ(𝜆) + ℓ(𝜇) and
(c) nonnegative.

Proof. The ring property for the span of the 𝐺𝑃-functions follows from [5]. Meanwhile, [4, Cor. 7.7]
is exactly the assertion that the ring property for the span of the 𝐺𝑄-functions follows from Theorem
1.5 (or more precisely from its skew version, which is Theorem 4.20). These properties assert that the
products 𝐺𝑃𝜆𝐺𝑃𝜇 and 𝐺𝑄𝜆𝐺𝑄𝜇 expand in the respective bases with coefficients in Z[𝛽] satisfying (a).
Taking deg 𝛽 = −1, the homogeneity of the 𝐺𝑃- and 𝐺𝑄-functions implies that, in fact, the coefficient
of 𝐺𝑃𝜈 (respectively, 𝐺𝑄𝜈) must be of the form 𝑎𝜈

𝜆𝜇𝛽
|𝜈 |− |𝜆 |− |𝜇 | (respectively, 𝑏𝜈

𝜆𝜇𝛽
|𝜈 |− |𝜆 |− |𝜇 |) for an

integer 𝑎𝜈
𝜆𝜇 (respectively, 𝑏𝜈

𝜆𝜇), and moreover that 𝑎𝜈
𝜆𝜇 = 𝑏𝜈

𝜆𝜇 = 0 whenever |𝜈 | < |𝜆 | + |𝜇 |. Given our
main results (namely, Theorems 4.13 and 4.20), [4, Thm. 7.6] asserts that 𝑎𝜈

𝜆𝜇 = 𝑏𝜈
𝜆𝜇 = 0 whenever

ℓ(𝜈) > ℓ(𝜆) + ℓ(𝜇).
Given Ikeda and Naruse’s interpretation of 𝐺𝑃𝜆 and 𝐺𝑄𝜆 as K-theory representatives for Schubert

varieties in the orthogonal and Lagrangian Grassmannians, the fact that 𝑎𝜈
𝜆𝜇 and 𝑏𝜈

𝜆𝜇 are nonnegative
can be deduced from a result of Brion [1]. We only explain this for the 𝑏𝜈

𝜆𝜇 coefficients, since 𝑎𝜈
𝜆𝜇 ≥ 0

follows directly from [5, Thm. 1.2].
As summarized in [10, §8.1], for each strict partition 𝜆 ⊆ (𝑛, . . . , 3, 2, 1) there is an associated

Schubert variety Ω𝜆 in the Lagrangian Grassmannian G𝑛 := 𝐿𝐺 (𝑛). The variety Ω𝜆 is closed with
codimension |𝜆 |, and its structure sheaf OΩ𝜆 defines a class [OΩ𝜆 ] in the K-theory ring 𝐾 (G𝑛) of
coherent sheaves on G𝑛. These classes are an additive basis for 𝐾 (G𝑛), and so we have [OΩ𝜆 ] [OΩ𝜇 ] =∑

𝜈 (−1) |𝜈 |− |𝜆 |− |𝜇 |𝑐𝜈
𝜆𝜇 [OΩ𝜈 ] for some integers 𝑐𝜈

𝜆𝜇 ∈ Z. The main result of [1] shows that the coefficients
𝑐𝜈

𝜆𝜇 are nonnegative. (In fact, the main result of [1] is a more general statement that applies to Schubert
varieties in any complex flag variety.)

If we set 𝛽 = −1 and define G𝛤𝑛,+ to be the Z-span of all polynomials 𝐺𝑄𝜆 (𝑥1, . . . , 𝑥𝑛) with
ℓ(𝜆) ≤ 𝑛, then there is a surjective ring homomorphism G𝛤𝑛,+ → 𝐾 (G𝑛) sending 𝐺𝑄𝜆 (𝑥1, . . . , 𝑥𝑛) to
[OΩ𝜆 ] if 𝜆 ⊆ (𝑛, . . . , 3, 2, 1) and to zero otherwise [10, Cor. 8.1]. If n is large enough that (𝑛, . . . , 3, 2, 1)
contains both 𝜆 and 𝜇 as well as the finite number of strict partitions 𝜈 with 𝑏𝜈

𝜆𝜇 ≠ 0, then it follows that
[OΩ𝜆 ] [OΩ𝜇 ] =

∑
𝜈 (−1) |𝜈 |− |𝜆 |− |𝜇 |𝑏𝜈

𝜆𝜇 [OΩ𝜈 ], and so 𝑏𝜈
𝜆𝜇 = 𝑐𝜈

𝜆𝜇 ≥ 0. �
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Remark . The subsets of Z[𝛽] [𝑥1, . . . , 𝑥𝑛] given by

{𝐺𝑃𝜆 (𝑥1, . . . , 𝑥𝑛) : ℓ(𝜆) ≤ 𝑛} and {𝐺𝑄𝜆(𝑥1, . . . , 𝑥𝑛) : ℓ(𝜆) ≤ 𝑛}

are each linearly independent over Z[𝛽] by [10, Thm. 3.1 and Prop. 3.2], and the expansion of
𝐺𝑄𝜆 (𝑥1, . . . , 𝑥𝑛)𝐺𝑄𝜇 (𝑥1, . . . , 𝑥𝑛) into 𝐺𝑄𝜈 (𝑥1, . . . , 𝑥𝑛)’s can be calculated by a finite linear algebra
computation. Theorem 1.6 implies that if ℓ(𝜆) + ℓ(𝜇) ≤ 𝑛, then the same finite computation completely
determines the expansion of 𝐺𝑄𝜆𝐺𝑄𝜇 into 𝐺𝑄𝜈’s, and likewise for the 𝐺𝑃-functions.

The proof of [4, Cor. 7.7], with minor changes, would also show that our generating function for
𝑗𝑞𝜆 implies the ring property for Z[𝛽]-span{𝐺𝑃𝜆}. However, this nonconstructive argument is less
informative than [5, Thm. 1.2], which gives an explicit Littlewood–Richardson rule for products of 𝐺𝑃-
functions. It is an open problem to find such a rule for the 𝐺𝑄-functions, as well as for the 𝑔𝑝- and
𝑔𝑞-functions, which span two other subrings of symmetric functions.

1.6. Comparison with unshifted versions

Our main results are shifted analogues of ‘classical’ theorems that we summarize here for comparison.
The Young diagram of a partition 𝜆 = (𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆𝑘 > 0) is the set of positions D𝜆 = {(𝑖, 𝑗) ∈
[𝑘] × Z : 1 ≤ 𝑗 ≤ 𝜆𝑖}. An (unshifted) semistandard set-valued tableau of shape 𝜆 is defined in the
same way as the analogous shifted object, except that such a tableau is a filling of D𝜆 by finite nonempty
subsets of {1 < 2 < 3 < . . . } rather than {1′ < 1 < 2′ < 2 < . . . }.

Definition 1.7. Write SVT(𝜆) for the set of semistandard set-valued tableaux of shape 𝜆. Then the stable
Grothendieck polynomial of 𝜆 is the formal power series

𝐺𝜆 :=
∑

𝑇 ∈SVT(𝜆)

𝛽 |𝑇 |− |𝜆 |x𝑇.

Definition 1.8. The dual stable Grothendieck polynomials 𝑔𝜆 are the unique formal power series in
Z[𝛽]�𝑥1, 𝑥2, . . .� indexed by integer partitions 𝜆 satisfying the Cauchy identity∑

𝜆

𝐺𝜆 (x)𝑔𝜆(y) =
∑
𝜆

𝑠𝜆 (x)𝑠𝜆(y) =
∏
𝑖, 𝑗≥1

1
1−𝑥𝑖 𝑦 𝑗

.

Definition 1.9. The conjugate dual stable Grothendieck polynomial of 𝜆 is 𝑗𝜆 := 𝜔(𝑔𝜆�).

All three families {𝐺𝜆}, {𝑔𝜆} and { 𝑗𝜆} are linearly independent symmetric functions which coincide
with the usual Schur functions {𝑠𝜆} when 𝛽 = 0 [2, 11]. Our definition of 𝑗𝜆 involves a transposition of
indices compared to [11, §9.8]; this convention ensures that 𝑗𝜆 |𝛽=0 = 𝑠𝜆.

We define (unshifted) plane partitions and semistandard bar tableaux of shape 𝜆 in the same way as
our shifted versions, except the relevant objects are fillings of D𝜆 by positive integers (excluding primed
numbers). Let PP(𝜆) be the set of plane partitions of shape 𝜆. Let BT(𝜆) be the set of semistandard bar
tableaux of shape 𝜆; these objects are called valued-set tableaux in [11, §9].

Theorem 1.10 Lam and Pylyavskyy [11, §9]. For all partitions 𝜆, it holds that

𝑔𝜆 =
∑

𝑇 ∈PP(𝜆)

(−𝛽) |𝜆 |− | wtPP(𝑇 ) |xwtPP(𝑇 ) and 𝑗𝜆 =
∑

𝑇 ∈BT(𝜆)

(−𝛽) |𝜆 |− |𝑇 |x𝑇 .

The stable Grothendieck polynomials 𝐺𝜆 were introduced in Fomin and Kirillov’s paper [6] as
certain limits of Lascoux and Schützenberger’s Grothendieck polynomials [13], which are K-theory
representatives for Schubert varieties. Buch [2, Thm. 3.1] derived the set-valued tableaux generating
function for 𝐺𝜆 given in Definition 1.7, and also proved that the stable Grothendieck polynomials are
a Z[𝛽]-basis for a ring [2, Cor. 5.5]. For another proof of this ring property, see [22]. The structure
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constants 𝑛𝜈
𝜆𝜇 in the expansion 𝐺𝜆𝐺𝜇 =

∑
𝜈 𝑛𝜈

𝜆𝜇𝛽
|𝜈 |− |𝜆 |− |𝜇 |𝐺𝜈 are nonnegative integers with 𝑛𝜈

𝜆𝜇 = 0
whenever |𝜈 | < |𝜆 | + |𝜈 | or ℓ(𝜈) > ℓ(𝜆) + ℓ(𝜇) by [2, Thm. 5.4].

Lam and Pylyavskyy defined 𝑔𝜆 and 𝑗𝜆 by the formulas in Theorem 1.10 with 𝛽 set to −1. They then
proved that {𝑔𝜆} is the basis for the ring of symmetric functions dual to {𝐺𝜆} via the Hall inner product
[11, Thm. 9.15], along with the identity 𝑗𝜆 = 𝜔(𝑔𝜆�) [11, Prop. 9.25]. For proofs of the Cauchy identity
in Definition 1.8 and various generalizations, see [8, 12, 22].

1.7. Outline

We conclude this introduction with a brief outline of the rest of this article. Section 2 contains some
miscellaneous results and definitions that are needed in later arguments. The most technical part of our
proofs of the main results is showing that the desired generating functions are symmetric. We derive
this explicitly for 𝑗 𝑝𝜆 and 𝑗𝑞𝜆 by constructing Bender–Knuth involutions for semistandard shifted bar
tableaux in Section 3. Once symmetry is established, we are able to prove Theorems 1.4 and 1.5 by an
inductive algebraic argument in Section 4.

2. Preliminaries

This section has three parts. Section 2.1 explains the main algebraic consequences of the Cauchy identity
(1.1). Section 2.2 gives the precise definitions of the skew forms of the various symmetric functions in
the introduction. Section 2.3 derives a Pieri rule for multiplying our dual functions.

2.1. Structure constants

Everywhere below, 𝜆, 𝜇 and 𝜈 are strict partitions. It follows from [10, Props. 3.4 and 3.5] that there are
integers 𝑎𝜈

𝜆𝜇 and 𝑏𝜈
𝜆𝜇 such that

𝐺𝑃𝜆𝐺𝑃𝜇 =
∑
𝜈

𝑎𝜈
𝜆𝜇𝛽

|𝜈 |− |𝜆 |− |𝜇 |𝐺𝑃𝜈 and 𝐺𝑄𝜆𝐺𝑄𝜇 =
∑
𝜈

𝑏𝜈
𝜆𝜇𝛽

|𝜈 |− |𝜆 |− |𝜇 |𝐺𝑄𝜈 . (2.1)

Let y = (𝑦1, 𝑦2, . . . ) be a second set of commuting indeterminates. Given a power series 𝑓 = 𝑓 (x) =
𝑓 (𝑥1, 𝑥2, . . . ) ∈ Z[𝛽]�𝑥1, 𝑥2, . . .�, let 𝑓 (y) := 𝑓 (𝑦1, 𝑦2, . . . ) ∈ Z[𝛽]�𝑦1, 𝑦2, . . .�, and define

𝑓 (x, y) := 𝑓 (𝑥1, 𝑦1, 𝑥2, 𝑦2, 𝑥3, 𝑦3, . . . ) ∈ Z[𝛽]�𝑥1, 𝑦1, 𝑥2, 𝑦2, 𝑥3, 𝑦3, . . .�.

This operation corresponds to the coproduct on the Hopf algebra of symmetric functions; see [7, §2.1].
It follows from [14, Thms. 4.19 and 5.11] that there are also integers 𝑎̂𝜈

𝜆𝜇 and 𝑏̂𝜈
𝜆𝜇 such that

𝐺𝑃𝜈 (x, y) =
∑
𝜆,𝜇

𝑏̂𝜈
𝜆𝜇𝛽

|𝜆 |+ |𝜇 |− |𝜈 |𝐺𝑃𝜆 (x)𝐺𝑃𝜇 (y),

𝐺𝑄𝜈 (x, y) =
∑
𝜆,𝜇

𝑎̂𝜈
𝜆𝜇𝛽

|𝜆 |+ |𝜇 |− |𝜈 |𝐺𝑄𝜆 (x)𝐺𝑄𝜇 (y).
(2.2)

Observe that the letters a and b here have switched places compared to (2.1). We introduce a third set
of integer coefficients 𝑐̂𝜈

𝜆𝜇 such that

𝐺𝑄𝜈 (x, y) =
∑
𝜆,𝜇

𝑐̂𝜈
𝜆𝜇𝛽

|𝜆 |+ |𝜇 |− |𝜈 |𝐺𝑄𝜆 (x)𝐺𝑃𝜇 (y). (2.3)
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The Cauchy identity (1.1) defining 𝑔𝑝𝜆 and 𝑔𝑞𝜆 implies that

𝑔𝑝𝜆𝑔𝑝𝜇 =
∑
𝜈

𝑎̂𝜈
𝜆𝜇𝛽

|𝜆 |+ |𝜇 |− |𝜈 |𝑔𝑝𝜈 ,

𝑔𝑞𝜆𝑔𝑞𝜇 =
∑
𝜈

𝑏̂𝜈
𝜆𝜇𝛽

|𝜆 |+ |𝜇 |− |𝜈 |𝑔𝑞𝜈 ,

𝑔𝑝𝜆𝑔𝑞𝜇 =
∑
𝜈

𝑐̂𝜈
𝜆𝜇𝛽

|𝜆 |+ |𝜇 |− |𝜈 |𝑔𝑝𝜈 ,

𝑔𝑝𝜈 (x, y) =
∑
𝜆,𝜇

𝑏𝜈
𝜆𝜇𝛽

|𝜈 |− |𝜆 |− |𝜇 |𝑔𝑝𝜆 (x)𝑔𝑝𝜇 (y),

𝑔𝑞𝜈 (x, y) =
∑
𝜆,𝜇

𝑎𝜈
𝜆𝜇𝛽

|𝜈 |− |𝜆 |− |𝜇 |𝑔𝑞𝜆 (x)𝑔𝑞𝜇 (y).

(2.4)

We explain how to derive the bottom left identity; the others are special cases of [19, Prop. 3.2] and
follow similarly. Introducing a third sequence of variables z = (𝑧1, 𝑧2, . . . ), one can write∑

𝜈

𝐺𝑄𝜈 (x, y)𝑔𝑝𝜈 (z) =
∏
𝑖, 𝑗≥1

1 − 𝑥𝑖𝑧 𝑗

1 − 𝑥𝑖𝑧 𝑗
·
∏
𝑖, 𝑗≥1

1 − 𝑦𝑖𝑧 𝑗

1 − 𝑦𝑖𝑧 𝑗

=

(∑
𝜆

𝐺𝑄𝜆 (x)𝑔𝑝𝜆 (z)
) (∑

𝜇

𝐺𝑃𝜇 (y)𝑔𝑞𝜇 (z)
)

=
∑
𝜆,𝜇

𝐺𝑄𝜆 (x)𝐺𝑃𝜇 (y)𝑔𝑝𝜆 (z)𝑔𝑞𝜇 (z).

Then by substituting (2.3) into the first expression and equating coefficients of 𝐺𝑄𝜆 (x)𝐺𝑃𝜇 (y), one
obtains the identity 𝑔𝑝𝜆𝑔𝑞𝜇 =

∑
𝜈 𝑐̂𝜈

𝜆𝜇𝛽
|𝜆 |+ |𝜇 |− |𝜈 |𝑔𝑝𝜈 , as desired.

Since 𝜔 is a bialgebra automorphism, the formulas in (2.4) still hold if we replace every ‘𝑔𝑝’ by ‘ 𝑗 𝑝’
and every ‘𝑔𝑞’ by ‘ 𝑗𝑞’.

The coefficients 𝑎𝜈
𝜆𝜇 and 𝑏̂𝜈

𝜆𝜇 are zero whenever |𝜈 | > |𝜆 | + |𝜇 | by [4, Eq. (5.6)]; since 𝑔𝑞𝜇 is a linear
combination of 𝑔𝑝𝜅 ’s with 𝜅 ⊆ 𝜇 by [4, Cor. 6.2], the same must be true of 𝑐̂𝜈

𝜆𝜇. Thus, the sums on the
left side of (2.4) can be limited to strict partitions with |𝜈 | ≤ |𝜆 | + |𝜇 |. Likewise, the coefficients 𝑎𝜈

𝜆𝜇

and 𝑏𝜈
𝜆𝜇 are zero whenever |𝜈 | < |𝜆 | + |𝜇 | by [4, Prop. 6.5], so the sums on the right side of (2.4) can be

limited to strict partitions with |𝜆 | + |𝜇 | ≤ |𝜈 |.

2.2. Skew generalizations

We write 𝜇 ⊆ 𝜆 if 𝜇 and 𝜆 are partitions with 𝜇𝑖 ≤ 𝜆𝑖 for all i. If 𝜇 ⊆ 𝜆 are strict partitions, then the
shifted diagram of 𝜆/𝜇 is the set difference SD𝜆/𝜇 := SD𝜆−SD𝜇. We define shifted set-valued tableaux,
plane partitions and bar tableaux of skew shape 𝜆/𝜇 in exactly the same way as in the introduction, only
now the relevant objects are fillings of SD𝜆/𝜇. The definitions of all related weight statistics like the
monomials x𝑇 are also unchanged. Some relevant notation is as follows:

◦ Let ShSVT𝑄 (𝜆/𝜇) be the set of semistandard shifted set-valued tableaux of shape 𝜆/𝜇, and let
ShSVT𝑃 (𝜆/𝜇) be the subset of such tableaux with no primed numbers in diagonal boxes.

◦ Let ShPP𝑄 (𝜆/𝜇) be the set of shifted plane partitions of shape 𝜆/𝜇, and let ShPP𝑃 (𝜆/𝜇) be the
subset of such fillings with no unprimed diagonal entries.

◦ Let ShBT𝑄 (𝜆/𝜇) be the set of semistandard shifted bar tableaux of shape 𝜆/𝜇, and let ShBT𝑃 (𝜆/𝜇)
be the subset of such tableaux with no primed diagonal entries.

We define these sets to be empty if 𝜇 � 𝜆. These sets will index the terms in generating functions for
the skew analogues of 𝐺𝑄𝜆, 𝐺𝑃𝜆, 𝑔𝑞𝜆, 𝑔𝑝𝜆, 𝑗𝑞𝜆 and 𝑗 𝑝𝜆, which are defined as follows:
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Definition 2.1. For a strict partition 𝜆, let 𝑔𝑝𝜆/𝜇, 𝑔𝑞𝜆/𝜇 ∈ Z[𝛽]�𝑥1, 𝑥2, . . .� be the elements with

𝑔𝑝𝜆 (x, y) =
∑
𝜇

𝑔𝑝𝜇 (x)𝑔𝑝𝜆/𝜇 (y) and 𝑔𝑞𝜆 (x, y) =
∑
𝜇

𝑔𝑞𝜇 (x)𝑔𝑞𝜆/𝜇 (y), (2.5)

where the sums are over all strict partitions 𝜇.

Both 𝑔𝑝𝜆/𝜇 and 𝑔𝑞𝜆/𝜇 are symmetric and homogeneous if deg 𝛽 = 1, but the families of such
functions are no longer linearly independent. These power series are defined when 𝜇 � 𝜆, but one can
show that 𝑔𝑝𝜆/𝜇 and 𝑔𝑞𝜆/𝜇 are each nonzero if and only if 𝜇 ⊆ 𝜆 [4, Props. 6.5 and 6.7].

Definition 2.2. For a strict partition 𝜆, let 𝑗 𝑝𝜆/𝜇, 𝑗𝑞𝜆/𝜇 ∈ Z[𝛽]�𝑥1, 𝑥2, . . .� be the elements with

𝑗 𝑝𝜆 (x, y) =
∑
𝜇

𝑗 𝑝𝜇 (x) 𝑗 𝑝𝜆/𝜇 (y) and 𝑗𝑞𝜆 (x, y) =
∑
𝜇

𝑗𝑞𝜇 (x) 𝑗𝑞𝜆/𝜇 (y), (2.6)

where the sums are over all strict partitions 𝜇.

Equivalently, one could define these skew analogues by the following formula:

Proposition 2.3 [4, Eq. (7.4)]. It holds that 𝑗 𝑝𝜆/𝜇 = 𝜔(𝑔𝑝𝜆/𝜇) and 𝑗𝑞𝜆/𝜇 = 𝜔(𝑔𝑞𝜆/𝜇).

The skew versions of 𝐺𝑃𝜆 and 𝐺𝑄𝜆 that are most relevant to our discussion are not the obvious
generating functions for the sets ShSVT𝑃 (𝜆/𝜇) and ShSVT𝑄 (𝜆/𝜇). Instead, define a removable corner
box of SD𝜆 to be a position (𝑖, 𝑗) such that SD𝜆 − {(𝑖, 𝑗)} = SD𝜇 for a strict partition 𝜇 ≠ 𝜆. Let RC(𝜆)
denote the set of such boxes in SD𝜆. For strict partitions 𝜇 ⊆ 𝜆, define

ShSVT𝑃 (𝜆//𝜇) :=
⊔
𝜈⊆𝜇

SD𝜇/𝜈⊆RC(𝜇)

ShSVT𝑃 (𝜆/𝜈)

and

ShSVT𝑄 (𝜆//𝜇) :=
⊔
𝜈⊆𝜇

SD𝜇/𝜈⊆RC(𝜇)

ShSVT𝑄 (𝜆/𝜈),

where the unions are over all strict partitions 𝜈 such that 𝜈 ⊆ 𝜇 and SD𝜇/𝜈 ⊆ RC(𝜇). For strict partitions
𝜇 � 𝜆, set ShSVT𝑃 (𝜆//𝜇) = ShSVT𝑄 (𝜆//𝜇) := ∅.

Definition 2.4. For strict partitions 𝜇 and 𝜆, define |𝜆/𝜇 | := |𝜆 | − |𝜇 | and let

𝐺𝑃𝜆//𝜇 :=
∑

𝑇 ∈ShSVT𝑃 (𝜆//𝜇)

𝛽 |𝜆/𝜇 |− |𝑇 |x𝑇 and 𝐺𝑄𝜆//𝜇 :=
∑

𝑇 ∈ShSVT𝑄 (𝜆//𝜇)

𝛽 |𝜆/𝜇 |− |𝑇 |x𝑇 .

Observe that while 𝐺𝑃𝜆//∅ = 𝐺𝑃𝜆 and 𝐺𝑄𝜆//∅ = 𝐺𝑄𝜆, the functions 𝐺𝑃𝜆//𝜆 and 𝐺𝑄𝜆//𝜆 are typically
not equal to 1. Both 𝐺𝑃𝜆//𝜇 and 𝐺𝑄𝜆//𝜇 are zero if 𝜇 � 𝜆 since the sets indexing the relevant summations
are both empty. These power series are symmetric since we have

𝐺𝑃𝜆 (x, y) =
∑
𝜇

𝐺𝑃𝜇 (x)𝐺𝑃𝜆//𝜇 (y) and 𝐺𝑄𝜆 (x, y) =
∑
𝜇

𝐺𝑄𝜇 (x)𝐺𝑄𝜆//𝜇 (y), (2.7)

and the power series 𝐺𝑃𝜆 and 𝐺𝑄𝜆 are symmetric.
There are several more general versions of the Cauchy identity (1.1) that relate all of these families

of skew functions; see [4, Thm. 6.9 and Cor. 7.8]. Two such identities needed later are given as follows.
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Let 𝜇 and 𝜈 be strict partitions. Then by [4, Cor. 7.8], we have∑
𝜆

𝐺𝑃𝜆//𝜇 (x) 𝑗𝑞𝜆/𝜈 (y) =
∏
𝑖, 𝑗≥1

1+𝑥𝑖 𝑦 𝑗

1+𝑥𝑖 𝑦 𝑗

∑
𝜅

𝐺𝑃𝜈//𝜅 (x) 𝑗𝑞𝜇/𝜅 (y) (2.8)

and ∑
𝜆

𝐺𝑄𝜆//𝜇 (x) 𝑗 𝑝𝜆/𝜈 (y) =
∏
𝑖, 𝑗≥1

1+𝑥𝑖 𝑦 𝑗

1+𝑥𝑖 𝑦 𝑗

∑
𝜅

𝐺𝑄𝜈//𝜅 (x) 𝑗 𝑝𝜇/𝜅 (y), (2.9)

where 𝑥 := −𝑥
1+𝛽𝑥 as in Section 1.2 and the sums are over all strict partitions 𝜆 and 𝜅.

2.3. Pieri rules

Buch and Ravikumar derived Pieri rules in [3] to compute 𝑎𝜈
𝜆𝜇 and 𝑏𝜈

𝜆𝜇 when 𝜇 = (𝑛) is a one-row
partition. Here, we describe analogous formulas for 𝑎𝜈

𝜆𝜇, 𝑏̂𝜈
𝜆𝜇, and 𝑐̂𝜈

𝜆𝜇 when 𝜇 = (𝑛).
We define a shifted ribbon to be a shifted skew shape SD𝜈/𝜆 that does not contain two boxes (𝑖1, 𝑗1)

and (𝑖2, 𝑗2) with 𝑖1 < 𝑖2 and 𝑗1 < 𝑗2. We do not require this shape to be connected, so

SD(8,5,4,1)/(5,4,1) =
·

· · · ·
· · · · ·

and SD(8,4,3,1)/(5,4,1) =
·

· · · ·
· · · · ·

are both shifted ribbons. In general, if 𝜈 = (𝜈1 > 𝜈2 > 𝜈3 > · · · > 𝜈𝑘 > 0), then SD𝜈/𝜆 is a shifted
ribbon if and only if the partition (𝜈2, 𝜈3, . . . , 𝜈𝑘 ) is contained in 𝜆.

The row reading word order of Z×Z has (𝑖1, 𝑗1) < (𝑖2, 𝑗2) if 𝑖1 > 𝑖2 or if 𝑖1 = 𝑖2 and 𝑗1 < 𝑗2. Suppose
T is a semistandard set-valued shifted tableau containing only 1′ and 1. Then the shape of T must be a
shifted ribbon, and any entry which is not the first in its connected component (in row reading order)
is uniquely determined and given by the sets {1′} or {1}. However, the first entries in each connected
component of T may be any of {1′}, {1}, or {1′, 1}.
Example 2.5. Two such tableaux of shape (8, 5, 3, 1)/(5, 4, 1) are given by

1
· 1′ 1

· · · · 1′1
· · · · · 1′ 1 1

and

1′1
· 1′ 1

· · · · 1′

· · · · · 1′ 1 1

.

There are seven other such tableaux of this shape.
For strict partitions 𝜆 ⊆ 𝜈, define ShRibbons𝑄 (𝜈/𝜆) to be the set of semistandard shifted set-valued

tableaux of shape SD𝜈/𝜆 containing only 1′ and 1 as entries. Then let

ShRibbons𝑄 (𝜈//𝜆) :=
⊔
𝜇⊆𝜆

SD𝜆/𝜇⊆RC(𝜆)

ShRibbons𝑄 (𝜈/𝜇),

where the union is over strict partitions 𝜇 whose shifted diagrams are formed by deleting a possibly
empty set of removable corner boxes from SD𝜆. The set ShRibbons𝑄 (𝜈//𝜆) is nonempty if and only if
SD𝜈/𝜆 is a shifted ribbon, and we have |ShRibbons𝑄 (𝜈/𝜈) | = 1 ≤ |ShRibbons𝑄 (𝜈//𝜈) | = 4 |RC(𝜈) | .
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Example 2.6. If 𝜆 = (5, 4, 1) ⊆ 𝜈 = (8, 5, 3, 1), then ShRibbons𝑄 (𝜈//𝜆) consists of

1′

· 1′ 1
· · · 1′ 1

· · · · · 1′ 1 1

1
· 1′ 1

· · · 1′ 1
· · · · · 1′ 1 1

1′1
· 1′ 1

· · · 1′ 1
· · · · · 1′ 1 1

in addition to the nine elements of ShRibbons𝑄 (𝜈/𝜆).
Let ShRibbons𝑃 (𝜈//𝜆) be the set of elements in ShRibbons𝑄 (𝜈//𝜆) with no primed numbers appear-

ing in any diagonal boxes. Set

ShRibbons𝑃 (𝜈//𝜆) = ShRibbons𝑄 (𝜈//𝜆) := ∅

for strict partitions 𝜆 � 𝜈. For integers 𝑛 ≥ 0, define

ShRibbons𝑃 (𝜈//𝜆; 𝑛) ⊆ ShRibbons𝑃 (𝜈//𝜆) and ShRibbons𝑄 (𝜈//𝜆; 𝑛) ⊆ ShRibbons𝑄 (𝜈//𝜆)

to be the subsets of tableaux T with x𝑇 = 𝑥𝑛
1 .

Proposition 2.7. Suppose 𝜆 and 𝜈 are strict partitions and 𝑛 ∈ Z≥0. Then

𝑏̂𝜈
𝜆, (𝑛) = |ShRibbons𝑃 (𝜈//𝜆; 𝑛) | and 𝑐̂𝜈

𝜆, (𝑛) = |ShRibbons𝑄 (𝜈//𝜆; 𝑛) |.

Proof. For simplicity, assume 𝛽 = 1. Then 𝑐̂𝜈
𝜆, (𝑛)

is the coefficient of 𝐺𝑄𝜆 (x)𝐺𝑃(𝑛) (y) in 𝐺𝑄𝜈 (x, y).
Since 𝐺𝑃𝜇 (𝑦1, 0, 0, . . . ) is zero if ℓ(𝜇) ≥ 2 and equal to 𝑦

𝜇1
1 if ℓ(𝜇) ≤ 1, the number 𝑐̂𝜈

𝜆, (𝑛)
is also the

coefficient of 𝐺𝑄𝜆 (x)𝑡𝑛 in the power series 𝐺𝑄𝜈 (x; 𝑡) formed by setting 𝑦1 = 𝑡 and 𝑦2 = 𝑦3 = · · · = 0
in 𝐺𝑄𝜈 (x, y). As 𝐺𝑄𝜈 =

∑
𝑇 ∈ShSVT𝑄 (𝜈) x𝑇 is symmetric, it holds that

𝐺𝑄𝜈 (x; 𝑡) =
∑
𝜆⊆𝜈

∑
𝑇 ∈ShRibbons𝑃 (𝜈//𝜆)

𝐺𝑄𝜆 (x)𝑡 |𝑇 | =
∑
𝑛≥0

∑
𝜆⊆𝜈

|ShRibbons𝑄 (𝜈//𝜆; 𝑛) |𝐺𝑄𝜆 (x)𝑡𝑛,

and so we have 𝑐̂𝜈
𝜆, (𝑛)

= |ShRibbons𝑄 (𝜈//𝜆; 𝑛) |. The argument to show that we likewise have 𝑏̂𝜈
𝜆, (𝑛)

=

|ShRibbons𝑃 (𝜈//𝜆; 𝑛) | is similar, as 𝑏̂𝜈
𝜆, (𝑛)

is the coefficient of 𝐺𝑃𝜆 (x)𝑡𝑛 in 𝐺𝑃𝜈 (x; 𝑡). �

It is slightly less straightforward to interpret the numbers 𝑎̂𝜈
𝜆, (𝑛)

along these lines. However, if 𝑛 > 0,
then it is easy to check that 𝑔𝑞𝑛 = 2𝑔𝑝𝑛 + [𝑛 > 1]𝛽𝑔𝑝𝑛−1, and so (2.4) implies that

𝑐̂𝜈
𝜆, (𝑛) = 2𝑎̂𝜈

𝜆, (𝑛) + [𝑛 > 1]𝑎𝜈
𝜆, (𝑛−1) . (2.10)

3. Bender–Knuth involutions for shifted bar tableaux

In this section, we consider several families of shifted bar tableaux. Recall that these objects are shifted
tableaux whose boxes are divided into bars, each consisting of a contiguous sequence of equal primed
entries in one column or equal unprimed entries in one row. In such tableaux, no primed entry can be
repeated in a row and no unprimed entry can be repeated in a column.

For this section only, we assume the entries of all shifted bar tableaux are limited to the set
{1′, 1, 2′, 2}. In this context, the weight of a shifted bar tableau is the pair (𝑎1, 𝑎2), where 𝑎𝑖 is the
number of bars containing i or 𝑖′. Our goal is to construct a shape-preserving and weight-reversing
involution of the set of such tableaux that are semistandard, analogous to the Bender–Knuth involutions
on usual semistandard Young tableaux.
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3.1. Sorted bar tableaux

For convenience, we will often abbreviate ‘shifted bar tableau’ as ‘ShBT’. Recall that a ShBT is
semistandard if the entries in the tableau (ignoring bars) are weakly increasing in the order 1′ < 1 <
2′ < 2 along rows and columns. We will need a variant of this property:

Definition 3.1. Let T be a shifted bar tableau with all entries in {1′, 1, 2′, 2}. We say that T is sorted
if (in addition to our blanket assumption that no primed entry is repeated in any row and no unprimed
entry is repeated in any column) any of the following holds:

(a) The entries of T are weakly increasing along rows and columns in the order 1′ ≺ 2′ ≺ 1 ≺ 2.
(b) T has exactly two diagonal boxes, (𝑖, 𝑖) and (𝑖 +1, 𝑖 +1), such that 𝑇𝑖,𝑖+1 = 1, 𝑇𝑖+1,𝑖+1 = 2′, and either

𝑇𝑖,𝑖 = 2′ or boxes (𝑖, 𝑖) and (𝑖, 𝑖 + 1) are part of the same bar with entry 1, and changing the value in
box (𝑖 + 1, 𝑖 + 1) to 2 results in a shifted bar tableau satisfying (a). For example, all of the following
are sorted:

(3.1)

(c) T has exactly two diagonal boxes (𝑖, 𝑖) and (𝑖 + 1, 𝑖 + 1) such that 𝑇𝑖,𝑖 = 1, 𝑇𝑖,𝑖+1 = 2′, and either
𝑇𝑖+1,𝑖+1 = 1 or boxes (𝑖 + 1, 𝑖 + 1) and (𝑖, 𝑖 + 1) are part of the same bar with entry 2′, and changing
the value in box (𝑖, 𝑖) to 1′ results in a shifted bar tableau satisfying (a). For example, all of the
following are sorted:

(3.2)

3.2. Ascending swaps

The first (respectively, last) box in a bar within a ShBT is the box (𝑖, 𝑗) with i and j both minimal
(respectively, maximal). Everywhere in this subsection, T denotes an arbitrary ShBT with all entries in
{1′, 2′, 1, 2}, which is not necessarily semistandard or sorted.

Definition 3.2. Suppose H and V are bars in T with unique entries 1 and 2′, respectively. Below, we
define two new bars H̃ and Ṽ whose union H̃ � Ṽ occupies the same boxes as H � V . We then set

swap1↔2′ (𝑇,V ,H) := (𝑇, Ṽ),

where 𝑇 is formed from T by replacing H with H̃ and V with Ṽ . The rules defining H̃ and Ṽ are as
follows:

(a) Suppose the first boxes of H and V are (𝑖, 𝑗) and (𝑖 + 1, 𝑗), respectively, and that if (𝑖, 𝑗 − 1) ∈ 𝑇 ,
then 𝑇𝑖, 𝑗−1 ≠ 2′. This means boxes (𝑖, 𝑗 − 1), (𝑖, 𝑗), (𝑖 + 1, 𝑗) in T cannot have the form

(3.3)
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since in the first case. 𝑇𝑖, 𝑗−1 = 2′, and in the second case, the first boxes of H and V are not in the
same column. If H has more than one box, then we form H̃ from H by removing its first box and
we form Ṽ by adding this box to V . If H has only one box, then we form Ṽ by moving V down one
row and we form H̃ by moving H to occupy the last box of V . In pictures, we have

where the blue boxes are H and H̃ and the red boxes are V and Ṽ .
(b) Suppose the last boxes of H and V are (𝑖, 𝑗) and (𝑖, 𝑗 + 1), respectively, and that if (𝑖 + 1, 𝑗 + 1) ∈ 𝑇 ,

then 𝑇𝑖+1, 𝑗+1 ≠ 1. This mean boxes (𝑖, 𝑗), (𝑖, 𝑗 + 1), (𝑖 + 1, 𝑗 + 1) in T cannot have the form

(3.4)

If V has more than one box, then we form Ṽ from V by removing its last box and we form H̃ by
adding this box to H. If V has only one box, then we form H̃ by moving H right one column and
we form Ṽ by moving V to occupy the first box of H. In pictures, we have

(c) In all other cases, we set H̃ := H and Ṽ := V .

Above, we defined how to ‘swap’ one 2′-bar in T with a 1-bar. We will extend this to a procedure
successively swapping a given 2′-bar with all 1-bars in a certain order. Then we will further extend
that operation to one successively swapping all 2′-bars in T with all 1-bars. This will give an operation
transforming T to another ShBT in which the relative order of 1′ and 2 is reversed.

Definition 3.3. Suppose H1,H2, . . . ,H𝑘 are the distinct bars of T containing 1 ordered from right to
left, so if 𝑖 < 𝑗 , then H𝑖 occurs in larger-indexed columns than H 𝑗 . For any single bar V of T with
unique entry 2′, inductively define

(𝑇0, Ṽ0) := (𝑇,V),
(𝑇𝑖 , Ṽ𝑖) := swap1↔2′ (𝑇𝑖−1, Ṽ𝑖−1,H𝑖) for𝑖 = 1, 2, . . . , 𝑘,

and then set swap1↔2′ (𝑇,V) := 𝑇𝑘 . Next, suppose V1,V2, . . . ,V𝑙 are the distinct bars of T containing 2′

ordered from bottom to top, so that if 𝑖 < 𝑗 , then V𝑖 occurs in smaller-indexed rows than V 𝑗 . Finally, let

swap1↔2′ (𝑇) := swap1↔2′ (· · · swap1↔2′ (swap1↔2′ (𝑇,V1),V2) . . . ,V𝑙).

Example 3.4. Figure 1 shows an example of the successive swaps that are carried out in Definition 3.3
to form swap1↔2′ (𝑇).

Proposition 3.5. If T is a semistandard shifted bar tableau, then swap1↔2′ (𝑇) is a sorted shifted bar
tableau of the same shape and weight.
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Figure 1. An example computation of swap1↔2′ (𝑇). We illustrate each individual operation of the form
swap1↔2′ (−,V ,H) that results in a new tableau (i.e., that does not fall in case (c) of Definition 3.2).
The bars H1, H2, H3, H4 and H5 are respectively gray, green, yellow, blue and white; the bars V1, V2
and V3 are respectively orange, pink and red.

Proof. Let T be a semistandard ShBT. Then swap1↔2′ (𝑇) has the same shape and weight as T by
construction. Since the operation swap1↔2′ affects only the boxes in T filled with 1 or 2′, the result is
valid for all semistandard T filled with {1′, 1, 2′, 2} if and only if it is valid for those semistandard T
filled with only {1, 2′}. So without loss of generality, assume that the only entries of T are 1 and 2′. Such

a tableau T contains no 2 × 2 square of entries, as there is no way to complete the diagram
? 2′

1
to a

semistandard ShBT. In particular, the only way that T can contain one box strictly northeast of another
is if it contains two consecutive boxes on the diagonal:

2′

1 1
or

2′

1 2′
(ignoring the division into bars).

Thus, the partial order � on the bars in T where one bar is smaller than (‘before’) another if the first
lies entirely (weakly) southeast of the latter is either a total order (if T does not contain two diagonal
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boxes) or has a unique incomparable pair that come after all other bars of T. This order is compatible
with the orders H1, . . . ,H𝑘 and V1, . . . ,V𝑙 in Definition 3.3. Moreover, this order extends to every
{1, 2′}-filled ShBT (semistandard, sorted or otherwise) with the same shape as T, and to every tableau
appearing as an intermediate stage in the computation of swap1↔2′ (𝑇).

Suppose the bars of 1s in T are H1, . . . ,H𝑘 and the bars of 2′s in T are V1, . . . ,V𝑙 , as in Definition
3.3. Applying any number of swap1↔2′ operations to T results in a tableau with k bars of 1s and l bars
of 2′s. For 𝑖 = 1, . . . , 𝑙, let 𝑇 (𝑖) := swap1↔2′ (· · · swap1↔2′ (𝑇,V1) · · · ,V𝑖), and let the bars of 1s and 2′s
in 𝑇 (𝑖) be, respectively, H(𝑖)

1 , . . . ,H(𝑖)
𝑘 and V (𝑖)

1 , . . . ,V (𝑖)
𝑙 .

Given a tableau, we will say that a pair of bars A, B is bad if A is filled with 1, B is filled with 2′, and
A contains a box either directly west or directly south of a box in B as in these pictures:

1 · · · 2′ or
2′

...

1
.

Each move in (a) and (b) of Definition 3.2 replaces an adjacent pair of bad bars with a non-bad pair.
We claim that in the tableau 𝑇 (𝑖) , there are no bad pairs involving any of the bars V (𝑖)

1 , . . . ,V (𝑖)
𝑖 , except

possibly in the case that T has two diagonal boxes and 𝑖 = 𝑙.
For 𝑖 = 0, this is vacuously true; we proceed by induction. By hypothesis, there are no bad pairs

involving V (𝑖−1)
1 , . . . ,V (𝑖−1)

𝑖 in 𝑇 (𝑖) . Suppose that V𝑖 = V (𝑖−1)
𝑖 lies in column c, and choose j such that

H(𝑖−1)
1 , . . . ,H(𝑖−1)

𝑗 lie in columns whose indices are greater than or equal to c (i.e., they lie weakly
southeast of V𝑖 in 𝑇 (𝑖−1) ), while H 𝑗+1 = H(𝑖−1)

𝑗+1 , . . . , H𝑘 = H(𝑖−1)
𝑘 lie in columns whose indices are

strictly smaller than c. In this setup, it is possible that a single bar of 1s lies in columns with indices
both smaller than and greater than or equal to c, but only if 𝑖 = 𝑙 and V𝑖 consists of a single diagonal

box, as in .
The first 𝑗 −1 swaps in the computation of swap1↔2′ (𝑇

(𝑖−1) ,V𝑖) do nothing. The jth swap either does
nothing (if H(𝑖−1)

𝑗 does not contain any boxes in column c) or performs a swap of the type described
in Definition 3.2(a). Following this swap, the resulting two bars Ṽ𝑖 , H̃ 𝑗 no longer form a bad pair.
Moreover, although the bar Ṽ𝑖 may extend one row below V𝑖 , this cannot introduce any new bad pairs
involving the bar Ṽ𝑖 unless there is a 1 to the left of the first box in H(𝑖−1)

𝑗 , which only happens if 𝑖 = 𝑙
and V𝑖 consists of a single diagonal box, as in these examples:

If, at this stage, there are any further bad pairs involving Ṽ𝑖 , they must come from 1s in boxes directly

west of a box in Ṽ𝑖 . This can happen if 𝑖 = 𝑙 and Ṽ𝑖 contains a diagonal box , but otherwise the
bar H𝑘+1 of 1s in the bad pair must be directly west of and adjacent to the last box in Ṽ𝑖 . If Ṽ𝑖 has more
than one box, then the immediate next swap (of the type in Definition 3.2(b)) removes the box from Ṽ𝑖

that is involved in the bad pair, and the remaining swaps (with H 𝑗+2, . . . ) do nothing, leaving a tableau
in which the new bar V (𝑖)

𝑖 is not involved in any bad pairs. If Ṽ𝑖 only has a single box, then possibly
several moves of type Definition 3.2(b) are required; after these moves, the box occupied by V (𝑖)

𝑖 was
previously occupied by a box labeled 1, so there cannot be any other 1s in the same column, and so also
in this case, V (𝑖)

𝑖 is not involved in any bad pairs.

https://doi.org/10.1017/fms.2024.8 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.8


16 J. Lewis and E. Marberg

Finally, we observe that none of these moves changes any bar of 1s that is east of V (𝑖−1)
𝑖−1 (because

they are all strictly southeast of V𝑖) and none of these moves causes any 1s to appear in a lower row than
they previously appeared, so no bad pairs involving V (𝑖−1)

1 = V (𝑖)
1 , . . . , V (𝑖−1)

𝑖−1 = V (𝑖)
𝑖−1 are created. This

completes the proof of the claim.
It follows from the preceding argument that either swap1↔2′ (𝑇) has no bad pairs at all or its shape

has two diagonal boxes and there is a bad pair involving the bar of 2′s in the upper diagonal box. By
comparing with the definition of sorted tableaux (see Definition 3.1), we find that this is precisely the
desired conclusion. �

3.3. Descending swaps

We now define an inverse to the swap1↔2′ operation. In this subsection, 𝑇 continues to denote an
arbitrary ShBT with all entries in {1′, 2′, 1, 2}, which is not necessarily semistandard or sorted.

Definition 3.6. Suppose H̃ and Ṽ are bars in 𝑇 with unique entries 1 and 2′, respectively. Below, we
define two new bars H and V whose union H � V occupies the same boxes as H̃ � Ṽ . We then set

unswap1↔2′ (𝑇, Ṽ , H̃) := (𝑇,V),

where 𝑇 is formed from 𝑇 by replacing H̃ with H and Ṽ with V . The rules defining H and V are as
follows:

(a) Suppose the first boxes of Ṽ and H̃ are (𝑖, 𝑗) and (𝑖, 𝑗 + 1), respectively. If Ṽ has more than one box,
then we form V from Ṽ by removing its first box and we form H by adding this box to H̃. If Ṽ has
only one box, then we form H by moving H̃ to the left one column and we form V by moving Ṽ to
occupy the last box of H̃. In pictures, we have

where the blue boxes are H̃ and H, while the red boxes are Ṽ and V .
(b) Suppose the last boxes of Ṽ and H̃ are (𝑖, 𝑗) and (𝑖 + 1, 𝑗), respectively. If H̃ has more than one box,

then we form H from H̃ by removing its last box and we form V by adding this box to Ṽ . If H̃ has
only one box, then we form V by moving Ṽ up one row and we form H by moving H̃ to occupy the
first box of Ṽ . In pictures, we have

(c) In all other cases, we set H := H̃ and V := Ṽ .

Definition 3.7. Suppose H̃1, H̃2, . . . , H̃𝑘 and Ṽ1, Ṽ2, . . . , Ṽ𝑙 are the distinct bars of 𝑇 containing 1 and
2′, respectively, listed in the orders from Definition 3.3 (i.e., the vertical bars filled with 2′ are ordered
from bottom to top and the horizontal bars filled with 1 are ordered from right to left). For any single
bar Ṽ ∈ {Ṽ1, Ṽ2, . . . , Ṽ𝑙}, inductively define (𝑇𝑘 ,V𝑘 ) := (𝑇, Ṽ) and

(𝑇𝑖−1,V𝑖−1) := unswap1↔2′ (𝑇𝑖 ,V𝑖 ,H𝑖) for𝑖 = 𝑘, . . . , 3, 2, 1,
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Figure 2. An example computation of unswap1↔2′ (𝑇). We illustrate each individual operation of the
form unswap1↔2′ (−,V ,H) that results in a new tableau (i.e., that does not fall in case (c) of Definition
3.6). The bars H̃1, H̃2, H̃3, H̃4 and H̃5 are respectively gray, green, yellow, blue and white; the bars
Ṽ1, Ṽ2 and Ṽ3 are respectively orange, pink and red.

and then set unswap1↔2′ (𝑇, Ṽ) := 𝑇0. Finally, let

unswap1↔2′ (𝑇) := unswap1↔2′ (· · · unswap1↔2′ (unswap1↔2′ (𝑇, Ṽ𝑙), Ṽ𝑙−1) . . . , Ṽ1).

Example 3.8. Figure 2 shows an example of the successive ‘unswaps’ that are carried out in Definition
3.7 to form unswap1↔2′ (𝑇).

Proposition 3.9. If 𝑇 is a sorted shifted bar tableau, then unswap1↔2′ (𝑇) is a semistandard shifted bar
tableau of the same shape and weight.

Proof. Let 𝑇 be a sorted shifted bar tableau. By construction, 𝑇 and unswap1↔2′ (𝑇) have the same
shape and same weight. First, suppose that 𝑇 does not contain two diagonal boxes. In this case, by
comparing the definitions of sorted and semistandard ShBT, we see that rotating 𝑇 by 180◦ produces a
semistandard ShBT 𝑇𝑟 . Moreover, by comparing Definitions 3.2, 3.3 with Definitions 3.6, 3.7, we see
that swap1↔2′ (𝑇

𝑟 ) = unswap1↔2′ (𝑇)
𝑟 , and consequently that unswap1↔2′ (𝑇) = swap1↔2′ (𝑇

𝑟 )𝑟 is a
semistandard ShBT.
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Otherwise, suppose 𝑇 has two diagonal boxes. There are four possible arrangements of the entries
the first two diagonals of 𝑇 , which we illustrate as follows; in all cases, Ṽ𝑙 is colored in pink and H̃𝑘 is
colored in cyan:

(1)

(2)

(3)

(4)

In the first two cases, one has unswap1↔2′ (𝑇, Ṽ𝑙) = 𝑇 . In these cases, deleting the unique box of Ṽ𝑙 from𝑇
produces a sorted tableau 𝑇 − Ṽ𝑙 with only one diagonal box. Therefore, by the argument in the previous
paragraph, unswap1↔2′ (𝑇 − Ṽ𝑙) is a semistandard tableau. This tableau becomes unswap1↔2′ (𝑇) =
unswap1↔2′ (𝑇 − Ṽ𝑙) ∪ {Ṽ𝑙} when we add back the unique box of Ṽ𝑙 at the end. Since the added box
always contains 2′, the result is semistandard, as needed.

In the latter two cases, one has unswap1↔2′ (𝑇, Ṽ𝑙 , H̃𝑘 ) = (𝑇, Ṽ𝑙) (i.e., the very first swap belongs to
case (c) of Definition 3.6 and so does not change anything). In these cases, deleting the unique box of
H̃𝑘 produces a sorted tableau 𝑇 − H̃𝑘 with only one diagonal box. Again by the argument in the first
paragraph of this proof, we deduce that unswap1↔2′ (𝑇 − H̃𝑘 ) is a semistandard tableau. This tableau
becomes unswap1↔2′ (𝑇) = unswap1↔2′ (𝑇 − H̃𝑘 ) ∪ {H̃𝑘 } when we add back the unique box of H̃𝑘 at
the end, which preserves semistandard-ness. This completes the proof. �

Theorem 3.10. The operations swap1↔2′ and unswap1↔2′ are inverse shape- and weight-preserving
bijections between semistandard and sorted shifted bar tableaux with all entries in {1′, 1, 2′, 2}.

Proof. By Propositions 3.5 and 3.9, the two maps are shape- and weight-preserving and they have the
correct domain and codomain. Since each swap preserves the relative orders of the V𝑖 and of the H 𝑗 ,
it is immediate from the definitions that unswap1↔2′ (swap1↔2′ (𝑇)) = 𝑇 for any semistandard ShBT T
and swap1↔2′ (unswap1↔2′ (𝑇)) = 𝑇 for any sorted ShBT 𝑇 . �

3.4. Weight reversal

In this subsection, T denotes a fixed choice of sorted ShBT as specified in Definition 3.1, again with all
entries in {1′, 2′, 1, 2}. We partition the bars of this tableau into four kinds of ‘groups’ and then define
a weight-reversing involution locally group-by-group.
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It will be convenient in what follows to refer to the following conjugation operation on sorted ShBT;
all subsequent constructions will be symmetric under conjugation. For this definition, we fix a large
positive integer N such that all boxes of T are in [𝑁 − 1] × [𝑁 − 1].

Definition 3.11. Let 𝑇∗ be the ShBT formed by applying the transformation (𝑖, 𝑗) ↦→ (𝑁 − 𝑗 , 𝑁 − 𝑖) to
the boxes in T and the transformation 𝑣 ↦→ 3′ − 𝑣 to the entries in T.

For example, 𝑇 ↦→ 𝑇∗ would exchange

for an appropriate choice of N. Since the examples in (3.1) are conjugate to those in (3.2), this operation
does indeed give another sorted ShBT.

Let A and B be bars in T. We write A ≈ B if the two bars have unprimed entries in the same column
or have primed entries in the same row. We also write A ≈ B if T has two diagonal boxes (𝑖, 𝑖) and
(𝑖 +1, 𝑖 +1), the bar A consists of one of the two diagonal boxes (and no off-diagonal boxes), and the bar
B contains the box (𝑖, 𝑖 + 1), or vice-versa. An equivalence class for the transitive closure of ≈ is a two-
row-group (respectively, a two-column-group) if the class contains at least two bars in T and the bars in
the class fit entirely in two rows (respectively, columns), with the following exception. It is possible to
have classes that consist of exactly three boxes (in two or three bars), two of which are diagonal, and
which therefore fit entirely into two rows and also into two columns; for example,

(3.5)

We refer to these classes as two-row-groups (respectively, two-column-groups) if and only if their
nondiagonal entry is unprimed (respectively, primed). Thus, of the three tableaux in (3.5), the first is a
two-row-group and the others are two-column-groups.

Here is our first nontrivial observation about these equivalence classes.

Proposition 3.12. Every non-singleton equivalence class for the transitive closure of ≈ is a two-row-
group or a two-column-group. Every two-row-group is of one of the forms

2 · · · 2 · · · 2
1 · · · 1 · · · 1

or
𝑦 2 · · · 2

𝑥 1 1 · · · 1 · · · 1

with some division into bars. That is, the boxes in the union making up a two-row-group are either of
the form

({𝑖} × [ 𝑗2, 𝑗4]) � ({𝑖 + 1} × [ 𝑗1, 𝑗3]) where 𝑖 ≤ 𝑗1 ≤ 𝑗2 ≤ 𝑗3 ≤ 𝑗4

or of the form

({𝑖} × [𝑖, 𝑗4]) � ({𝑖 + 1} × [𝑖 + 1, 𝑗3]) where 𝑖 + 1 ≤ 𝑗3 ≤ 𝑗4,

and every two-column-group is conjugate to one of these. Also, if a two-row-group has two diagonal
boxes (marked x, y in the illustration), then these are filled in one of the following six ways:
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and in a two-column-group, the options are conjugate to these.

Proof. First, consider the equivalence classes that consist of all unprimed bars. In this case, if A ≈ B,
then the relations satisfied by the entries of a sorted ShBT imply that when the bar A is filled with 1
and lies in row i, the bar B must be filled with 2s and lie in row 𝑖 + 1, and conversely. Hence, the entire
equivalence class is restricted to two consecutive rows i and 𝑖 + 1, with row i containing 1s and row
𝑖 + 1 containing 2s. Furthermore, row 𝑖 + 1 cannot extend to the right of row i because the only way to
complete the diagram

· · · 2 2
· · · 1 ?

to a valid sorted ShBT is if the box ? is filled with a 1. Similarly, row i cannot extend to the left of
row 𝑖 + 1 except in the case

· 2 · · ·

1 1 · · ·

where it does so at the diagonal. The case of equivalence classes containing all primed bars is the
conjugate of this case.

We now consider the case of equivalence classes that contain both primed and unprimed bars. In this
case, the exceptional rule defining ≈ must come into play: the tableau T must have two diagonal boxes
(𝑖, 𝑖) and (𝑖 + 1, 𝑖 + 1) for some i, at least one of which must be a bar unto itself. Any skew shifted shape
that contains (𝑖, 𝑖) and (𝑖 + 1, 𝑖 + 1) also contains (𝑖, 𝑖 + 1); up to conjugacy, we may assume that the box
(𝑖, 𝑖 + 1) is filled with an unprimed entry. In fact, this unprimed entry must be 1: no tableau of the form

𝑦

𝑥 2 · · ·
with entries in {1′, 2′, 1, 2} is a sorted ShBT. Let A be the bar containing the box (𝑖, 𝑖 + 1).

By hypothesis, one of the two boxes (𝑖, 𝑖) and (𝑖 + 1, 𝑖 + 1) must belong to a one-box bar that is filled
with either 1′ or 2′.

First, suppose that the box (𝑖, 𝑖) is a singleton bar B. In this case, its only relation under ≈ is A ≈ B,
and the box (𝑖+1, 𝑖+1) could either be filled with 2′ (if B is also filled with 2′) or with 2. In the case that
(𝑖 + 1, 𝑖 + 1) is filled with 2′, its unique relation under ≈ is with A, and so in either case, the logic of the
previous paragraph applies to conclude that all boxes in the equivalence class belong to rows i and 𝑖 + 1.

Second, suppose that box (𝑖 + 1, 𝑖 + 1) is filled with a primed entry. By Definition 3.1, it follows that
this entry is 2′ and that (𝑖, 𝑖) is either filled with 1 or with 2′. In the former case, the equivalence class
again belongs to two rows, for the same reasons. In the latter case, it turns out that the box (𝑖, 𝑖) must
also be a bar unto itself because it is not possible to complete the diagram
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to a sorted ShBT. This establishes all of our claims about two-row-groups. The case of two-column-
groups is equivalent after taking conjugates everywhere. �

Now suppose A and B are bars within T that do not belong to any two-row- or two-column-group.
We write A ∼ B if A and B are adjacent unprimed bars (in the same row) or adjacent primed bars (in
the same column). We also write A ∼ B if the bars are adjacent and one bar consists of a single box
on the diagonal. An equivalence class for the transitive closure of ∼ is a one-row-group (respectively,
one-column-group) if the bars in the class fit entirely in one row (respectively, one column), with the
exception that an equivalence class containing a single one-box bar is a one-row-group if its entry is
unprimed and a one-column-group if its entry is primed.

Proposition 3.13. Every equivalence class for the transitive closure of ∼ is either a one-row- or one-
column-group. Every one-row-group is of one of forms (with some division into bars)

1 · · · 1 2 · · · 2 , 1′ 1 · · · 1 2 · · · 2 , or 2′ 1 · · · 1 2 · · · 2 ,

where in all cases the number of 1s or 2s might be 0, and the latter two cases occur only when the
leftmost box is on the diagonal; and every one-column-group is conjugate to one of these.

Proof. The case of equivalence classes that do not contain any diagonal box is straightforward from the
definition. If a tableau T contains two diagonal boxes (𝑖, 𝑖) and (𝑖 + 1, 𝑖 + 1), then at least one of them
belongs to a two-row- or two-column-group with (𝑖, 𝑖 + 1) and so does not belong to any one-row- or
one-column-group. Thus, we may restrict our attention to the case of tableaux with a single diagonal
box, and the equivalence class that contains that box. In particular, we must show that the diagonal box
cannot be in the same group with its neighbors to the east and south simultaneously. It is a simple finite
computation to check that in all 30 sorted ShBT of shape

·

at least one of the neighbors of the diagonal box belongs to a two-row- or two-column-group. Then the
result follows immediately. �

We now describe a collection of operations that can be applied locally to a given group. These
operations will all reverse the weight of the group, while globally replacing the sorted ShBT with
another sorted ShBT. They will also have predictable effects on which diagonal boxes carry primes
(which will be important when considering the symmetry of the generating function 𝑗 𝑝𝜆/𝜇).

First, consider a one-row-group. We define an operation called toggling the labels of the group, as
follows. If the group has a (necessarily unique) primed diagonal entry, then remove its prime. Suppose
this results in a group with p bars containing 1 and q bars containing 2. We order these bars from left to
right in the usual way, unless there is a one-box bar on the diagonal containing 2. In the latter case, we
consider the diagonal bar to be the last bar in the group and order the remaining bars from left to right.
Finally, relabel these 𝑝 + 𝑞 bars so that first q bars contain 1 and the last p bars contain 2, and then add
back a prime to the one-box diagonal bar if this was removed earlier. For example, this would give
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(3.6)

Toggling the labels in a one-column-group is precisely the conjugate operation; for example, toggling
the labels transforms

(3.7)

Next consider a two-row-group with boxes in rows i and 𝑖 +1. First, assume the group has at most one
diagonal box. (In this case, by Proposition 3.12, all bars in the group are filled with unprimed entries.)
We define a weight-reversing operation called toggling the bar divisions in the group, as follows. We
form another two-row-group with the same entries that has a bar division between columns j and 𝑗 + 1
in row i (respectively, 𝑖 + 1) if and only if a bar division occurs between columns j and 𝑗 + 1 in row 𝑖 + 1
(respectively, i) in the starting group, as in

This operation is obviously weight-reversing.
The situation of two-row-groups that contain two diagonal boxes is more complicated. We again

introduce a notion of toggling the bar divisions that is not necessarily weight-reversing (or even well
defined on ShBT); it will be used as one step in the final weight-reversing map of Definition 3.14 below.
Given a two-row-group with two diagonal boxes (𝑖, 𝑖) and (𝑖, 𝑖 + 1), we define the operation of toggling
the bar divisions as above, except that we mandate that boxes (𝑖, 𝑖) and (𝑖, 𝑖 + 1) belong to the same bar
in the toggled group if and only if they belong to the same bar in the original group – for example, as in

If the box (𝑖 + 1, 𝑖 + 1) contains 2′ and box (𝑖 + 1, 𝑖 + 2) is part of the group, then our toggling operation
could result in a tableau that is not a valid ShBT; in practice, we will never apply our operation when
this case would arise.
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There are analogous toggling operations for two-column-groups. They are precisely the conjugate (in
the sense of Definition 3.11) of the operations defined above. For example, to toggle the bar divisions
in a two-column-group transforms

We now combine all of these local transformations into the following weight-reversing operator.

Definition 3.14. Let T be a sorted shifted bar tableau with all entries in {1′, 2′, 1, 2}. We form another
shifted bar tableau, denoted reverse_weight(𝑇), by transforming T as follows:

1. First, toggle the labels in each one-row-group and one-column-group. Then toggle the bar divisions
in each two-row-group and two-column-group, excluding the unique group with two diagonal boxes
(if this exists).

2. Suppose T has a group with two diagonal boxes. If this is a two-row-group with diagonal boxes (𝑖, 𝑖)
and (𝑖 + 1, 𝑖 + 1), then proceed according to the following cases:

(R1) If (𝑖, 𝑖) is a one-box bar containing 1 (respectively, 2′) and the entry in (𝑖 + 1, 𝑖 + 1) is 2, then
toggle the bar divisions and change the entry in (𝑖, 𝑖) to 2′ (respectively, 1):

(R2) Suppose (𝑖, 𝑖) is a one-box bar containing 1′, the boxes (𝑖, 𝑖+1) and (𝑖, 𝑖+2) belong to the same
bar, and (𝑖 + 1, 𝑖 + 2) is in the group. In this case, the entry in (𝑖 + 1, 𝑖 + 1) is necessarily 2 by
Proposition 3.12. First, change the entry in (𝑖, 𝑖) to 1 and merge this box into the bar of (𝑖, 𝑖+1).
Next, toggle the bar divisions. Finally, change (𝑖 + 1, 𝑖 + 1) to a one-box bar containing 2′:

(R3) Suppose (𝑖 + 1, 𝑖 + 1) is a one-box bar containing 2′, the boxes (𝑖, 𝑖) and (𝑖, 𝑖 + 1) belong to the
same bar (necessarily containing 1), and (𝑖 + 1, 𝑖 + 2) is in the group. First, change the entry in
(𝑖 + 1, 𝑖 + 1) to 2 and merge this box into the bar of (𝑖 + 1, 𝑖 + 2). Next, toggle the bar divisions.
Finally, change (𝑖, 𝑖) to a one-box bar containing 1′. This is illustrated by reversing the direction
of the example in case (R2).

(R4) Suppose (𝑖, 𝑖) is a one-box bar containing 1′, but the boxes (𝑖, 𝑖 + 1) and (𝑖, 𝑖 + 2) do not belong
to the same bar or the box (𝑖 + 1, 𝑖 + 2) is not part of the group. In this case, the entry in
(𝑖 + 1, 𝑖 + 1) is necessarily 2 by Proposition 3.12. Then toggle the bar divisions and change the
entries in both (𝑖, 𝑖) and (𝑖 + 1, 𝑖 + 1) to 2′:
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or

(R5) If (𝑖, 𝑖) and (𝑖 + 1, 𝑖 + 1) are both one-box bars containing 2′, then change the entries in (𝑖, 𝑖)
and (𝑖 + 1, 𝑖 + 1) to 1′ and 2, respectively, and toggle the bar divisions. This is illustrated by
reversing the examples in case (R4).

(R6) If none of (R1)–(R5) apply, just toggle the bar divisions in the two-row-group.

If the two diagonal boxes instead occur in a two-column-group, then replace this group by its
conjugate, transform that two-row-group according to cases (R1)–(R6), and finally conjugate the
result. Explicitly, this means that if there is a two-column-group with diagonal boxes (𝑖 − 1, 𝑖 − 1)
and (𝑖, 𝑖), then we proceed according to the following cases (illustrated in Figure 3):

(C1) If (𝑖, 𝑖) is a one-box bar containing 2′ (respectively, 1) and the entry in (𝑖 − 1, 𝑖 − 1) is 1′, then
toggle the bar divisions and change the entry in (𝑖, 𝑖) to 1 (respectively, 2′).

(C2) Suppose (𝑖, 𝑖) is a one-box bar containing 2, boxes (𝑖 − 1, 𝑖) and (𝑖 − 2, 𝑖) belong to the same
bar, and (𝑖 − 1, 𝑖 − 2) is in the group. In this case, the entry in (𝑖 − 1, 𝑖 − 1) is necessarily 1′ by
Proposition 3.12. First, change the entry in (𝑖, 𝑖) to 2′ and merge this box into the bar of (𝑖−1, 𝑖).
Next, toggle the bar divisions. Finally, change (𝑖 − 1, 𝑖 − 1) to a one-box bar containing 1.

(C3) Suppose (𝑖 − 1, 𝑖 − 1) is a one-box bar containing 1, the boxes (𝑖, 𝑖) and (𝑖 − 1, 𝑖) belong to the
same bar (necessarily containing 2′), and (𝑖 − 2, 𝑖 − 1) is in the group. First, change the entry in
(𝑖−1, 𝑖−1) to 1′ and merge this box into the bar of (𝑖−2, 𝑖−1). Next, toggle the bar divisions.
Finally, change (𝑖, 𝑖) to a one-box bar containing 2.

(C4) Suppose (𝑖, 𝑖) is a one-box bar containing 2, but the boxes (𝑖 − 1, 𝑖) and (𝑖 − 2, 𝑖) do not belong
to the same bar or the box (𝑖 − 2, 𝑖 − 1) is not part of the group. In this case, the entry in
(𝑖 − 1, 𝑖 − 1) is necessarily 1′ by Proposition 3.12. Then toggle the bar divisions and change
the entries in both (𝑖, 𝑖) and (𝑖 − 1, 𝑖 − 1) to 1.

(C5) If (𝑖, 𝑖) and (𝑖 − 1, 𝑖 − 1) are both one-box bars containing 1, then change the entries in (𝑖, 𝑖)
and (𝑖 − 1, 𝑖 − 1) to 2 and 1′, respectively, and toggle the bar divisions.

(C6) If none of (C1)–(C5) apply, just toggle the bar divisions in the two-column-group.

Theorem 3.15. The operation reverse_weight is a shape-preserving and weight-reversing involution of
the set of sorted shifted bar tableaux with all entries in {1′, 1, 2′, 2}.

Proof. By construction, every bar in a sorted ShBT belongs to a group, and each local transformation
(toggling the labels on one-row- and one-column-groups, toggling the bar divisions on two-row- and
two-column-groups that contain at most one diagonal box, applying rules (R1)–(R6) and (C1)–(C6) to
two-row- and two-column-groups that contain two diagonal boxes) reverses the weight and preserves
the shape of the group on which it acts, so the map reverse_weight is weight-reversing and shape-
preserving. It remains to show first that reverse_weight is well defined (i.e., that for any sorted ShBT T,
the image reverse_weight(𝑇) is also a sorted ShBT), and second that the groups of reverse_weight(𝑇)
are supported on the same boxes as the groups of T. Since each local transformation is an involution by
definition, this will establish that reverse_weight is an involution.

Given any group in T, its image under the appropriate local transformation is compatible with the
definition of sorted tableaux. Thus, to check that reverse_weight is well defined as a map from sorted
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Figure 3. The special cases (C1), (C2)–(C3), and (C4)–(C5) of Definition 3.14.

ShBT to sorted ShBT, we must establish that (1) adjacent boxes in different groups satisfy the correct
order relation, and (2) if there are two diagonal boxes, then they and the box between them are validly
filled.

We begin with some basic observations. All of the local transformations have the property that if
a nondiagonal box (𝑖, 𝑗) in a sorted ShBT T is filled with a primed (respectively, unprimed) entry,
then the box (𝑖, 𝑗) in reverse_weight(𝑇) is also filled with a primed (respectively, unprimed) entry.
Moreover, every nondiagonal box of a one- or two-column-group is filled with a primed entry, and every
nondiagonal box of a one- or two-row-group is filled with an unprimed entry. Therefore, to prove that
reverse_weight(𝑇) is a sorted ShBT, we need only check conditions at the diagonal and between groups
of the same ‘type’ (both row or both column). We handle the second case first.

In the case of two-row-groups that do not contain two diagonal boxes, each box is filled with the
same number after toggling the bar divisions as it was before (only the division of these boxes into bars
changes), and the new bars are still connected under ≈ (a division between bars that fails to disconnect
the group still fails to disconnect the group when it switches rows). Thus, the operation reverse_weight
preserves the order relation between groups of this type.

Two one-row-groups cannot have any adjacent boxes: if a box in one were directly below a box in the
other, then these two boxes would belong to a two-row-group (and so, by definition, could not belong
to one-row-groups), while if a box in one were directly to the right of a box in the other, then these two
boxes would belong to the same one-row-group.

Finally, suppose that A is a two-row-group occupying rows i and 𝑖 + 1 and B is a one-row-group
that contains a box adjacent to a box in A. These adjacent boxes must lie in the same row (rather than
the same column) because otherwise the box in the one-row-group would belong instead to a two-row-
group. It follows as in the proof of Proposition 3.12 that if the boxes in the one-row-group B are to the
right of the boxes in A, then it must lie in row i, because there is no way to complete
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to a sorted ShBT. Similarly, if the boxes in B lie to the left of the boxes in A, then they must lie in
row 𝑖 + 1. (In the latter case, there is an additional consideration concerning the situation in which the
one-row-block consists of a single diagonal box, but in this case, the putative one-row-block would
actually be part of the two-row-block.) In the first situation, after applying reverse_weight, the box in
the two-row-group is still filled with 1 and still to the left of the box in the one-row-group (which
will either end up filled with 1 or 2), and in the second case, the box in the two-row-group is still
filled with 2 and still to the right of the box in the one-row-group. Thus, the order relations are
preserved in both cases. The situation for one- and two-column-groups is precisely the conjugate. This
completes the proof that reverse_weight(𝑇) obeys the order relations of a sorted ShBT among all
pairs of adjacent boxes except possibly those at the diagonal (in the case that T contains two diagonal
boxes).

Now consider the collection of sorted ShBT with two diagonal boxes in positions (𝑖, 𝑖) and (𝑖+1, 𝑖+1).
There are twelve possible fillings of the three boxes (𝑖, 𝑖), (𝑖, 𝑖 + 1), (𝑖 + 1, 𝑖 + 1): six of them are shown
in the statement of Proposition 3.12, and the other six are conjugate to these. In the cases

and their conjugates, it is easy to see that the three boxes must belong to a single two-row-group.
(The nontrivial cases are the first and fourth; the proof of Proposition 3.12 shows explicitly that in the
box (𝑖, 𝑖) must be a one-bar group in the fourth case, and the proof in the first case is identical.) The
boxes directly below this group (if there are any) can only be filled with primed entries; after applying
reverse_weight (checking the six cases (R1)–(R6)), those boxes will still be filled with primed entries
and so the necessary order relations are respected. Similarly, the boxes directly to the right of the
group (if there are any) will be filled with unprimed entries, and any box in row 𝑖 + 1 will be part of a
two-row-group and filled with 2; after applying reverse_weight, we again have that all order relations
are respected. The same holds for the conjugates of these cases after swapping the words ‘row’ with
‘column’, ‘primed’ with ‘unprimed’, ‘below’ with ‘right’, and ‘(𝑖, 𝑖)’ with ‘(𝑖 + 1, 𝑖 + 1)’. This leaves the
two mutually conjugate cases

Here, we have two possibilities to consider: box (𝑖, 𝑖 + 1) is automatically in the same two-row- or
two-column-group as one of the other diagonal boxes, but the odd box out could be part of a bar with

more than one box. For example, in the tableau the unprimed bars are part of a two-row-
group and the primed bars are part of a two-column-group. If the two diagonal boxes are in different
groups, then the three boxes are unchanged by the operation reverse_weight, all boxes below them (if
any) are primed and stay this way after applying reverse_weight, and all boxes to their right (if any) are
unprimed and stay this way after applying reverse_weight, so all order relations involving these boxes are
preserved. If the two diagonal boxes are part of the same group, and when we apply reverse_weight, we
fall into case (R4) or (C4), and the rest of the argument is essentially the same as for the cases discussed
above. �
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3.5. Composing operations

Putting together everything above, we arrive at the main theorem of this section:
Theorem 3.16. The composition

𝜏ShBT := unswap1↔2′ ◦ reverse_weight ◦ swap1↔2′

is a shape-preserving and weight-reversing involution of the set of semistandard shifted bar tableaux
with all entries in {1′, 1, 2′, 2}. Moreover, if T is a semistandard shifted bar tableau, then 𝜏ShBT (𝑇) and
T have the same number of primed entries on the main diagonal.
Proof. Let T be a semistandard shifted bar tableau. In view of Theorems 3.10 and 3.15, it remains only
to prove our claim that 𝜏ShBT(𝑇) and T have the same number of primed diagonal entries.

By considering the various cases in Definition 3.2, we see that the only swaps in the initial application
of swap1↔2′ that can change a diagonal box are moves of the form

(3.8)

or its conjugate, where the leftmost (respectively, topmost) affected box belongs to the diagonal. In
either case, if such a swap is applied, then it will be the last swap in the computation of swap1↔2′ (𝑇)
that changes anything (i.e., any remaining swaps will fall into case (c) of Definition 3.2). Similarly,
the only swaps in the final application of unswap1↔2′ that can change a diagonal box are moves that
are the reverse of (3.8) or its conjugate, and when such swaps are applied, they occur as the first swap
in the computation when unswap1↔2′ is applied to reverse_weight(swap1↔2′ (𝑇)). We now consider
exhaustively the possible changes that can occur at the diagonal.

First, suppose T contains a single diagonal box (𝑖, 𝑖), and assume that this box of T is filled with
1′ or 2. Then swap1↔2′ (𝑇) also possesses a single diagonal box filled with the same entry. In the
sorted ShBT swap1↔2′ (𝑇), this box belongs either to a one-row- or one-column-group, or to a two-
row- or two-column-group that contains exactly one diagonal box. On groups of this type, the operation
reverse_weight preserves the entry in the diagonal box with a unique exception – namely, if the diagonal
box belongs to a one-row- or one-column-group whose entries are all equal (as in the last figure in (3.7)).

In the non-exceptional case, reverse_weight(swap1↔2′ (𝑇)) has its unique diagonal box (𝑖, 𝑖) filled
with the same value (1′ or 2) as T. Applying unswap1↔2′ preserves this property since it only affects
boxes containing 1 and 2′, so 𝜏ShBT(𝑇) also has its diagonal box filled with the same value as T.

Assume we are in the exceptional case, so that the unique diagonal box (𝑖, 𝑖) of swap1↔2′ (𝑇) is
part of a one-row- or one-column-group whose entries are all equal. Without loss of generality (up to
conjugation) we can assume that it is a one-row-group whose entries are all 2, and so that the diagonal
box in reverse_weight(swap1↔2′ (𝑇)) is filled with 1. Possibly the box (𝑖 − 1, 𝑖) directly below the
diagonal is empty (i.e., it does not belong to T). Then the very first step of the application of unswap1↔2′
cannot be a move of the form

(3.9)

and hence, the resulting tableau 𝜏ShBT(𝑇) still has unprimed diagonal entry.
If, however, the box (𝑖 − 1, 𝑖) is not empty, then in swap1↔2′ (𝑇) it cannot be filled with 2 (because

swap1↔2′ (𝑇) is sorted), and it cannot be filled with 1 (because (𝑖, 𝑖) does not belong to a two-row-
group), so it must be filled with a primed entry. Furthermore, we claim that (𝑖 − 1, 𝑖) cannot be filled
with 2′: if box (𝑖 − 1, 𝑖) had 2′ and the bar of (𝑖, 𝑖) had multiple boxes, then (𝑖 − 1, 𝑖 + 1) would be filled
with 1 to be sorted and (𝑖, 𝑖) would be in a two-row-group, whereas if box (𝑖 − 1, 𝑖) had 2′ and the bar
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of (𝑖, 𝑖) had just one box, then (𝑖 − 1, 𝑖) would part of a one-column-group that includes (𝑖, 𝑖), which is
a contradiction in either case.

Thus, when the box (𝑖 − 1, 𝑖) belongs to T, it must be filled with 1′ in swap1↔2′ (𝑇), and this 1′

must be part of a two-column group. After applying reverse_weight to swap1↔2′ (𝑇), it follows that the
diagonal box will be filled with the value 1 and the box (𝑖 − 1, 𝑖) will be filled with 1′. This means that
applying unswap1↔2′ to reverse_weight(unswap1↔2′ (𝑇)) cannot begin with a move of the form (3.9),
and hence, the resulting tableau 𝜏ShBT(𝑇) still has unprimed diagonal entry. This completes the claim
in the case that T has one diagonal box and it is filled with 1′ or 2.

Continue to assume that T has a single diagonal box (𝑖, 𝑖), but now suppose this box is filled with 1
or 2′. Up to conjugacy, we may assume that the box is filled with 1, so that T looks like

where possibly the bar containing the diagonal box extends to the right. Our objective is to show that
the diagonal box (𝑖, 𝑖) is still unprimed in 𝜏ShBT(𝑇). To this end, we first observe that the bar tableau
swap1↔2′ (𝑇) must look like

(3.10)

where again ‘the bar of 1s’ may extend to the right. Since (𝑖, 𝑖) is the unique diagonal box of T, it must
be the case that T does not contain any boxes in row 𝑖 + 1, and consequently in all four cases ‘the bar of
1s’ in swap1↔2′ (𝑇) is not related by ≈ to any other box. In the second, third and fourth cases of (3.10),
it follows that this bar is in a one-row-group; in the first case, it might be part of either a one-row- or
one-column-group, depending on the presence and contents of the cells marked ‘??’ in swap1↔2′ (𝑇).
We consider the cases in order.

In the first case, suppose first that the diagonal box (𝑖, 𝑖) is part of a one-row-group in swap1↔2′ (𝑇).
Then the bar containing (𝑖−1, 𝑖) that is filled with 1′ must belong to a two-column-group in swap1↔2′ (𝑇)
(or else the two bars would be related by ∼). Therefore, after applying reverse_weight, the diagonal box
in reverse_weight(swap1↔2′ (𝑇)) will be unprimed and the (𝑖 − 1, 𝑖) box will still be filled with 1′. The
operation unswap1↔2′ can only convert an unprimed diagonal box into a primed diagonal box by an
application of the operation

but this cannot happen when the box (𝑖 − 1, 𝑖) is filled with 1′. Thus, the diagonal box in 𝜏ShBT(𝑇) is
unprimed in this case.

Continuing with the first case, suppose instead that the diagonal box (𝑖, 𝑖) is part of a one-column-
group in swap1↔2′ (𝑇). Since (𝑖 − 1, 𝑖) is filled with 1′ in swap1↔2′ (𝑇), the entire one-column-
group is filled with 1′ and 1. Therefore, after toggling the labels of the group, the diagonal box in
reverse_weight(swap1↔2′ (𝑇)) will be filled with 2 (and the rest of the one-column-group with 2′). No
step in the application of unswap1↔2′ moves a box filled with 2; hence, the diagonal box in 𝜏ShBT (𝑇) is
unprimed in this case.
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In the second case, the diagonal box in swap1↔2′ (𝑇) can only belong to a one-row-group, so the
diagonal box in reverse_weight(swap1↔2′ (𝑇)) is unprimed. The operation unswap1↔2′ can only convert
an unprimed diagonal box into a primed diagonal box by an application of the operation

but this cannot happen when the box (𝑖−1, 𝑖) is not part of the shape. Thus, the diagonal box in 𝜏ShBT (𝑇)
is also unprimed in this case.

In the third case, the diagonal one-box-bar filled with 2′ belongs to the same one-row-group in
swap1↔2′ (𝑇) as ‘the bar of 1s’. These two bars are filled the same in reverse_weight(swap1↔2′ (𝑇)) as
in swap1↔2′ (𝑇) since when we apply reverse_weight, we are in the case of toggling the labels with
𝑝, 𝑞 > 0 in the sense of (3.6). Then the very first step of unswap1↔2′ applies the rule

so the diagonal box in 𝜏ShBT (𝑇) is unprimed in this case.
Finally, in the fourth case, we have by sortedness that ‘the bar of 1s’ must be a singleton bar, and the

box filled with ‘??’ must actually be filled with 2′, so swap1↔2′ (𝑇) is of the form

In this case, the bars containing boxes (𝑖 − 1, 𝑖) and (𝑖 − 1, 𝑖 + 1) in swap1↔2′ (𝑇) belong to a two-
column-group, and so the one-box bars (𝑖, 𝑖) and (𝑖, 𝑖 + 1) form a one-row-group in swap1↔2′ (𝑇). It
follows that reverse_weight(swap1↔2′ (𝑇)) has the same entries in these four boxes. Then, as in the third
case, the very first step of unswap1↔2′ applies the rule

and so the diagonal box in 𝜏ShBT (𝑇) is unprimed in this case.
Finally, we consider the case when T has two diagonal boxes. If both diagonal boxes are unprimed,

then there are three ways that they and the box between them can be filled in T:

After applying swap1↔2′ to such a tableau, we might end up with one of the near-diagonal arrangements
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where in the last case, necessarily the diagonal box forms a one-box bar (following a move of the
form (3.8)). In the first case, applying reverse_weight toggles the bar divisions and so does not change
the contents of the diagonal boxes or the box (𝑖, 𝑖 + 1), and applying unswap1↔2′ to the result preserves
the diagonal boxes. The second and third cases are precisely those to which the rule (R1) in the definition
of reverse_weight applies; they are interchanged, and then unswap1↔2′ restores the unprimed diagonal
boxes.

The argument when both diagonal boxes of T are primed is precisely the conjugate of the previous
case. This leaves the situation when T has exactly two diagonal boxes, only one of which is primed.
Then there are six possible arrangements for the two diagonal boxes and the box between them, in three
conjugate pairs:

Suppose T belongs to one of the first two cases. Then swap1↔2′ (𝑇) still has the near-diagonal

arrangement or (possibly reversed from what it had before); up to conjugacy, we
assume the former. If the diagonal boxes swap1↔2′ (𝑇) belong to different groups, then after applying
reverse_weight, the near-diagonal arrangement is unchanged, and then unswap1↔2′ does not affect the
diagonal boxes. Suppose instead that the two diagonal boxes belong to the same group in swap1↔2′ (𝑇).
Depending on whether the bars containing boxes (𝑖, 𝑖 + 1) and (𝑖 + 1, 𝑖 + 1) extend to the right, applying
reverse_weight to swap1↔2′ (𝑇) belongs to either case (R2) or (R4), and the image necessarily has the
near-diagonal arrangement

Applying unswap1↔2′ to such a tableau results in a tableau with near-diagonal arrangement

and so we conclude that 𝜏ShBT(𝑇) has exactly one primed diagonal box, as needed.
The remaining four cases are, up to conjugacy, precisely the reverse direction of the cases just

considered; since 𝜏ShBT is an involution, it follows that its action in these cases also preserves the
number of primed diagonal boxes. This completes the proof. �

4. Generating function derivations

Let 𝜇 and 𝜆 be strict partitions, and recall the definitions of the sets of shifted plane partitions
ShPP𝑃 (𝜆/𝜇) ⊆ ShPP𝑄 (𝜆/𝜇) and semistandard shifted bar tableaux ShBT𝑃 (𝜆/𝜇) ⊆ ShBT𝑄 (𝜆/𝜇)
from Section 2.2. Throughout this section, we work with the concrete generating functions
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𝑔𝑝comb
𝜆/𝜇 :=

∑
𝑇 ∈ShPP𝑃 (𝜆/𝜇)

(−𝛽) |𝜆/𝜇 |− | wtPP(𝑇 ) |xwtPP(𝑇 ) ,

𝑔𝑞comb
𝜆/𝜇 :=

∑
𝑇 ∈ShPP𝑄 (𝜆/𝜇)

(−𝛽) |𝜆/𝜇 |− | wtPP(𝑇 ) |xwtPP(𝑇 ) ,

and

𝑗 𝑝comb
𝜆/𝜇 :=

∑
𝑇 ∈ShBT𝑃 (𝜆/𝜇)

(−𝛽) |𝜆/𝜇 |− |𝑇 |x𝑇 ,

𝑗𝑞comb
𝜆/𝜇 :=

∑
𝑇 ∈ShBT𝑄 (𝜆/𝜇)

(−𝛽) |𝜆/𝜇 |− |𝑇 |x𝑇 .

Our goal is to prove that these power series coincide with the symmetric functions 𝑔𝑝𝜆/𝜇, 𝑔𝑞𝜆/𝜇, 𝑗 𝑝𝜆/𝜇,
and 𝑗𝑞𝜆/𝜇 defined in Section 2.2. On setting 𝜇 = ∅, this will establish Theorems 1.4 and 1.5.

4.1. Base cases and symmetry

Our proof strategy uses an inductive algebraic argument whose base case is the following:

Proposition 4.1 [4, Prop. 7.5]; [19, Prop. 5.2]. If 𝜆 has at most one part, then

𝑔𝑝𝜆/𝜇 = 𝑔𝑝comb
𝜆/𝜇 , 𝑔𝑞𝜆/𝜇 = 𝑔𝑞comb

𝜆/𝜇 , 𝑗 𝑝𝜆/𝜇 = 𝑗 𝑝comb
𝜆/𝜇 , and 𝑗𝑞𝜆/𝜇 = 𝑗𝑞comb

𝜆/𝜇 .

Our inductive step relies on the following consequence of Theorem 3.16:

Theorem 4.2. The power series 𝑗 𝑝comb
𝜆/𝜇

and 𝑗𝑞comb
𝜆/𝜇

are symmetric in the 𝑥𝑖 variables.

Proof. The weight of a general ShBT is the tuple 𝑎 = (𝑎1, 𝑎2, . . . ), where 𝑎𝑖 is the number of bars that
contain either i or 𝑖′. Let |𝑎 | = 𝑎1+𝑎2+ . . . . The coefficient of (−𝛽) |𝜆/𝜇 |− |𝑎 |𝑥𝑎1

1 · · · 𝑥𝑎𝑖

𝑖 𝑥𝑎𝑖+1
𝑖+1 · · · in 𝑗𝑞comb

𝜆/𝜇

is the number of semistandard ShBT’s of shape 𝜆/𝜇 with weight 𝑎 = (𝑎1, 𝑎2, . . . ). By the first part of
Theorem 3.16, applying the map 𝜏ShBT to the subtableaux generated by the entries 𝑖′, 𝑖, 𝑖′ + 1, 𝑖 + 1 gives
a bijection with the ShBT’s counted by the coefficient of (−𝛽) |𝜆/𝜇 |− |𝑎 |𝑥𝑎1

1 · · · 𝑥𝑎𝑖+1
𝑖 𝑥𝑎𝑖

𝑖+1 · · · . Since any
finitely supported permutation is a product of adjacent transpositions, it follows that 𝑗𝑞comb

𝜆/𝜇
is symmetric

in the 𝑥𝑖 variables.
The second part of Theorem 3.16 ensures that the map 𝜏ShBT restricts to an involution on the subset

ShBT𝑃 (𝜆/𝜇) ⊆ ShBT𝑄 (𝜆/𝜇) consisting of those ShBT’s with no primed diagonal entries. Thus, 𝑗 𝑝comb
𝜆/𝜇

is symmetric by the same argument. �

In the next three subsections, we derive a Pieri rule for the 𝑗 𝑝comb- and 𝑗𝑞comb-functions, in order
to prove that 𝑗 𝑝comb

𝜆/𝜇
= 𝑗 𝑝𝜆/𝜇 and 𝑗𝑞comb

𝜆/𝜇
= 𝑗𝑞𝜆/𝜇. We then use these results to derive the analogous

identities for 𝑔𝑝𝜆/𝜇 and 𝑔𝑞𝜆/𝜇 by a formal argument in Section 4.5.

4.2. Product formulas and one-row identities

There is an easy way to express 𝑗𝑞comb
𝜆/𝜇

𝑗𝑞comb
𝜈/𝜅

and 𝑗 𝑝comb
𝜆/𝜇

𝑗𝑞comb
𝜈/𝜅

as sums of other functions indexed by
skew shapes. Suppose 𝜌 and 𝜏 are finite, nonempty subsets of {1, 2, 3, . . . } × {1, 2, 3, . . . }. Let

𝑖 = min{𝑎 : (𝑎, 𝑏) ∈ 𝜌 for some 𝑏} and 𝑗 = max{𝑏 : (𝑖, 𝑏) ∈ 𝜌}.

In French notation, (𝑖, 𝑗) is the box of 𝜌 in its bottom row that is farthest to the right. Then let

𝑘 = max{𝑎 : (𝑎, 𝑏) ∈ 𝜏 for some 𝑏} and 𝑙 = min{𝑏 : (𝑘, 𝑏) ∈ 𝜏}.
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In French notation, (𝑘, 𝑙) is the box of 𝜏 in its top row that is farthest to the left. Form a new diagram
𝜌 � 𝜏 by translating the sets 𝜌 and 𝜏 so that (𝑖, 𝑗) is directly to the left of (𝑘, 𝑙) in the same row; form
𝜌 � 𝜏 by translating the two sets so that (𝑖, 𝑗) is directly above (𝑘, 𝑙) in the same column; and form 𝜌 ◦ 𝜏
by translating the two sets so that the boxes (𝑖, 𝑗) are (𝑘, 𝑙) coincide. If

Δ1 := 𝑘 − 𝑖 and Δ2 := Δ1 + 𝑗 + 1 − 𝑙,

then these shapes are defined precisely by setting

𝜌 � 𝜏 :=
[
𝜌 + (Δ1,Δ1)

]
�

[
𝜏 + (0,Δ2)

]
,

𝜌 � 𝜏 :=
[
𝜌 + (Δ1 + 1,Δ1 + 1)

]
�

[
𝜏 + (0,Δ2)

]
,

𝜌 ◦ 𝜏 :=
[
𝜌 + (Δ1,Δ1)

]
∪

[
𝜏 + (0,Δ2 − 1)

]
.

The third union is not disjoint. All three shapes have the same number of diagonal boxes as 𝜌.

Example 4.3. If our two shapes are

𝜌 = SD(3,2) = and 𝜏 = D(2,2)/(1) = · ,

then we have (𝑖, 𝑗) = (1, 3) and (𝑘, 𝑙) = (2, 1), so Δ1 = 1 and Δ2 = 4. Thus,

Suppose 𝜌 = SD𝜆/𝜇 for strict partitions 𝜇 � 𝜆 and 𝜏 = D𝜈/𝜅 for arbitrary partitions 𝜅 � 𝜈. We may
view 𝜏 = D𝜈/𝜅 as a translation of a shifted skew shape: if 𝑚 := ℓ(𝜈) − 1 and 𝛿 := (𝑚, . . . , 1, 0), then
𝜏 is the tableau formed by translating SD(𝜈+𝛿)/(𝜅+𝛿) to the left by m columns. In this case, we define
ShBT𝑄 (𝜏) := ShBT𝑄 ((𝜈 + 𝛿)/(𝜅 + 𝛿)) and 𝑗𝑞comb

𝜏 := 𝑗𝑞comb
(𝜈+𝛿)/(𝜅+𝛿)

.

Proposition 4.4. Suppose 𝜌 is a nonempty shifted skew shape and 𝜏 is a nonempty unshifted skew shape,
as above. Then 𝜌 � 𝜏, 𝜌 � 𝜏, and 𝜌 ◦ 𝜏 are shifted skew shapes, and it holds that

𝑗𝑞comb
𝜌 𝑗𝑞comb

𝜏 = 𝑗𝑞comb
𝜌�𝜏 + 𝑗𝑞comb

𝜌�𝜏 + 𝛽 𝑗𝑞comb
𝜌◦𝜏 ,

𝑗 𝑝comb
𝜌 𝑗𝑞comb

𝜏 = 𝑗 𝑝comb
𝜌�𝜏 + 𝑗 𝑝comb

𝜌�𝜏 + 𝛽 𝑗 𝑝comb
𝜌◦𝜏 .

Proof. The following argument is similar to the proof of [11, Lem. 9.12]. Checking that 𝜌 � 𝜏, 𝜌 � 𝜏
and 𝜌 ◦ 𝜏 are shifted skew shapes is straightforward. Suppose 𝑇 ∈ ShBT𝑄 (𝜌) and 𝑈 ∈ ShBT𝑄 (𝜏). Let
𝑇 � 𝑈 and 𝑇 � 𝑈 be the shifted bar tableaux of shapes 𝜌 � 𝜏 and 𝜌 � 𝜏 given by translating the boxes
of T and U in the obvious way.

If 𝑇𝑖 𝑗 < 𝑈𝑘𝑙 or 𝑇𝑖 𝑗 = 𝑈𝑘𝑙 ∈ Z, then we have 𝑇 � 𝑈 ∈ ShBT𝑄 (𝜌 � 𝜏), |𝑇 � 𝑈 | = |𝑇 | + |𝑈 |, and
𝑥𝑇 �𝑈 = 𝑥𝑇 𝑥𝑈 . However, if 𝑇𝑖 𝑗 > 𝑈𝑘𝑙 or 𝑇𝑖 𝑗 = 𝑈𝑘𝑙 ∈ Z

′, then it holds that 𝑇 � 𝑈 ∈ ShBT𝑄 (𝜌 � 𝜏),
|𝑇 � 𝑈 | = |𝑇 | + |𝑈 | and 𝑥𝑇 �𝑈 = 𝑥𝑇 𝑥𝑈 .
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Merging the boxes of 𝜌 � 𝜏 or 𝜌 � 𝜏 corresponding to (𝑖, 𝑗) ∈ 𝜌 and (𝑘, 𝑙) ∈ 𝜏 gives a bijection
from the set of elements in ShBT𝑄 (𝜌 � 𝜏) � ShBT𝑄 (𝜌 � 𝜏) that do not arise from one of these cases
(namely, those in which the boxes that are adjacent but of different colors in Example 4.3 belong to the
same bar) to ShBT𝑄 (𝜌 ◦ 𝜏). The expansion for 𝑗𝑞comb

𝜌 𝑗𝑞comb
𝜏 then follows. Under these bijections,

the diagonal boxes in 𝑇 � 𝑈 and 𝑇 � 𝑈 are filled with the same entries as the diagonal boxes in T, so
the formula for 𝑗 𝑝comb

𝜌 𝑗𝑞comb
𝜏 also follows. �

Let 𝑗 𝑝comb
𝑛 := 𝑗 𝑝comb

(𝑛)
and 𝑗𝑞comb

𝑛 := 𝑗𝑞comb
(𝑛)

for 𝑛 > 0 and 𝑗 𝑝comb
0 = 𝑗𝑞comb

0 := 1.

Corollary 4.5. Suppose 𝜆 is a nonempty strict partition and 𝑛 ∈ Z>0. Then

𝑗𝑞comb
𝜆 𝑗𝑞comb

𝑛 = 𝑗𝑞comb
(𝑛+𝜆1 ,𝜆2 ,𝜆3 ,... ) + 𝛽 𝑗𝑞comb

(𝑛+𝜆1−1,𝜆2 ,𝜆3 ,... ) + 𝑗𝑞comb
(𝑛+𝜆1 ,𝜆1 ,𝜆2 ,... )/(𝜆1)

,

𝑗 𝑝comb
𝜆 𝑗𝑞comb

𝑛 = 𝑗 𝑝comb
(𝑛+𝜆1 ,𝜆2 ,𝜆3 ,... ) + 𝛽 𝑗 𝑝comb

(𝑛+𝜆1−1,𝜆2 ,𝜆3 ,... ) + 𝑗 𝑝comb
(𝑛+𝜆1 ,𝜆1 ,𝜆2 ,... )/(𝜆1)

.

Proof. Take 𝜌 = SD𝜆 and 𝜏 = D(𝑛) in Proposition 4.4. �

Given 𝑓 ∈ Z[𝛽]�𝑥1, 𝑥2, . . .�, form 𝑓 (𝑡) ∈ Z[𝛽]�𝑡� by setting 𝑥1 = 𝑡 and 𝑥𝑖 = 0 for all 𝑖 > 0.

Proposition 4.6. One has 𝑗 𝑝comb
1 (𝑡) = 𝑡 and 𝑗𝑞comb

1 (𝑡) = 2𝑡, and if 𝑛 ≥ 2, then

𝑗 𝑝comb
𝑛 (𝑡) = 𝑡 (𝑡 − 𝛽)𝑛−1 and 𝑗𝑞comb

𝑛 (𝑡) = (2𝑡2 − 𝛽𝑡) (𝑡 − 𝛽)𝑛−2.

Proof. These identities are straightforward to check from the definitions. �

4.3. Bar tableau generating functions with diagonal primes

Let Λ = (Λ1,Λ2,Λ3, . . . ) be a strict partition, and define Γ = (Λ2,Λ3, . . . ). Then SDΛ/𝜈 is a (not
necessarily connected) shifted ribbon if and only if 𝜈 contains Γ and is contained in Λ. We fix one such
strict partition Ψ = (Ψ1,Ψ2, . . . ) with Γ ⊆ Ψ ⊆ Λ. Throughout this subsection, the capitalized Greek
letters Λ, Γ and Ψ will denote these fixed partitions, and we will use the typical lower case symbols 𝜆,
𝜇, 𝜈, etc., for partitions that may be arbitrary.

Define a forced box in SDΛ/Ψ to be a position (𝑖, 𝑗) such that (𝑖 + 1, 𝑗), (𝑖 + 1, 𝑗 − 1) ∈ SDΛ/Ψ

or (𝑖, 𝑗 − 1), (𝑖 + 1, 𝑗 − 1) ∈ SDΛ/Ψ. These are the boxes containing • in • and • . For this
subsection, we also fix the meaning of certain integer parameters sc, mc, fb, res. Let sc be the number
of singleton connected components in SDΛ/Ψ (i.e., components with only one box), let mc be the
number of multiple box connected components, let fb be the number of forced boxes in SDΛ/Ψ, and let
res = |Λ| − |Ψ| − sc − 2mc − fb + 2 be a residual value. We always have res ≥ 2.

Lemma 4.7. We have 𝑗𝑞comb
Λ/Ψ (𝑡) = (2𝑡2 − 𝛽𝑡) (𝑡 − 𝛽)res−22sc𝑡sc+mc+fb−1(2𝑡 − 𝛽)mc−1.

Proof. Consider the tableaux in ShBT𝑄 (Λ/Ψ) with all entries in {1′, 1}, with boxes ordered in the
usual row-reading order. The first entry in each connected component may be arbitrarily primed or
unprimed, while the entries in all other boxes (ignoring bars) are uniquely determined by the shape.
In each connected component, the first box must be the beginning of a new bar, as must every forced
box (if any are present). In a connected component with multiple boxes, if the first two boxes are in
the same row (respectively, column), then the second box is only required to start a new bar if the first
box is primed (respectively, unprimed). Any boxes not included in these cases may either start a new
bar or continue the bar of its predecessor. Comparing these observations with the definition 𝑗𝑞comb

Λ/Ψ , we
conclude that 𝑗𝑞comb

Λ/Ψ (𝑡) = (2𝑡)sc (𝑡2 + 𝑡 (𝑡 − 𝛽))mc𝑡 fb(𝑡 − 𝛽) |Λ |− |Ψ |−2sc−mc−fb, which gives the result after
rearranging terms. �
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The set of polynomials { 𝑗𝑞comb
𝑛 (𝑡) : 𝑛 ≥ 0} is a homogeneous Q[𝛽]-basis for Q[𝛽, 𝑡] by Proposition

4.6, and so

𝑗𝑞comb
Λ/Ψ (𝑡) =

∑
𝑛≥0

𝔟ΛΨ, (𝑛) · 𝛽
|Λ |− |Ψ |−𝑛 · 𝑗𝑞comb

𝑛 (𝑡) (4.1)

for a unique choice of numbers 𝔟ΛΨ, (𝑛)
∈ Q. Recall that Ψ is a strict partition with Γ ⊆ Ψ ⊆ Λ.

Corollary 4.8. The coefficients 𝔟ΛΨ, (𝑛)
are nonnegative integers with these properties:

(a) If 0 = 𝑛 < |Λ| − |Ψ| or 𝑛 > |Λ| − |Ψ|, then 𝔟ΛΨ, (𝑛)
= 0.

(b) If 0 < 𝑛 = |Λ| − |Ψ|, then 𝔟ΛΨ, (𝑛)
= 2sc+mc−1.

(c) If 0 < 𝑛 = |Λ| − |Ψ| − 1, then 𝔟ΛΨ, (𝑛)
= 2sc+mc−2(2sc + 3mc + 2fb − 3).

Proof. If mc = 0, then fb = 0, sc = |Λ| − |Ψ|, res = 2 and 𝑗𝑞comb
Λ/Ψ (𝑡) = (2𝑡)sc. In this case, the desired

properties are easy to deduce using Proposition 4.6.
Assume mc ≥ 1, and let 𝑢 = 𝑡 − 𝛽. By Proposition 4.6 and Lemma 4.7, 𝔟ΛΨ, (𝑛)

is the coefficient of
𝛽 |Λ |− |Ψ |−𝑛𝑢𝑛−res in

2sc (𝑢 + 𝛽)sc+mc+fb−1(2𝑢 + 𝛽)mc−1 = 2sc𝑡sc+mc+fb−1 (2𝑡 − 𝛽)mc−1.

Equivalently, this is the coefficient of 𝑢𝑛 in 2sc (𝑢 + 1)sc+mc+fb−1(2𝑢 + 1)mc−1𝑢res, which is clearly a
nonnegative integer that is zero if 𝑛 < 2 ≤ res or 𝑛 > sc + 2mc + fb − 2 + res = |Λ| − |Ψ|. It is also
straightforward to extract the coefficients in parts (b) and (c) in this case. �

Recall that Γ := (Λ2,Λ3,Λ4, . . . ).

Lemma 4.9. If 0 ≤ 𝑛 ≤ Λ1 is an integer, then 𝑗𝑞comb
Λ/(𝑛) =

∑
𝜇 strict
Γ⊆𝜇⊆Λ

𝔟Λ𝜇, (𝑛) · 𝛽
|Λ |− |𝜇 |−𝑛 · 𝑗𝑞comb

𝜇 .

Proof. Since we know from Theorem 4.2 that the generating function 𝑗𝑞comb
Λ is symmetric, we can

express 𝑗𝑞comb
Λ (𝑡, 𝑥1, 𝑥2, . . . , 𝑥𝑚) = 𝑗𝑞comb

Λ (𝑥1, 𝑥2, . . . , 𝑥𝑚, 𝑡) as an element of Z[𝑡] [𝑥1, 𝑥2, . . . , 𝑥𝑚] in
two different ways, by letting t either record the weight contribution of the bars of 𝑇 ∈ ShBT𝑄 (Λ)
containing 1′ or 1, or the weight contribution of the bars containing (𝑚+1)′ or 𝑚+1. We use this ability
in the following argument.

Because 𝑗𝑞comb
𝜇 (𝑡) is nonzero if and only if ℓ(𝜇) ≤ 1, we have

𝑗𝑞comb
Λ (𝑡, 𝑥1, 𝑥2, . . . ) =

∑
𝜇⊆Λ

𝑗𝑞comb
𝜇 (𝑡) 𝑗𝑞comb

Λ/𝜇 (𝑥1, 𝑥2, . . . ) =
Λ1∑
𝑛=0

𝑗𝑞comb
Λ/(𝑛) 𝑗𝑞

comb
𝑛 (𝑡). (4.2)

However, for any fixed 𝑚 > 0, we have

𝑗𝑞comb
Λ (𝑡, 𝑥1, 𝑥2, . . . , 𝑥𝑚) = 𝑗𝑞comb

Λ (𝑥1, 𝑥2, . . . , 𝑥𝑚, 𝑡)

=
∑
𝜇⊆Λ

𝑗𝑞comb
𝜇 (𝑥1, 𝑥2, . . . , 𝑥𝑚) 𝑗𝑞

comb
Λ/𝜇 (𝑡).

As the last sum is finite and since 𝑗𝑞comb
Λ/𝜇 (𝑡) is nonzero if and only if Γ ⊆ 𝜇 ⊆ Λ, we can take the limit

as 𝑚 → ∞ in the sense of formal power series and apply (4.1) to obtain
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𝑗𝑞comb
Λ (𝑡, 𝑥1, 𝑥2, . . . ) =

∑
Γ⊆𝜇⊆Λ

𝑗𝑞comb
𝜇 𝑗𝑞comb

Λ/𝜇 (𝑡)

=
∑
𝑛≥0

∑
Γ⊆𝜇⊆Λ

𝔟Λ𝜇, (𝑛) 𝛽
|Λ |− |𝜇 |−𝑛 𝑗𝑞comb

𝜇 𝑗𝑞comb
𝑛 (𝑡).

The lemma follows by equating coefficients of 𝑗𝑞comb
𝑛 (𝑡) in this equation and (4.2). �

SinceΛ ⊇ Ψ ⊇ Γ = (Λ2,Λ3, . . . ), the skew shape SDΨ/Γ is also a shifted ribbon. A removable corner
box (𝑖, 𝑗) ∈ SDΓ can be added to SDΨ/Γ to form a shifted ribbon if and only if (𝑖 + 1, 𝑗 + 1) ∉ SDΨ/Γ.
Let R be the set of such boxes (𝑖, 𝑗) ∈ SDΓ. If Λ = (15, 12, 9, 6, 3, 1) and Ψ = (13, 9, 7, 6, 2), then the
boxes (𝑖, 𝑗) ∈ R are the ones marked as U , V or W below, with SDΨ/Γ shown in gray:

U
· · U

· · · · · ·

· · · · · · · · W
· · · · · · · · · · · V

.

We divide R into three disjoint subsets. Let U be the set of boxes (𝑖, 𝑗) ∈ R with 𝑖 = 𝑗 and (𝑖, 𝑗 + 1) ∈
SDΨ/Γ or with 𝑖 ≠ 𝑗 and (𝑖, 𝑗 + 1), (𝑖 + 1, 𝑗) ∈ SDΨ/Γ. Let V be the set of boxes (𝑖, 𝑗) ∈ R either with
𝑖 = 𝑗 and (𝑖, 𝑗 + 1) ∉ SDΨ/Γ or such that 𝑖 ≠ 𝑗 and exactly one of (𝑖, 𝑗 + 1) or (𝑖 + 1, 𝑗) belongs to
SDΨ/Γ. Let W be the set of all other boxes (𝑖, 𝑗) ∈ R. In our example above, the cells of R are labeled
according to the decomposition R = U � V �W .

Lemma 4.10. Suppose Λ1 − Ψ1 ≥ 2. Then |U | = sc and |V | + 2|W | = mc + fb − 1.

Proof. Since Λ1 ≥ Ψ1 + 2, it is clear that |U | = sc and mc ≥ 1. Observe that a position (𝑖, 𝑗) belongs
to V if and only if either (𝑖 + 1, 𝑗 + 1) and (𝑖, 𝑗 + 1) are the first two boxes of a connected component of
SDΛ/Ψ in the usual row reading order, or (𝑖 + 1, 𝑗) and (𝑖 + 1, 𝑗 + 1) are the last two boxes of a connected
component of SDΛ/Ψ that does not end in the first row. However, a position (𝑖, 𝑗) belongs to W if and
only if all three of the boxes (𝑖 + 1, 𝑗), (𝑖 + 1, 𝑗 + 1), (𝑖, 𝑗 + 1) belong to a connected component of
SDΛ/Ψ, in which case (𝑖, 𝑗 + 1) is a forced box.

Now choose a connected component C ⊆ SDΛ/Ψ with multiple boxes. In this component, compare
the number 𝑝 of boxes (𝑖, 𝑗) with (𝑖 − 1, 𝑗 − 1) ∈ V �W with the number q of forced boxes (𝑖, 𝑗) that
have (𝑖, 𝑗 − 1) ∉ W – that is, appearing as • in a configuration like • but not • . If F is the set of
forced boxes and we set V̂ := {(𝑖 + 1, 𝑗 + 1) : (𝑖, 𝑗) ∈ V} and Ŵ := {(𝑖 + 1, 𝑗 + 1) : (𝑖, 𝑗) ∈ W}, then
𝑝 = |V̂ ∩ C | + |Ŵ ∩ C | and 𝑞 = |F ∩ C | − |Ŵ ∩ C |.

We can reinterpret p and q in terms of the shape of a modified version of C. If C starts with two boxes
(𝑖, 𝑗), (𝑖 − 1, 𝑗) in the same column (so that (𝑖, 𝑗) ∈ V̂ and (𝑖 − 1, 𝑗 − 1) ∈ V), then add (𝑖, 𝑗 − 1) to the
component. Likewise, if C ends with two boxes (𝑖, 𝑗 − 1), (𝑖, 𝑗) in the same row (so that if 𝑖 > 1, then
(𝑖, 𝑗) ∈ V̂ and (𝑖−1, 𝑗 −1) ∈ V), then add (𝑖−1, 𝑗) to the component. Then in our modified component,
the configurations of the form and interleave, with one more configuration than

configuration. Moreover, by construction, the number of configurations is q and the number of

configurations is p, except when C ends with two boxes in the first row, in which case the number of
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configurations of the latter form is 𝑝 − 1. Thus, if C ends with two boxes in the first row, then 𝑝 − 𝑞 = 0
and otherwise we have 𝑝 − 𝑞 = 1.

Since Λ1 ≥ Ψ1 + 2, the last connected component of SDΛ/Ψ ends with two boxes in the first row,
and no other connected component of SDΛ/Ψ has this property. By summing 𝑝 − 𝑞 over all connected
components C with multiple boxes, we obtain (|V̂ | + |Ŵ |) − (|F | − |Ŵ |) = mc−1. As |F | = fb, |V̂ | = |V |,
and |Ŵ | = |W |, we can rewrite this identity as |V | + 2|W | − fb = mc − 1. �

Lemma 4.11. Let u be an indeterminate and suppose Λ1 − Ψ1 ≥ 2. Then∑
𝑛≥0

𝑏̂ΨΓ, (𝑛) · 𝛽
|Λ |− |Ψ |−(Λ1−𝑛) · 𝑢 (Λ1−𝑛)−res = 2sc (𝑢 + 𝛽)sc+mc+fb−1(2𝑢 + 𝛽)mc−1.

Proof. Call a position in a shifted ribbon free if it is not on the diagonal but is the first box in its
connected component in row reading order. By Proposition 2.7, the number 𝑏̂ΨΓ, (𝑛)

counts the ways that
we can add a subset of removable corner boxes of SDΓ to SDΨ/Γ to form a shifted ribbon, and then
assign either 1 or 1′ or 1′1 to each free box in this ribbon, such that the number of boxes plus the number
of entries equal to 1′1 is n.

The shifted ribbons that can be formed by adding corner boxes of SDΓ to SDΨ/Γ are the unions of
SDΨ/Γ with arbitrary subsets of U � V �W . Consider the number of free boxes in a ribbon formed by
successively adding positions from U � V �W to SDΨ/Γ. Each time we add a box from U , this number
is reduced by one, since the added box either merges two connected components or changes the first
box in a connected component from an off-diagonal position (𝑖, 𝑖 + 1) to a diagonal position (𝑖, 𝑖). The
number of free boxes is unchanged when we add a box from V , since the added box will either be an
isolated position on the diagonal or adjacent to exactly one connected component. Finally, the number
of free boxes increases by one each time we add a box from W to SDΨ/Γ, since the added box will
always be an isolated position not on the diagonal.

If SDΨ/Γ intersects the diagonal, then it has the same number sc + mc of connected components as
SDΛ/Ψ; otherwise, its number of connected components is sc + mc − 1. Either way, the number of free
boxes in SDΨ/Γ is sc + mc − 1. Given these observations and Lemma 4.10, we deduce that∑

𝑛≥0
𝑏̂ΨΓ, (𝑛)𝑢

𝑛 = 𝑢 |Ψ |− |Γ | (2 + 𝑢)sc+mc−1(1 + 𝑢
2+𝑢 )

|U | (1 + 𝑢) |V | (1 + 𝑢(2 + 𝑢)) |W |

= 2sc𝑢 |Ψ |− |Γ | (2 + 𝑢)mc−1(1 + 𝑢)sc+mc+fb−1.

This becomes the desired identity after dividing both sides by 𝑢 |Ψ |− |Γ | , replacing u by 𝛽𝑢−1, and then
multiplying both sides by 𝑢sc+2mc+fb−2 = 𝑢 |Λ |− |Ψ |−res = 𝑢Λ1−res+|Γ |− |Ψ | . �

The following lemma is the most technical part of our argument.

Lemma 4.12. If 𝑛 = Λ1 − Λ2 and 𝑚 = Λ2 > 0, then

𝑏̂ΨΓ, (𝑛) − 𝔟ΛΨ, (𝑚) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if Ψ = (Λ1,Λ3,Λ4, . . . )

1 if Ψ = (Λ1 − 1,Λ3,Λ4, . . . )

0 otherwise.

Proof. If Λ1 − Ψ1 ≥ 2, then 𝑏̂ΨΓ, (𝑛)
= 𝔟ΛΨ, (𝑚)

for any integers n and m with 𝑛 + 𝑚 = Λ1. For 𝑚 ≥ 2,
this is because if we set 𝑢 = 𝑡 − 𝛽, then comparing Proposition 4.6 and Lemma 4.7 shows that 𝔟ΛΨ, (𝑚)

is
the coefficient of 𝛽 |Λ |− |Ψ |−𝑚𝑢𝑚−res in 2sc (𝑢 + 𝛽)sc+mc+fb−1(2𝑢 + 𝛽)mc−1, and by Lemma 4.11, this is also
equal to 𝑏̂ΨΓ, (𝑛)

when 𝑚 = Λ1 − 𝑛. For 𝑚 ≤ 1, we have that 𝑏̂ΨΓ, (𝑛)
, 𝔟ΛΨ, (𝑚)

, and the relevant coefficients
in 2sc (𝑢 + 𝛽)sc+mc+fb−1(2𝑢 + 𝛽)mc−1 are all zero.

It remains to check the desired identity when Λ1−Ψ1 ∈ {0, 1}. From this point on, we fix 𝑛 = Λ1−Λ2
and 𝑚 = Λ2 > 0; in particular, in these cases, Λ and Γ are both nonempty. If |Ψ| − |Γ| > 𝑛, then
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Figure 4. Case (3) in the proof of Lemma 4.12: the subcase when 𝑛 = 1, Ψ = Γ. Forced boxes in SDΛ/Ψ

are denoted by •, removable corners of SDΓ off the diagonal are denoted by ×, and removable corners
on the diagonal are denoted by ∗.

|Λ| − |Ψ| = Λ1 − (|Ψ| − |Γ|) < Λ1 − 𝑛 = 𝑚 and it follows from Proposition 2.7 and Corollary 4.8 that
𝑏̂ΨΓ, (𝑛)

= 𝔟ΛΨ, (𝑚)
= 0 as desired. We may therefore assume |Ψ| − |Γ| ≤ 𝑛. There are three cases:

(1) Suppose Λ1 = Ψ1. Then |Ψ| − |Γ| ≥ Ψ1 − Γ1 = 𝑛 also holds, so |Ψ| − |Γ| = 𝑛 and |Λ| − |Ψ| = 𝑚.
Since Ψ1 − Γ1 = Λ1 − Λ2 = 𝑛, it follows that

Ψ = (Λ1,Λ3,Λ4, . . . ) = Γ + (𝑛, 0, 0, . . . ),

and we wish to show that 𝑏̂ΨΓ, (𝑛)
= 1 + 𝔟ΛΨ, (𝑚)

. This holds as sc + mc = 1 so 𝔟ΛΨ, (𝑚)
= 2sc+mc−1 = 1

while 𝑏̂ΨΓ, (𝑛)
= |ShRibbons𝑃 (Ψ//Γ; 𝑛) | = 2 by Corollary 4.8 and Proposition 2.7.

(2) Suppose Λ1 − Ψ1 = 1. Then |Ψ| − |Γ| ≥ Ψ1 − Γ1 = 𝑛 − 1 so we have |Ψ| − |Γ| ∈ {𝑛 − 1, 𝑛}. If
|Ψ| − |Γ| = 𝑛, then |Λ| − |Ψ| = 𝑚 and SDΨ/Γ consists of the 𝑛−1 boxes (1, 𝑗) with Λ2 < 𝑗 < Λ1 plus
one box (𝑖, 𝑗) ∈ SDΛ/Γ with 𝑖 > 1. In this event, Corollary 4.8 tells us that 𝔟ΛΨ, (𝑚)

= 2sc+mc−1, while
Proposition 2.7 tells us that 𝑏̂ΨΓ, (𝑛)

= 2𝑒, where 𝑒 ∈ {0, 1, 2} is the number of connected components
in SDΨ/Γ not intersecting the diagonal. As sc + mc is the number of connected components in
SDΛ/Ψ, it follows that 𝑒 = sc + mc − 1, so 𝑏̂ΨΓ, (𝑛)

= 𝔟ΛΨ, (𝑚)
as claimed.

(3) Suppose Λ1 − Ψ1 = 1 and |Ψ| − |Γ| = 𝑛 − 1 so that |Λ| − |Ψ| = 𝑚 + 1. Since Ψ1 − Γ1 = 𝑛 − 1, we
can therefore write

Ψ = (Λ1 − 1,Λ3,Λ4, . . . ) = Γ + (𝑛 − 1, 0, 0, . . . ),

so we wish to show that 𝑏̂ΨΓ, (𝑛)
− 𝔟ΛΨ, (𝑚)

= 1. There are three subcases:
◦ If 𝑛 = 1, then Ψ = Γ so sc = 0, mc = 1, and

𝔟ΛΨ, (𝑚) = 2sc+mc−2(2sc + 3mc + 2fb − 3) = fb

by Corollary 4.8. At the same time, it follows from Proposition 2.7 that 𝑏̂ΨΓ, (𝑛)
= 𝑓 + 2𝑔, where

𝑓 ∈ {0, 1} and 𝑔 ≥ 0 are the numbers of removable corner boxes of SDΓ on and off the diagonal.
One checks that fb + 1 = 𝑓 + 2𝑔 in this situation, as illustrated in Figure 4.

◦ If Γ = (1) and 𝑛 > 1, so that Ψ = (𝑛) and Λ = (𝑛 + 1, 1), then sc = 2 and mc = fb = 0, and one
can check via Proposition 2.7 and Corollary 4.8 that 𝑏̂ΨΓ, (𝑛)

= 2 while 𝔟ΛΨ, (𝑚)
= 1.

◦ If Γ ≠ (1) and 𝑛 > 1, then sc = mc = 1, so

𝔟ΛΨ, (𝑚) = 2sc+mc−2(2sc + 3mc + 2fb − 3) = 2(fb + 1)

by Corollary 4.8, while Proposition 2.7 implies that 𝑏̂ΨΓ, (𝑛)
= 1 + 2𝑖 + 2 𝑗 + 4𝑘 , where 𝑖 ∈ {0, 1},

𝑗 ∈ {0, 1}, and 𝑘 ≥ 0 are the numbers of removable corner boxes of SDΓ which are respectively
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Figure 5. Case (3) in the proof of Lemma 4.12: the subcase when 𝑛 > 1, Ψ ≠ (1). Left column 𝑖 = 0,
right column 𝑖 = 1; top row 𝑗 = 0, bottom row 𝑗 = 1. The blue cells represent Ψ/Γ.

in the first row, on the diagonal, or neither in the first row nor on the diagonal. One checks that
fb + 1 = 𝑖 + 𝑗 + 2𝑘 in this situation, as illustrated in Figure 5.

In each subcase, we have 𝑏̂ΨΓ, (𝑛)
− 𝔟ΛΨ, (𝑚)

= 1, as desired.

This case analysis concludes the proof. �

By putting everything together, we can prove our first main theorem.

Theorem 4.13. If 𝜇 and 𝜆 are strict partitions, then 𝑗𝑞𝜆/𝜇 = 𝑗𝑞comb
𝜆/𝜇

.

Proof. We first claim that if 𝑛 > 0, then 𝑗𝑞comb
𝜆 𝑗𝑞comb

𝑛 =
∑

𝜈 𝑏̂𝜈
𝜆, (𝑛)

𝛽 |𝜆 |− |𝜈 |+𝑛 𝑗𝑞comb
𝜈 , where the sum is

over all strict partitions 𝜈. This holds if 𝜆 = ∅ since 𝑗𝑞comb
𝜆 = 1 and it is clear from Proposition 2.7 that

𝑏̂ (𝑛)
∅, (𝑛)

= 1 and 𝑏̂𝜈
∅, (𝑛)

= 0 for 𝜈 ≠ (𝑛). If 𝜆 is nonempty, then the desired formula follows by substituting
Lemmas 4.9 and 4.12 with Λ := (𝑛 + 𝜆1, 𝜆1, 𝜆2, . . . ) into Corollary 4.5.

Let ≺ be the total order on strict partitions with 𝜇 ≺ 𝜆 if 𝜇 ≠ 𝜆 and either |𝜇 | < |𝜆 | or |𝜇 | = |𝜆 | and
the first index i with 𝜇𝑖 ≠ 𝜆𝑖 has 𝜇𝑖 > 𝜆𝑖 . Suppose 𝜆 is a strict partition with 𝑘 > 0 nonzero parts. Let
𝜇 := (𝜆1, 𝜆2, . . . , 𝜆𝑘−1) and 𝑛 = 𝜆𝑘 . Then it follows from Proposition 2.7 that

𝑗𝑞𝜇 𝑗𝑞𝑛 = 𝑗𝑞𝜆 +
∑
𝜈≺𝜆

𝑏̂𝜈
𝜇, (𝑛) 𝛽

|𝜇 |− |𝜈 |+𝑛 𝑗𝑞𝜈

so we can write

𝑗𝑞𝜆 = 𝑗𝑞𝜇 𝑗𝑞𝑛 −
∑
𝜈≺𝜆

𝑏̂𝜈
𝜇, (𝑛) 𝛽

|𝜇 |− |𝜈 |+𝑛 𝑗𝑞𝜈 .

The same formula holds with each ‘ 𝑗𝑞’ replaced by ‘ 𝑗𝑞comb’ in view of the previous paragraph. Since
𝑗𝑞𝑛 = 𝑗𝑞comb

𝑛 for all integers 𝑛 ≥ 0 by Proposition 4.1, it follows by induction that 𝑗𝑞𝜆 = 𝑗𝑞comb
𝜆 .

The last thing to explain is how to generalize this identity to 𝑗𝑞𝜆/𝜇 = 𝑗𝑞comb
𝜆/𝜇

. As the power series
𝑗𝑞comb

𝜆 is symmetric, it is clear from its definition that 𝑗𝑞comb
𝜆 (x, y) =

∑
𝜇 𝑗𝑞comb

𝜇 (x) 𝑗𝑞comb
𝜆/𝜇

(y). Compare
this with (2.6). Since 𝑗𝑞comb

𝜆 (x, y) = 𝑗𝑞𝜆 (x, y) and since the symmetric functions 𝑗𝑞𝜇 (x) = 𝑗𝑞comb
𝜇 (x)

are linearly independent, we must have 𝑗𝑞𝜆/𝜇 = 𝑗𝑞comb
𝜆/𝜇

for all 𝜇. �

4.4. Bar tableau generating functions without diagonal primes

We turn to our other family 𝑗 𝑝comb of bar tableau generating functions. The relevant arguments are similar
to those above. Continue to assume that Λ = (Λ1,Λ2, . . . ) ⊇ Ψ ⊇ Γ = (Λ2,Λ3, . . . ) are strict partitions
so that SDΛ/Ψ is a shifted ribbon. We retain the same meaning of a forced box in SDΛ/Ψ. We additionally
define a position (𝑖, 𝑗) ∈ SDΛ/Ψ to be diagonally-forced if 𝑖 = 𝑗 or if (𝑖 + 1, 𝑗) = ( 𝑗 , 𝑗) ∈ SDΛ/Ψ.
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Throughout, we fix the meaning of four integer parameters sc∗, mc∗, fb∗, res∗ which are slightly
different from the ones sc, mc, fb, res defined in the previous subsection. Let sc∗ (respectively, mc∗) be
the number of connected components in SDΛ/Ψ that are disjoint from the diagonal that are singleton
sets (respectively, have multiple boxes). Let fb∗ be the number of forced or diagonally-forced boxes in
SDΛ/Ψ. Then define res∗ := |Λ| − |Ψ| − sc∗ − 2mc∗ − fb∗ + 1 ≥ 1.

Lemma 4.14. With the definitions above, we have

𝑗 𝑝comb
Λ/Ψ (𝑡) = 𝑡 (𝑡 − 𝛽)res∗−12sc∗ 𝑡sc∗+mc∗+fb∗−1 (2𝑡 − 𝛽)mc∗ .

Proof. If SDΛ/Ψ has no diagonal positions, then 𝑗 𝑝comb
Λ/Ψ (𝑡) = 𝑗𝑞comb

Λ/Ψ (𝑡) and sc = sc∗, mc = mc∗, fb = fb∗

and res = res∗ + 1, so the desired formula is equivalent to Lemma 4.7.
If instead SDΛ/Ψ has just one connected component and this component intersects the diagonal,

consider the elements of ShBT𝑃 (Ψ/Γ) with all entries in {1′, 1}. As one reads such a tableau in the
row-reading order, each forced box and each diagonally-forced box must start a new bar, while every
remaining box is free to either start a new bar or continue the bar of its predecessor. In particular,
the first box of SDΛ/Ψ, which is some diagonal position ( 𝑗 , 𝑗), must start a new bar and contain an
unprimed entry, and if the second box is the diagonally-forced position ( 𝑗 − 1, 𝑗), then it must contain a
primed entry and start a new bar. Comparing these observations with the definition 𝑗 𝑝comb

Λ/Ψ , we see that
𝑗 𝑝comb

Λ/Ψ (𝑡) = 𝑡 fb
∗
(𝑡 − 𝛽) |Λ |− |Ψ |−fb∗ , which is equivalent to the desired formula since in this special case,

sc∗ = mc∗ = 0 and res∗ = |Λ| − |Ψ| − fb∗ + 1.
When not in these cases, SDΛ/Ψ = SDΛ1/Ψ1 � SDΛ2/Ψ2 for some strict partitions Ψ𝑖 � Λ𝑖 such that

SDΛ1/Ψ1 has no diagonal boxes and SDΛ2/Ψ2 has just one connected component which intersects the
diagonal and is not adjacent to any box in SDΛ1/Ψ1 . Then 𝑗 𝑝comb

Λ/Ψ (𝑡) = 𝑗 𝑝comb
Λ1/Ψ1 (𝑡) 𝑗 𝑝

comb
Λ2/Ψ2 (𝑡), where

𝑗 𝑝comb
Λ𝑖/Ψ𝑖 (𝑡) = (𝑡 − 𝛽)𝑑𝑖−12sc∗𝑖 𝑡sc∗𝑖+mc∗𝑖+fb∗𝑖 (2𝑡 − 𝛽)mc∗𝑖

for integers with sc∗ = sc∗1 + sc∗2, mc∗ = mc∗1 + mc∗2, fb∗ = fb∗1 + fb∗2 and res∗ = res∗1 + res∗2 − 1, which
suffices. �

Since { 𝑗 𝑝comb
𝑛 (𝑡) : 𝑛 ≥ 0} is a homogeneous Z[𝛽]-basis for Z[𝛽, 𝑡], we can write

𝑗 𝑝comb
Λ/Ψ (𝑡) =

∑
𝑛≥0

𝔠ΛΨ, (𝑛) · 𝛽
|Λ |− |Ψ |−𝑛 · 𝑗 𝑝comb

𝑛 (𝑡) (4.3)

for unique numbers 𝔠ΛΨ, (𝑛)
∈ Z.

Corollary 4.15. The coefficients 𝔠ΛΨ, (𝑛)
are nonnegative integers with these properties:

(a) If 𝑛 = 0 < |Λ| − |Ψ| or 𝑛 > |Λ| − |Ψ|, then 𝔠ΛΨ, (𝑛)
= 0.

(b) If 0 < 𝑛 = |Λ| − |Ψ|, then 𝔠ΛΨ, (𝑛)
= 2sc∗+mc∗ .

(c) If 0 < 𝑛 = |Λ| − |Ψ| − 1, then 𝔠ΛΨ, (𝑛)
= 2sc∗+mc∗−1(2sc∗ + 3mc∗ + 2fb∗ − 2).

Proof. The argument is similar to the proof of Corollary 4.8 and follows as a simple exercise in algebra
from Proposition 4.6 and Lemma 4.14. We omit the details. �

Lemma 4.16. If 0 ≤ 𝑛 ≤ Λ1 is an integer, then 𝑗 𝑝comb
Λ/(𝑛) =

∑
𝜇 strict
Γ⊆𝜇⊆Λ

𝔠Λ𝜇, (𝑛) · 𝛽
|Λ |− |𝜇 |−𝑛 · 𝑗 𝑝comb

𝜇 .

Proof. Repeat the proof of Lemma 4.9, replacing ‘ 𝑗𝑞comb’ by ‘ 𝑗 𝑝comb’ and ‘𝔟’ by ‘𝔠’. �
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Consider the set of removable corner boxes (𝑖, 𝑗) ∈ SDΓ with (𝑖 + 1, 𝑗 + 1) ∉ SDΨ/Γ. Let U∗, V∗

and W∗ be the sets of such corners (𝑖, 𝑗) for which the size of {(𝑖, 𝑗 + 1), (𝑖 + 1, 𝑗)} ∩ SDΨ/Γ is exactly
two, one or zero, respectively. The union U∗ � V∗ �W∗ of these three sets is the same as the union of
U � V �W of the sets defined before Lemma 4.10.

Lemma 4.17. Suppose Λ1 − Ψ1 ≥ 2. Then |U∗ | = sc∗ and |V∗ | + 2|W∗ | = mc∗ + fb∗ − 1.

Proof. Let (𝑖, 𝑖) be the unique diagonal position in SDΛ/Γ. If this box is in SDΨ/Γ rather than SDΛ/Ψ,
then U = U∗, V = V∗ and W = W∗ along with sc = sc∗, mc = mc∗ and fb = fb∗, so the desired
properties hold by Lemma 4.10. If box (𝑖, 𝑖) belongs to SDΛ/Ψ but is not adjacent to any other box in
SDΛ/Ψ, then we cannot have (𝑖, 𝑖 + 1) ∈ SDΛ/Γ, so it must hold that (𝑖 − 1, 𝑖) ∈ SDΨ/Γ, which means
that U = U∗ � {(𝑖 − 1, 𝑖 − 1)} and V∗ = V � {(𝑖 − 1, 𝑖 − 1)}, and therefore

|U | − 1 = |U∗ |, |V | + 1 = |V∗ |, and |W | = |W∗ |

along with

sc − 1 = sc∗, mc = mc∗, and fb + 1 = fb∗.

Suppose finally that box (𝑖, 𝑖) belongs to a connected component of SDΛ/Ψ with multiple boxes. Similar
to our reasoning above, if the second box of SDΛ/Ψ is (𝑖, 𝑖 + 1), then we have

|U | = |U∗ |, |V | = |V∗ |, and |W | = |W∗ |

along with

sc = sc∗, mc − 1 = mc∗, and fb + 1 = fb∗,

while if the second box of SDΛ/Ψ is (𝑖 − 1, 𝑖), then we have

|U | = |U∗ |, |V | − 1 = |V∗ |, and |W | + 1 = |W∗ |

along with

sc = sc∗, mc − 1 = mc∗, and fb + 2 = fb∗.

In each of these cases, the desired identities follow by Lemma 4.10. �

Lemma 4.18. If Λ1 − Ψ1 ≥ 2, then∑
𝑛≥0

𝑐̂ΨΓ, (𝑛) · 𝛽
|Λ |− |Ψ |−(Λ1−𝑛) · 𝑢 (Λ1−𝑛)−res∗ = 2sc∗ (𝑢 + 𝛽)sc∗+mc∗+fb∗−1 (2𝑢 + 𝛽)mc∗ .

Proof. By Proposition 2.7, the number 𝑐̂ΨΓ, (𝑛)
counts the ways that we can add a subset of removable

corner boxes of SDΓ to SDΨ/Γ to form a shifted ribbon, and then assign either 1 or 1′ or 1′1 to the first
box in each connected component of this ribbon, such that the number of boxes plus the number of
entries equal to 1′1 is n. As in the proof of Lemma 4.11, the shifted ribbons that arise in this way are the
unions of SDΨ/Γ with arbitrary subsets of U∗ � V∗ �W∗. The ribbon SDΨ/Γ starts out with sc∗ + mc∗
connected components, and each box added from U∗, V∗ and W∗ respectively adds −1, 0 and 1 to this
number. Combining these observations with Lemma 4.17, we deduce that∑

𝑛≥0
𝑐̂ΨΓ, (𝑛)𝑢

𝑛 = 𝑢 |Ψ |− |Γ | (2 + 𝑢)sc∗+mc∗ (1 + 𝑢
2+𝑢 )

|U∗ | (1 + 𝑢) |V
∗ | (1 + 𝑢(2 + 𝑢)) |W

∗ |

= 2sc∗𝑢 |Ψ |− |Γ | (2 + 𝑢)mc∗ (1 + 𝑢)sc∗+mc∗+fb∗−1.
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Figure 6. Case (3) in the proof of Lemma 4.19: the subcase when 𝑛 = 1, Ψ = Γ. Forced boxes in SDΛ/Ψ

are denoted by •, diagonally-forced boxes are denoted by ·, and removable corners of SDΓ are denoted
by ×.

This becomes the desired identity after dividing both sides by 𝑢 |Ψ |− |Γ | , replacing u by 𝛽𝑢−1, and then
multiplying both sides by 𝑢sc∗+2mc∗+fb∗−1 = 𝑢 |Λ |− |Ψ |−res∗ = 𝑢Λ1−res∗+ |Γ |− |Ψ | . �

Lemma 4.19. If 𝑛 = Λ1 − Λ2 and 𝑚 = Λ2 > 0, then

𝑐̂ΨΓ, (𝑛) − 𝔠ΛΨ, (𝑚) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if Ψ = (Λ1,Λ3,Λ4, . . . )

1 if Ψ = (Λ1 − 1,Λ3,Λ4, . . . )

0 otherwise.

Proof. As in the proof of Lemma 4.12, if Λ1 −Ψ1 ≥ 2 and 𝑛 +𝑚 = Λ1, then it follows from Proposition
4.6 and Lemmas 4.14 and 4.18 that 𝑐̂ΨΓ, (𝑛)

and 𝔠ΛΨ, (𝑚)
are both equal to the coefficient of 𝛽 |Λ |− |Ψ |−𝑚𝑢𝑚−res∗

in 2sc∗ (𝑢 + 𝛽)sc∗+mc∗+fb∗−1 (2𝑢 + 𝛽)mc∗ .
To handle the cases when Λ1 − Ψ1 ∈ {0, 1}, we fix 𝑛 = Λ1 − Λ2 and 𝑚 = Λ2 > 0; in particular, Λ

and Γ are both nonempty. If |Ψ| − |Γ| > 𝑛, then |Λ| − |Ψ| < 𝑚 and it follows from Proposition 2.7 and
Corollary 4.15 that 𝑐̂ΨΓ, (𝑛)

= 𝔠ΛΨ, (𝑚)
= 0, as desired. We may therefore assume |Ψ| − |Γ| ≤ 𝑛. There are

three main cases, which are similar to the ones in the proof of Lemma 4.12:

(1) If Λ1 = Ψ1, then Ψ = (Λ1,Λ3,Λ4, . . . ) = Γ + (𝑛, 0, 0, . . . ) as in case (1) of the proof of Lemma
4.12. Then sc∗ = mc∗ = 0 so 𝔠ΛΨ, (𝑛)

= 2sc∗+mc∗ = 1 by Corollary 4.15, and since Γ is nonempty, one
has 𝑐̂ΨΓ, (𝑛)

= 𝑏̂ΨΓ, (𝑛)
= 2 by Proposition 2.7, so 𝑐̂ΨΓ, (𝑛)

− 𝔠ΛΨ, (𝑚)
= 1, as claimed.

(2) If Λ1 −Ψ1 = 1, then |Ψ| − |Γ| ∈ {𝑛−1, 𝑛} as in case (2) of the proof of Lemma 4.12. If we also have
|Ψ| − |Γ| = 𝑛, then SDΨ/Γ must again consist of the 𝑛− 1 boxes (1, 𝑗) with Λ2 < 𝑗 < Λ1 along with
one additional box (𝑖, 𝑗) ∈ SDΛ/Γ with 𝑖 > 1. In this case, 𝔠ΛΨ, (𝑚)

= 2sc∗+mc∗ by Corollary 4.15 while
𝑐̂ΨΓ, (𝑛)

= 2𝐸 , where 𝐸 ∈ {1, 2} is the number of connected components in SDΨ/Γ by Proposition
2.7. We have sc∗ + mc∗ = 𝐸 so 𝑐̂ΨΓ, (𝑛)

= 𝔠ΛΨ, (𝑚)
, as needed.

(3) Finally, if Λ1 − Ψ1 = 1 and |Ψ| − |Γ| = 𝑛 − 1, then as in case (3) of the proof of Lemma 4.12, we
must have Ψ = (Λ1 − 1,Λ3,Λ4, . . . ) = Γ + (𝑛 − 1, 0, 0, . . . ). There are now only two subcases:
◦ If 𝑛 = 1, then Ψ = Γ, so sc∗ = mc∗ = 0 and

𝔠ΛΨ, (𝑚) = 2sc∗+mc∗−1(2sc∗ + 3mc∗ + 2fb∗ − 2) = fb∗ − 1

by Corollary 4.15, while Proposition 2.7 tells us that 𝑐̂ΨΓ, (𝑛)
= 2𝐺, where 𝐺 > 0 is the number of

removable corner boxes of SDΓ. One checks that fb∗ = 2𝐺, as illustrated in Figure 6.
◦ If 𝑛 > 1, then sc∗ = 1 and mc∗ = 0 so

𝔟ΛΨ, (𝑚) = 2sc∗+mc∗−1(2sc∗ + 3mc∗ + 2fb∗ − 2) = 2fb∗

by Corollary 4.15. But in this case, Proposition 2.7 implies that

𝑐̂ΨΓ, (𝑛) = 1 + 2𝐽 + 4𝐾,
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Figure 7. Case (3) in the proof of Lemma 4.19: the subcase when 𝑛 > 1. Left column 𝐽 = 0, right
column 𝐽 = 1. The blue cells represent Ψ/Γ.

where 𝐽 ∈ {0, 1} and 𝐾 ≥ 0 are the numbers of removable corner boxes of SDΓ which are in or
not in the first row. One checks that fb∗ = 𝐽 + 2𝐾 as needed.

In each subcase, we have 𝑐̂ΨΓ, (𝑛)
− 𝔠ΛΨ, (𝑚)

= 1, as desired.

This case analysis concludes the proof. �

We now arrive at our second main theorem.

Theorem 4.20. If 𝜇 and 𝜆 are strict partitions, then 𝑗 𝑝𝜆/𝜇 = 𝑗 𝑝comb
𝜆/𝜇

.

Proof. Our argument has the same structure as the proof of Theorem 4.13. Let ≺ be the total order on
strict partitions defined in that proof. Substituting Lemmas 4.16 and 4.19 with Λ := (𝑛 +𝜆1, 𝜆1, 𝜆2, . . . )
into Corollary 4.5 shows that 𝑗 𝑝comb

𝜆 𝑗𝑞comb
𝑛 =

∑
𝜈 𝑐̂𝜈

𝜆, (𝑛)
𝛽 |𝜆 |− |𝜈 |+𝑛 𝑗 𝑝comb

𝜈 for all 𝑛 > 0. Next, if 𝜆 has
𝑘 > 0 nonzero parts, 𝜇 := (𝜆1, 𝜆2, . . . , 𝜆𝑘−1), and 𝑛 := 𝜆𝑘 , then

𝑗 𝑝𝜇 𝑗𝑞𝑛 = 2 𝑗 𝑝𝜆 +
∑
𝜈≺𝜆

𝑐̂𝜈
𝜇, (𝑛) 𝛽

|𝜇 |− |𝜈 |+𝑛 𝑗 𝑝𝜈

by Proposition 2.7, so

𝑗 𝑝𝜆 =
1
2
𝑗 𝑝𝜇 𝑗𝑞𝑛 −

1
2

∑
𝜈≺𝜆

𝑐̂𝜈
𝜇, (𝑛) 𝛽

|𝜇 |− |𝜈 |+𝑛 𝑗 𝑝𝜈

and an analogous formula holds for 𝑗 𝑝comb
𝜆 . Since 𝑗 𝑝𝑛 = 𝑗 𝑝comb

𝑛 and 𝑗𝑞𝑛 = 𝑗𝑞comb
𝑛 by Proposition 4.1,

the identity 𝑗 𝑝𝜆 = 𝑗 𝑝comb
𝜆 follows by induction. To deduce that 𝑗 𝑝𝜆/𝜇 = 𝑗 𝑝comb

𝜆/𝜇
, one can repeat the last

paragraph of the proof of Theorem 4.13 after changing each ‘ 𝑗𝑞’ to ‘ 𝑗 𝑝’. �

4.5. Reverse plane partition generating functions

It remains to show that 𝑔𝑝𝜆/𝜇 = 𝑔𝑝comb
𝜆/𝜇

and 𝑔𝑞𝜆/𝜇 = 𝑔𝑞comb
𝜆/𝜇

. Thankfully, we can derive this from
Theorems 4.13 and 4.20 by a relatively succinct formal argument.

Let Λ be the free Z[𝛽]�𝑥1, 𝑥2, . . .�-module of linear combinations of strict partitions, and let Λ̂
be the Z[𝛽]�𝑥1, 𝑥2, . . .�-module of formal (possibly infinite) linear combinations of strict partitions.
Write mindeg( 𝑓 ) to denote the smallest degree of any monomial in 0 ≠ 𝑓 ∈ Z[𝛽]�𝑥1, 𝑥2, . . .�, where
deg 𝛽 = 0 and deg 𝑥𝑖 = 1, and set mindeg(0) = ∞. Let Λ̂fin be the submodule of Λ̂ consisting of the
elements

∑
𝜆 𝑓𝜆 · 𝜆 for which {𝜆 : mindeg( 𝑓𝜆) = 𝑛} is finite for all integers n. Then write

〈·, ·〉 : Λ̂fin × Λ → Z[𝛽]�𝑥1, 𝑥2, . . .�

for the bilinear form, continuous in the first coordinate, with 〈𝜆, 𝜇〉 = 𝛿𝜆𝜇 for all strict partitions.
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Fix an element 𝑡 ∈ Z[𝛽]�𝑥1, 𝑥2, . . .� with mindeg(𝑡) > 0. Define P (𝑡) and Q(𝑡) to be the continuous
linear maps Λ̂fin → Λ̂fin such that for all strict partitions 𝜇 and 𝜆, one has

〈P (𝑡)𝜇, 𝜆〉 = 𝐺𝑃𝜆//𝜇 (𝑡) and 〈Q(𝑡)𝜇, 𝜆〉 = 𝐺𝑄𝜆//𝜇 (𝑡). (4.4)

Both P (𝑡) and Q(𝑡) make sense as maps Λ̂ → Λ̂ but not as maps Λ → Λ, since they send any single 𝜇 to
the infinite sums

∑
𝜆 𝐺𝑃𝜆//𝜇 (𝑡) ·𝜆 and

∑
𝜆 𝐺𝑄𝜆//𝜇 (𝑡) ·𝜆 over all strict partitions 𝜆 ⊇ 𝜇. These operators are

well-defined maps Λ̂fin → Λ̂fin because mindeg(𝐺𝑃𝜆//𝜇 (𝑡)) = mindeg(𝐺𝑄𝜆//𝜇 (𝑡)) = |𝜆/𝜇 | · mindeg(𝑡).
Similarly, define 𝔭(𝑡) and 𝔮(𝑡) to be the continuous linear maps Λ̂fin → Λ̂fin with

〈𝔭(𝑡)𝜆, 𝜇〉 = 𝑔𝑝comb
𝜆/𝜇 (𝑡) and 〈𝔮(𝑡)𝜆, 𝜇〉 = 𝑔𝑞comb

𝜆/𝜇 (𝑡). (4.5)

Finally, let 𝔭̃(𝑡) and 𝔮̃(𝑡) be the continuous linear maps Λ̂fin → Λ̂fin with

〈𝔭̃(𝑡)𝜆, 𝜇〉 = 𝑗 𝑝comb
𝜆/𝜇 (𝑡) = 𝑗 𝑝𝜆/𝜇 (𝑡) and 〈𝔮̃(𝑡)𝜆, 𝜇〉 = 𝑗𝑞comb

𝜆/𝜇 (𝑡) = 𝑗𝑞𝜆/𝜇 (𝑡). (4.6)

The second equalities in this last pair of definitions rely on Theorems 4.13 and 4.20.
The operators 𝔭(𝑡), 𝔮(𝑡), 𝔭̃(𝑡), 𝔮̃(𝑡) all make sense as maps Λ → Λ but not as maps Λ̂ → Λ̂. For

example, the coefficient of ∅ in the image of (1) + (2) + (3) + · · · ∈ Λ̂− Λ̂fin under any of these operators
would be in Z�𝛽, 𝑡� rather than Z[𝛽]�𝑡�. These operators send Λ̂fin → Λ̂fin because they each map 𝜆
into the Z[𝛽]�𝑡�-span of the finite set of strict partitions 𝜇 ⊆ 𝜆.

Lemma 4.21. It holds that 𝔭(−𝑡)𝔭̃(𝑡) = 𝔭̃(𝑡)𝔭(−𝑡) = 𝔮(−𝑡)𝔮̃(𝑡) = 𝔮̃(𝑡)𝔮(−𝑡) = 1.

Proof. For each integer 𝑗 > 0, let 𝑟 𝑗 , 𝑐 𝑗 and 𝑏 𝑗 be the linear maps Λ → Λ with

𝑟 𝑗 (𝜆) =
∑

(−𝛽) |𝜇 |− |𝜆 |−1𝜇,

𝑐 𝑗 (𝜆) =
∑

(−𝛽) |𝜈 |− |𝜆 |−1𝜈,

𝑏 𝑗 (𝜆) =
∑

(−𝛽) |𝜅 |− |𝜆 |−1𝜅,

where the sums are respectively over the finite sets of strict partitions 𝜇 � 𝜆, 𝜈 � 𝜆 and 𝜅 � 𝜆 such that
SD𝜆/𝜇 is contained in row j, SD𝜆/𝜈 is contained in column j, and SD𝜆/𝜅 is contained in column j but
does not contain a box on the main diagonal. Next, fix an integer 𝑛 > 0 and define

𝑅𝑛 (𝑡) := (1 + 𝑡𝑟1) (1 + 𝑡𝑟2) · · · (1 + 𝑡𝑟𝑛),

𝐶𝑛 (𝑡) := (1 + 𝑡𝑐1) (1 + 𝑡𝑐2) · · · (1 + 𝑡𝑐𝑛),

𝐵𝑛 (𝑡) := (1 + 𝑡𝑏1) (1 + 𝑡𝑏2) · · · (1 + 𝑡𝑏𝑛),

and

𝑅̃𝑛 (𝑡) := 1
1−𝑡𝑟𝑛

· · · 1
1−𝑡𝑟2

1
1−𝑡𝑟1

,

𝐶̃𝑛 (𝑡) := 1
1−𝑡𝑐𝑛

· · · 1
1−𝑡𝑐2

1
1−𝑡𝑐1

,

𝐵̃𝑛 (𝑡) := 1
1−𝑡𝑏𝑛

· · · 1
1−𝑡𝑏2

1
1−𝑡𝑏1

.

Here, we interpret 1
1−𝑡𝑟 𝑗

as the geometric series 1 + 𝑡𝑟 𝑗 + 𝑡2𝑟2
𝑗 + . . . (and likewise for 1

1−𝑡𝑐 𝑗
and 1

1−𝑡𝑏 𝑗
);

this makes sense as maps Λ → Λ because 𝑟 𝑗 , 𝑐 𝑗 and 𝑏 𝑗 are locally nilpotent (i.e., for each 𝜆, we have
𝑟𝑚

𝑗 (𝜆) = 0 for sufficiently large m).
Now suppose 𝜆 is a strict partition whose shifted diagram fits inside [𝑛] × [𝑛]. By construction,

𝔮(𝑡)𝜆 =
∑
𝜇⊆𝜆

𝑔𝑞comb
𝜆/𝜇 (𝑡)𝜇 = 𝑅𝑛 (𝑡)𝐶𝑛 (𝑡)𝜆 and 𝔮̃(𝑡)𝜆 =

∑
𝜇⊆𝜆

𝑗𝑞comb
𝜆/𝜇 (𝑡)𝜇 = 𝐶̃𝑛 (𝑡) 𝑅̃𝑛 (𝑡)𝜆.

Here, one should think of 𝐶𝑛 (𝑡) as carving out space from 𝜆 for the unprimed entries in a ShRPP while
𝑅𝑛 (𝑡) carves out space for the primed entries. However, 𝑅̃𝑛 (𝑡) carves out space from 𝜆 for the unprimed
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row bars in a ShBT while 𝐶̃𝑛 (𝑡) carves out space for the primed column bars. Since SD𝜇 ⊆ [𝑛] × [𝑛]
for all 𝜇 ⊆ 𝜆, it follows that

𝔮̃(−𝑡)𝔮(𝑡)𝜆 =
∑
𝜇⊆𝜆

𝑔𝑞comb
𝜆/𝜇 (𝑡)𝔮̃(−𝑡)𝜇 =

∑
𝜇⊆𝜆

𝑔𝑞comb
𝜆/𝜇 (𝑡)𝐶̃𝑛 (−𝑡) 𝑅̃𝑛 (−𝑡)𝜇

= 𝐶̃𝑛 (−𝑡) 𝑅̃𝑛 (−𝑡)𝑅𝑛 (𝑡)𝐶𝑛 (𝑡)𝜆.

Since 𝑅̃𝑛 (−𝑡)𝑅𝑛 (𝑡) = 𝐶̃𝑛 (−𝑡)𝐶𝑛 (𝑡) = 1, we have 𝔮̃(−𝑡)𝔮(𝑡)𝜆 = 𝜆, and a similar calculation shows
𝔮(𝑡)𝔮̃(−𝑡)𝜆 = 𝜆. Since n can be arbitrary, so that 𝜆 can also be arbitrary, we conclude that 𝔮(−𝑡)𝔮̃(𝑡) =
𝔮̃(𝑡)𝔮(−𝑡) = 1. The identity 𝔭(−𝑡)𝔭̃(𝑡) = 𝔭̃(𝑡)𝔭(−𝑡) = 1 follows by a similar argument since 𝔭(𝑡)𝜆 =
𝑅𝑛 (𝑡)𝐵𝑛 (𝑡)𝜆 and 𝔭̃(𝑡)𝜆 = 𝐵̃𝑛 (𝑡) 𝑅̃𝑛 (𝑡)𝜆 when SD𝜆 ⊆ [𝑛] × [𝑛]. �

Fix 𝑢, 𝑣 ∈ Z[𝛽]�𝑥1, 𝑥2, . . .� with mindeg(𝑢) = mindeg(𝑣) = 1. Recall 𝑥 := −𝑥
1+𝛽𝑥 .

Lemma 4.22. The following identities hold:

𝔭̃(𝑣)Q(𝑢) = 1+𝑢𝑣
1+𝑢𝑣Q(𝑢)𝔭̃(𝑣) and 𝔮̃(𝑣)P (𝑢) = 1+𝑢𝑣

1+𝑢𝑣P (𝑢)𝔮̃(𝑣).

Proof. For any strict partitions 𝜇 and 𝜈, the Cauchy identity (2.9) implies that

〈𝔭̃(𝑢)Q(𝑣)𝜇, 𝜈〉 =
∑
𝜆

𝐺𝑄𝜆//𝜇 (𝑢) 𝑗 𝑝𝜆/𝜈 (𝑣) =
1+𝑢𝑣
1+𝑢𝑣

∑
𝜅

𝐺𝑄𝜈//𝜅 (𝑢) 𝑗 𝑝𝜇/𝜅 (𝑣)

(after setting 𝑥1 = 𝑢, 𝑦1 = 𝑣, and all other variables to 0). The first identity holds since we have
〈Q(𝑣)𝔭̃(𝑢)𝜇, 𝜈〉 =

∑
𝜅 𝐺𝑄𝜈//𝜅 (𝑢) 𝑗 𝑝𝜇/𝜅 (𝑣). The second identity follows similarly using (2.8). �

Corollary 4.23. The following identities hold:

𝔭(𝑣)Q(𝑢) = 1−𝑢𝑣
1−𝑢𝑣Q(𝑢)𝔭(𝑣) and 𝔮(𝑣)P (𝑢) = 1−𝑢𝑣

1−𝑢𝑣P (𝑢)𝔮(𝑣).

Proof. Consider the first identity in Lemma 4.22. Multiplying both sides on the left and right by 𝔭(−𝑣)
gives Q(𝑢)𝔭(−𝑣) = 1+𝑢𝑣

1+𝑢𝑣𝔭(−𝑣)Q(𝑢) by Lemma 4.21. Thus, 𝔭(−𝑣)Q(𝑢) = 1+𝑢𝑣
1+𝑢𝑣Q(𝑢)𝔭(−𝑣), and this

becomes the first desired identity on negating v. The other identity follows similarly. �

Putting together all of these identities lets us prove our last main theorem.

Theorem 4.24. If 𝜇 and 𝜆 are strict partitions, then

𝑔𝑝𝜆/𝜇 = 𝑔𝑝comb
𝜆/𝜇 and 𝑔𝑞𝜆/𝜇 = 𝑔𝑞comb

𝜆/𝜇 .

Proof. Fix an integer 𝑛 > 0. Then one has 〈Q(𝑥𝑛) · · ·Q(𝑥2)Q(𝑥1)∅, 𝜆〉 = 𝐺𝑄𝜆 (𝑥1, 𝑥2, . . . , 𝑥𝑛) and
〈𝔭(𝑥1)𝔭(𝑥2) · · ·𝔭(𝑥𝑛)𝜆, ∅〉 = 𝑔𝑝comb

𝜆 (𝑥1, 𝑥2, . . . , 𝑥𝑛) for any strict partition 𝜆, so by Corollary 4.23,∑
𝜆

𝐺𝑄𝜆 (𝑥1, . . . , 𝑥𝑛)𝑔𝑝
comb
𝜆 (𝑦1, . . . , 𝑦𝑛) = 〈𝔭(𝑦1)𝔭(𝑦2) · · ·𝔭(𝑦𝑛)Q(𝑥𝑛) · · ·Q(𝑥2)Q(𝑥1)∅, ∅〉

=
∏

1≤𝑖, 𝑗≤𝑛

1−𝑥𝑖 𝑦 𝑗

1−𝑥𝑖 𝑦 𝑗
〈Q(𝑥𝑛) · · ·Q(𝑥1)𝔭(𝑦1) · · ·𝔭(𝑦𝑛)∅, ∅〉.

As 𝔭(𝑡)∅ = ∅, 〈Q(𝑡)∅, ∅〉 = 1, and 〈Q(𝑡)𝜇, ∅〉 = 0 for 𝜇 ≠ ∅, we get∑
𝜆

𝐺𝑄𝜆 (x)𝑔𝑝comb
𝜆 (y) =

∏
𝑖, 𝑗≥1

1−𝑥𝑖 𝑦 𝑗

1−𝑥𝑖 𝑦 𝑗

by taking 𝑛 → ∞. This is the Cauchy identity (1.1) defining 𝑔𝑝𝜆, so 𝑔𝑝𝜆 = 𝑔𝑝comb
𝜆 . In particular, this

means that 𝑔𝑝comb
𝜆 is symmetric. It therefore follows from the definition of 𝑔𝑝comb

𝜆/𝜇
that 𝑔𝑝comb

𝜆 (x, y) =
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∑
𝜇 𝑔𝑝comb

𝜇 (x)𝑔𝑝comb
𝜆/𝜇

(y). On comparing this with (2.5), we conclude that 𝑔𝑝𝜆/𝜇 = 𝑔𝑝comb
𝜆/𝜇

for all 𝜆 and
𝜇. A similar argument using 𝔮(𝑡) and P (𝑡) shows that 𝑔𝑞𝜆/𝜇 = 𝑔𝑞comb

𝜆/𝜇
. �

Competing interests. The authors have no competing interest to declare.

Financial support. The first author was partially supported by Simons Foundation grant 634530. The second author was partially
supported by Hong Kong RGC grant GRF 16306120.

References

[1] M. Brion, ‘Positivity in the Grothendieck group of complex flag varieties’, J. Algebra 258 (2002), 137–159.
[2] A. S. Buch, ‘A Littlewood-Richardson rule for the 𝐾 -theory of Grassmannians’, Acta Math. 189 (2002), 37–78.
[3] A. S. Buch and V. Ravikumar, ‘Pieri rules for the K-theory of cominuscule Grassmannians’, J. Reine Angew. Math. 668

(2012), 109–132.
[4] Y.-C. Chiu and E. Marberg, ‘Expanding K-theoretic Schur Q-functions’, Algebr. Comb. 6(6) (2023), 1419–1445.
[5] E. Clifford, H. Thomas and A. Yong, ‘𝐾 -theoretic Schubert calculus for OG(𝑛, 2𝑛+1) and jeu de taquin for shifted increasing

tableaux’, J. Reine Angew. Math. 690 (2014), 51–63.
[6] S. Fomin and A. Kirillov, ‘Grothendieck polynomials and the Yang–Baxter equation’, in Proc. 6th Internat. Conf. on Formal

Power Series and Algebraic Combinatorics, DIMACS (1994), 183–190.
[7] D. Grinberg and V. Reiner, ‘Hopf algebras in combinatorics’, Preprint, 2014, arXiv:1409.8356v7.
[8] A. Gunna and P. Zinn-Justin, ‘Vertex models for canonical Grothendieck polynomials and their duals’, Algebr. Comb. 6(1)

(2023), 109–163.
[9] Z. Hamaker, A. Keilthy, R. Patrias, L. Webster, Y. Zhang and S. Zhou, ‘Shifted Hecke insertion and the 𝐾 -theory of

OG(𝑛, 2𝑛 + 1)’, J. Combin. Theory Ser. A 151 (2017), 207–240.
[10] T. Ikeda and H. Naruse, ‘𝐾-theoretic analogues of factorial Schur 𝑃- and 𝑄-functions’, Adv. Math. 243 (2013), 22–66.
[11] T. Lam and P. Pylyavskyy, ‘Combinatorial Hopf algebras and K-homology of Grassmannians’, IMRN (2007), rnm125.
[12] A. Lascoux and H. Naruse, ‘Finite sum Cauchy identity for dual Grothendieck polynomials’, Proc. Japan Acad. Ser. A Math.

Sci. 90(7) (2014), 87–91.
[13] A. Lascoux and M-P. Schützenberger, ‘Structure de Hopf de l’anneau de cohomologie et de l’anneau de Grothendieck d’une

variété de drapeaux’, C. R. Acad. Sci. Paris Sér. I Math. 295 (1982), 629–633.
[14] J. B. Lewis and E. Marberg, ‘Enriched set-valued P-partitions and shifted stable Grothendieck polynomials’, Math. Z. 299

(2021), 1929–1972.
[15] E. Marberg, ‘Shifted insertion algorithms for primed words’, Comb. Theory 3(3) (2023), 14.
[16] E. Marberg and B. Pawlowski, ‘𝐾-theory formulas for orthogonal and symplectic orbit closures’, Adv. Math. 372 (2020),

107299.
[17] E. Marberg and B. Pawlowski, ‘On some properties of symplectic Grothendieck polynomials’, J. Pure Appl. Algebra 225(1)

(2021), 106463.
[18] M. Nakagawa and H. Naruse, ‘Generating functions for the universal factorial Hall-Littlewood 𝑃- and 𝑄-functions’, Preprint,

2017, arXiv:1705.04791v3.
[19] M. Nakagawa and H. Naruse, ‘Universal factorial Schur 𝑃, 𝑄-functions and their duals’, Preprint, 2018, arXiv:1812.03328.
[20] H. Naruse, ‘Elementary proof and application of the generating function for generalized Hall-Littlewood functions’, J. Algebra

516 (2018), 197–209.
[21] O. Pechenik and A. Yong, ‘Genomic tableaux’, J. Algebr. Comb. 45 (2017), 649–685.
[22] D. Yeliussizov, ‘Symmetric Grothendieck polynomials, skew Cauchy identities, and dual filtered Young graphs’, J. Combin.

Theory Ser. A 161 (2019), 453–485.

https://doi.org/10.1017/fms.2024.8 Published online by Cambridge University Press

https://arxiv.org/abs/1409.8356v7
https://arxiv.org/abs/1705.04791v3
https://arxiv.org/abs/1812.03328
https://doi.org/10.1017/fms.2024.8

	1 Introduction
	1.1 Shifted set-valued generating functions
	1.2 Dual functions via Cauchy identities
	1.3 Shifted plane partition generating functions
	1.4 Shifted bar tableaux generating functions
	1.5 Application to conjectures of Ikeda and Naruse
	1.6 Comparison with unshifted versions
	1.7 Outline

	2 Preliminaries
	2.1 Structure constants
	2.2 Skew generalizations
	2.3 Pieri rules

	3 Bender–Knuth involutions for shifted bar tableaux
	3.1 Sorted bar tableaux
	3.2 Ascending swaps
	3.3 Descending swaps
	3.4 Weight reversal
	3.5 Composing operations

	4 Generating function derivations
	4.1 Base cases and symmetry
	4.2 Product formulas and one-row identities
	4.3 Bar tableau generating functions with diagonal primes
	4.4 Bar tableau generating functions without diagonal primes
	4.5 Reverse plane partition generating functions


