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Abstract

This article gives an overview of automatic amortized resource analysis (AARA), a technique for infer-
ring symbolic resource bounds for programs at compile time. AARA has been introduced by Hofmann
and Jost in 2003 as a type system for deriving linear worst-case bounds on the heap-space consumption
of first-order functional programs with eager evaluation strategy. Since then AARA has been the subject
of dozens of research articles, which extended the analysis to different resource metrics, other evaluation
strategies, non-linear bounds, and additional language features. All these works preserved the defining
characteristics of the original paper: local inference rules, which reduce bound inference to numeric (usu-
ally linear) optimization; a soundness proof with respect to an operational cost semantics; and the support
of amortized analysis with the potential method.
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1. Introduction

This article provides a survey of several works in the research area known as automatic amortized
resource analysis (AARA). We primarily aim at a general overview of the state of the art in AARA.
However, we also highlight Martin Hofmann’s leading role in the development of AARA and offer
some views on the historical context and the influence of Hofmann’s work. While some of these
views are subjective, we found it fitting to include them in the context of this special issue.

AARA is a technique for automatically or semi-automatically deriving symbolic bounds on the
resource consumption of programs at compile time. A resource is a quantity, such as time and
space, that is consumed during the evaluation of a program. By symbolic bound, we mean that the
bound of a program is given by a function of the input to that program. Such symbolic bounds
should of course be meaningful to a user and computationally simple. In the case of AARA,
bounds are usually given as simple arithmetic expressions. Research on AARA has focused on
the foundational and algorithmic aspects of automatic resource analysis, but the work has been
motivated by applications such as resource certification of embedded systems (Hammond et al.,
2006) and smart contracts (Das et al., 2021).

AARA has initially been developed by Hofmann and Jost (2003) in 2003 to derive linear upper
bounds on the heap-space usage of first-order functional programs with an eager evaluation strat-
egy. Subsequently, AARA has been applied to derive non-linear (Hoffmann and Hofmann, 2010b;
Hofmann and Moser, 2018; Kahn and Hoffmann, 2020) worst-case (upper) bounds and best-case
(lower) bounds (Ngo et al., 2017) for other resources such as time or user-defined cost metrics (Jost
et al., 2009a). It has also been extended to additional language features including higher-order

© The Author(s), 2022. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the
Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and
reproduction, provided the original article is properly cited.

P
@ CrossMark
https://doi.org/10.1017/5S0960129521000487 Published online by Cambridge University Press


https://doi.org/10.1017/S0960129521000487
https://orcid.org/0000-0001-8326-0788
mailto:jhoffmann@cmu.edu
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0960129521000487&domain=pdf
https://doi.org/10.1017/S0960129521000487

730 J. Hoffmann and S. Jost

functions (Jost et al., 2010), object-oriented programs (Bauer et al.,, 2018; Hofmann and Jost,
2006; Hofmann and Rodriguez, 2009), lazy evaluation (Simdes et al., 2012; Vasconcelos et al.,
2015), parallel evaluation (Hoffmann and Shao, 2015), programs with side-effects (Atkey, 2010;
Carbonneaux et al., 2015), probabilistic programs (Ngo et al., 2018; Wang et al., 2020), and con-
current programs with session types (Das et al., 2018). Traditionally, AARA has been formulated
with an affine type system (Hoffmann et al., 2017; Hofmann and Jost, 2003; Jost et al., 2010), but
it can also be formulated as a Hoare-style logic (Carbonneaux et al., 2017, 2015) or an extension
of separation logic (Atkey, 2010; Charguéraud and Pottier, 2019; Mével et al., 2019). Table 1 lists
most of these works and their primary features.

Despite the relatively large number of publications on the subject, the development of
AARA has been remarkably homogeneous and most of the different features and extensions
are compatible with each other. All the aforementioned works share the following key principles
of AARA:

o The compile-time analysis is described by inductively defined and efficiently checkable infer-
ence rules, so that derivation trees are proofs of resource bounds. Moreover, the inference
of derivation trees is a two-step process that starts with a traditional inference method such
as Hindley-Milner-Damas and proceeds with the addition of resource annotations that are
derived by solving a numeric optimization problem, usually a linear program.

« Bound analysis is based on the potential method of (manual) amortized analysis (Tarjan,
1985) and can take into account amortization effects across a sequence of operations.

o The analysis is proven sound with respect to a precise definition of resource consumption
that is given by a cost semantics that associates closed programs with an evaluation cost.

In this survey, we aim to focus on the high-level ideas of AARA. However, to keep this article
concise, we do so using some notions and technical terms from the literature without their formal
definitions. Readers that are familiar with basic programming language concepts such as inductive
definitions, type systems, operational semantics, program logics, and linear logic shall be able to
understand the notions without consulting previous work.

We decided to roughly follow the chronological development of AARA, grouping together
individual topics if it is beneficial for a streamlined presentation. We start by briefly discussing
Hofmann’s work in implicit computational complexity that led to the development of AARA in
Section 2. We then cover AARA with linear potential functions in Section 3, higher-order in
Section 4, non-linear potential functions in Section 5, and lazy evaluation in Section 6. AARA for
imperative and object-oriented programs is discussed in Section 7, and Section 8 covers parallel
evaluation and concurrency. Finally, Section 9 discusses bounds on the expected cost of proba-
bilistic programs, Section 10 contains remarks about larger research projects that supported the
development of AARA, and Section 11 contains concluding remarks.

2. Setting the Stage

AARA originated in the research area of implicit computation complexity (ICC). The goal of ICC
is to find natural characterizations of complexity classes through programming languages. During
his time in Darmstadt, Hofmann became interested in the thorny question of characterizing the
class PTIME with higher-order languages that had been attracting widespread interest at the time.
In a series of articles (Hofmann, 1999, 2002, 2003), he was able to prove a beautiful and ingenious
result: PTIME corresponds to higher-order programs with structural recursion if the computation
is non-size-increasing, a property that could be elegantly encoded with local type rules based on
linear logic. More information about ICC and Hofmann’s work in the area can be found in the
survey articles by Hofmann (2000a) and Dal Lago (2022).
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Year Venue Citation Authors Features
2000 Nordic Hofmann (20000) Hofmann LFPL to malloc-free C
2003 POPL  Hofmann and Jost Hofmann & Jost Heap usage of first-order
(2003) functional language
2006 ESOP Hofmann and Jost Hofmann & Jost Java (object-oriented) and
(2006) storeless semantics
2009 CSL Hofmann and Hofmann & Java automated
Rodriguez (2009) Rodriguez type-checking
2009 ESOP  Campbell (2009) Campbell Stack-space usage and depth
for functional language
2009 ECRTS Jost et al. (2009b) Loidl et al. Worst-case execution
real time
2009 FM Jost et al. (20094) Jost et al. Recursive data types, WCET
and cost genericity
2010 POPL  Jostetal. (2010) Jost et al. Higher-order and
polymorphism
2010 ESOP  Hoffmann and Hoffmann & Univariate polynomial
Hofmann (20105) Hofmann bounds
2010 ESOP  Atkey (2010) Atkey Separation logic
2011 POPL  Hoffmann et al. Hoffmann et al. Multivariate polynomial
(2011) bounds
2012 ICFP Simoes et al. (2012) Simoes et al. Lazy evaluation
2015 PLDI Carbonneaux et al. Carbonneaux Imperative integer programs
(2015) et al.
2015 ESOP  Hoffmann and Shao  Hoffmann & Parallel programs
(2015) Shao
2015 ESOP  Vasconcelos et al. Vasconcelosetal.  Co-recursion
(2015)
2017 POPL  Hoffmann et al. Hoffmann, Das, Polynomial bounds for inductive
(2017) Weng types and higher-order
2017 S&P Ngo et al. (2017) Ngo et al. Side channel security
2017 JAR Jost et al. (2017) Jost et al. Lazy evaluation
2017 LPAR  Bauer and Hofmann  Bauer & Linear list constraints
(2017) Hofmann for OOP
2017 FCSD  Lichtman and Lichtman & Arrays and references
Hoffmann (2017) Hoffmann
2018 LICS Das et al. (2018) Hoffmann et al. Resource-aware session types
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Table 1. Continued

Year  Venue Citation Authors Features
2018 LPAR Bauer et al. (2018) Bauer, Jost, Linear tree constraints for
Hofmann OooP
2018 LPAR Niu and Hoffmann Niu & Hoffmann Garbage collection
(2018)
2018 PLDI Ngo et al. (2018) Ngo et al. Imperative probabilistic
programs
2019 POPL Wang and Hoffmann Wang & Hoffmann ~ Worst-case input
(2019) generation
2019 PLDI Knoth et al. (2019) Knoth et al. Resource-aware program
synthesis
2019 FoSSaCS Kahn and Hoffmann Kahn & Hoffmann Exponential potential
(2020)
2020 ICFP Woang et al. (2020) Woang, Kahn, Functional probabilistic
Hoffmann programs
2021 CSF Das et al. (2021) Das et al. Gas usage in digital
contracts

The line of work reviewed in this survey could be considered to be started by Hofmann
in an article in 2000 (Hofmann, 20006). In this work, he shows how general-recursive first-
order functions can be compiled into a fragment of the C programming language without
dynamic memory allocation (“malloc-free C code”), thus demonstrating the links of his theo-
retical results in ICC (Hofmann, 1999, 2003) to practical programs. The essential idea was the
introduction of a linear (or affine) resource type ¢, whose values represent freely usable mem-
ory locations for storage, encoded in C by pointers of type void *. Considering ¢ to be a linear
type is perfectly natural, since a free memory location can obviously only be used once to store
data, after which it is no longer free. While the programs are permitted to create and destroy
dynamic data structures such as lists, each creation must be justified by spending a value of type
©. Vice versa, destruction may return values of type ¢ to be recycled again elsewhere. Thus,
such programs must receive all the memory to be used during their execution through their
input.

Now that a first-order linear program’s dynamic memory usage could be read off from its type
signature by the number of arguments of type ¢ within its input, Hofmann asked how the usage
of ¢ types could be automatically inserted into an ordinary first-order linear functional program-
ming language without a programmer’s intervention. In 2001, Hofmann posed this question to
the second author, who answered it in his diploma thesis (Jost, 2002).

After a first inference for the direct insertion of ¢ turned out to be feasible, but cumbersome, it
quickly became clear that the ¢ type should be abstracted away into natural number annotations.
This avoids unnecessary distinctions between arguably equivalent types such as (A ® ¢) — B and
(© ®A) — B, which would have prevented completeness of the inference in a trivial way. Instead,
a type like (¢ ®A ® ©), for example, would be written as (A, 2) using a natural number to denote
the contained amount of © types.
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It was then possible to infer the actual natural number values for these type annotations
through integer linear programming (ILP), an outcome that Hofmann had already hoped for
from the onset, since he had picked the second author due to his study focus on ILP and functional
programming. The constraints of the ILP can be constructed step-by-step along a standard type
derivation for a functional program. Examining program examples then led to dropping the
restriction to integer solutions of the linear programming (LP). One class of such examples are
list-manipulating programs that match on multiple list elements in one recursive iteration, such
as the summation of each pair of two consecutive numbers within a list.

Hofmann was outright displeased by the need to allow rational solutions, as this destroyed his
compilation technique into malloc-free C code, since there are no pointers to fractional memory
locations. However, the second author observed that integer solutions to the linear program could
easily be constructed from rational solutions. This is surprising, since generally LP is in P while
ILP is NP-complete. Eventually Hofmann and the second author could prove that the derived
linear programs always have a benign shape! that allows the construction of integral solutions
from rational solutions, which then formed one of the main results of their POPL article that
introduced AARA (Hofmann and Jost, 2003) as a technique for deriving heap-space bounds for
first-order functional programs.

3. Linear Amortized Analysis

This section provides an understanding of the basic mechanics of AARA, based on the first works
that dealt with linear resource bounds. We first construct the type rules that form the basis of
AARA from their intuitive descriptions. Next, we provide an analysis of a simple program exam-
ple in Section 3.2 and then discuss adapting the analysis for different resources in Section 3.3.
The general soundness proof is sketched afterwards in Section 3.4, and we conclude this sec-
tion on how AARA is connected to previous manual amortization techniques in Section 3.5. The
key observation of this section is that the resource usage is counted relative to the use of data
constructors.

3.1 Outline of the type system

For completeness, the language constructs used in this section and most of this article are listed
in Figure 1. The expressions are mostly standard, except the last two: tick allows programmers to
define the resource usage of a program: If (tick q) is evaluated, then the resource costis g € Q. If g
is negative, then resources become available. Similarly, the expression share x as xj,x; in ehas
no effect on the result of a program: it removes the variable x from the scope and introduces two
copies x; and x; into the scope of e. It is a contraction rule as typically found in linear type systems
that provides a controlled mechanism of reference duplication. Variables may be reused indefi-
nitely in AARA, but the duplication of a reference might affect the resource usage of a program;
thus, share provides an explicit handle for this.

Given a function from a functional program, we want to infer an upper bound on its resource
usage as a function of its input. We encode this bound through annotations within the type:
base types are unannotated, an recursive data type receives one annotation for each kind of its
constructors, and a function type receives two annotations:

A,B:=1|IP(A)|A’+B |AxB|AL9>B  withp,q.q,reQt

The intuitive meaning of a function type A-4/9 B s then derived as follows. Given g resources
and the resources that are assigned to a function argument v by the annotated type A (see below),
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en=x Variable
() Unit
let x=-¢1 in e Let
(e1, e2) Pair Construction
letp (x1,x) =ej in e Pair Destruction
left (¢) | right (e) Sum Construction
case (e){ left (x;) < ey | right (x2) < e2} Sum Destruction
nil | cons(x1,x;) List Construction
case x { nil < eg | cons (x1,x2) — e} List Destruction
x1(x2) Application
fun fx=e Abstraction
tick g Tick
share x as x1,xp in e Share

Figure 1. Asimple functional language.

the evaluation of the function with argument v does not run out of resources. Moreover, after the
evaluation there are g’ resources left in addition to the resources that are assigned to the result of
the evaluation by the type B.

However, let us first encode the above idea into type rules of the form I' F- e: A where I is a
type context mapping variable names to types, e is a term expression of the simple programming
language shown in Figure 1, with A an annotated type as described above and g, q' € Q=¢. We
write I';, I'; for the disjoint union of two type contexts, as usual.

For simplicity, we will only consider (possibly nested) lists here, but Jost et al. (2009a) show that
dealing with arbitrary user-defined recursive data types is straightforward: Each type is annotated
with one number for each of its different constructors. This schema would actually entail two
annotations for lists, one for the Cons-constructor and one annotation for the Nil-constructor.
However, most works omitted the annotation for the Nil-constructor and treated it as constant
zero, since in the special case of lists the annotation for the Nil-constructor is entirely redundant.
Omitting it thus streamlines the presentation in a paper, but it might be easier to include it in
actual implementation to avoid a special case for list types.

Following the previous intuitive description, the rules for variables and constants are straight-
forward: the amount g of received resources must be greater than the worst-case execution cost ¢
for the respective instruction and the amount ¢’ of unused resources to be returned:

>d +c > g + cUni
4=19 T Var 7 Var (L:VAR) =19 7 nit (L:UNIT)
x:Abrx:A :

H 0

For bounding heap-space usage, we would choose cvyr = 0 and cynic = 0. These cost constants are
simply inserted anywhere where costs might be incurred during execution.

We formulate leave rules like L: VAR and L:UNIT in a linear style, that is, with contexts that only
mention that variables that appear in the terms. We use the following structural weakening rule
to obtain more general affine typings. In an implementation, we can simply integrate weakening
with the leave rules and use, for instance, an arbitrary context I' in the rule L:UNIT.
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r |_Z” e:A
—————— (L:WEAK)
[,x:Blre:A
The following type rule for local definitions shows how resources are threaded into the
subexpressions:
FII%:-ele I‘z,x:AI—Zi-ez:B
q>q1+cen 1 >qtcen gy >q +cles (e
FI,F2|_2" let X=e in e '

For bounding stack-space usage, one might choose cret1 =1, crer2 = 0 and cret3 = —1. For worst-

case execution time (WCET), all costs constants are non-negative, depending on the actual
machine. Heap-space usage is the most simple, with all cost constants in the let rule and most
other cost constants being zero. Thus, from now on in this section, we will only consider heap-
space usage for brevity and discuss the adaption to other resource later in Section 3.3. Hence, we
simply rewrite the type rule for local definitions by:

M hre:A Tyux:Abre:B  qzq =g  §>4q
1 - (L:LETSIMPLE)
1“1,1“2 'T let X=e1 1N e

Note that these type rules assume the decorated g to be numeric constants, but for the inference,
the type derivation is constructed assuming fresh names for each of those numeric variables. It
is only the validity of the type derivation that depends on the actual numbers, but otherwise no
decisions for constructing the type derivation depend on the actual values. So a standard Hindley-
Milner-Damas type derivation is performed and all numeric side conditions are simply gathered.
Any solution to these numeric constraints then yields a valid type derivation and thus a different
bound on resource usage. The solutions are usually obtained by a linear program solver, since the
constraints happen to be of the appropriate form.

There are various insignificant choices for the presentation of these rules, for example, unifying
some of the numerical variables and making the constraints implicit, as done in many papers to
simply shorten the presentation:

I FreiA Tox:AFre:B
F1>F2|_Z"' let x=¢e; in e

(L:LETVARIANT) —1 (L:UNITVARIANT)

“F= 0

q

Note that these variant type rules now enforce equality between numeric variables instead of cer-
tain inequalities. This would deliver exact resource bounds for all possible executions instead of
worst-case bounds, which would likely lead to infeasible numeric constraints. Thus, an additional
structural type rule L:RELAX is then required:

Fhre:A  q=p q—qd=p—p
Chre:A

Relying solely on L:RELAX for relaxation of numeric constraints has the important benefit of elim-
inating many boring repetitions from the complicated soundness proof of the annotated type
system. Otherwise, resources might be abandoned in many places, as could be seen in L:LET,
which would require us to prove three times that it is okay to reduce the resources at hand. For the
sake of clarity within this presentation, we will keep to the former style of using explicit numeric
constraints within this section.

Likewise, for obtaining concise proofs without too much redundancy, most papers in this field
require the program to be automatically converted into a let-normal form (LNF) where sequential
composition is only available in let bindings. Other syntactic forms restrict subexpressions to be a
variable whenever possible without altering the expressivity of the language. This is similar to but

(L:RELAX)
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more restrictive than A-normal from Sabry and Felleisen (1993) where also values may appear in
variable positions.

Otherwise, the lengthy proof for case L:LET must be repeated in all other cases of the proof
that require proper subexpressions. Since LNF also eases understanding, we follow this conven-
tions here as well. In a practical implementation of AARA, it is easy to drop the requirement
for LNF by incorporating the treatment of sequential computations of the let rule in other rules.
Alternatively, one can compile unrestricted programs to LNF before the analysis. However, con-
verting a program to LNF might alter its resource usage and additional syntactic forms such as a
cost-free let expression must be introduced to ensure that the analysis correctly captures the cost
of the source program (Jost et al., 20094).

q=p+ q’ + CLefty (LLEFT) q>r+ q/ =+ CRightp
x:AF- left (x): AP+ B x:A - right (x): AP + B’

(L:RIGHT)

Txi:Abre:C  Toxn:Ab-e:C
q+p=q1+ CCaseleft 9+T=q2 +CCaseRight q/1 261/ q/z Zq/
T,x:AP +B" B case (x){left (x;) <> e, | right (x;) <> e;}:C

(L:MATCHSUM)

Cost constants creft, and cright; must be set to the appropriate size of each value; ccaseLeft and
CCaseRight May be zero or set to the respective negative values if the match also deallocates the
value from memory, which some papers provided as a variant.

However, in rule L:LEFT we also see that constructing the value not only requires cj e many
resources, but also that p-many free resources are set aside and are no longer available to be used
immediately. These p resources become only available again for use upon deconstruction of the
value, as can be seen in rule L:-MATCHSUM. In this way, the cost bound of a program is given by
its input type: For example, input type A? + B" encodes that the program requires p resources if
given a value constructed with left and r resources for receiving right as its input. Since types
are typically nested, more elaborate cost bounds may be formed.

It is important to note that the association of potential different data constructors happens only
at the type level. Since it was numerously presumed otherwise, let us be clear: Annotated types are
never present at runtime! So when we discuss, for instance, that potential becomes available during
a case analysis on a sum type, we merely provide an intuition for understanding the type rules.

The sum of free resources associated with a concrete value through its annotated type is
referred to as the potential of this type and value. When we refer to the potential of a type,
we mean the function associated with the type that maps a runtime value of this type to the
amount of free resources associated with it. The potential function ®(-: A) : [A] — Qs is defined
in Figure 2. The potential function is extended pointwise to environments and contexts by
VD) =) v CD(V(x) : F(x)). Note that the pair constructor does not have a potential anno-
tation. It could receive an annotation for conformity, but it does not increase the possible resource
bounds to be found, since we know already statically that each runtime value of a pair type
contains precisely one pair constructor. In contrast, the sum type A + B requires two resource
annotations, one for the Left-constructor and one annotation for the Right-constructor. The
important difference being that given a runtime value of this type, we do not know in advance
which one of the two constructors will be contained.

The figure also shows that the potential of a list having length # and type LP(A) is n - p, plus the
potential contained in elements of the list. The Nil-constructor does not have a potential annota-
tion because a list data structure contains precisely one Nil-constructor. Like for pairs, this allows
its potential to be equivalently shifted outwards to the enclosing type or the top-level, if there is
no enclosing type around the list.

https://doi.org/10.1017/5S0960129521000487 Published online by Cambridge University Press


https://doi.org/10.1017/S0960129521000487

Mathematical Structures in Computer Science 737

o(():1) =0

D((vi,v2):A X B) =®(v;:A)+D(v2:B)
D(left (v):AP+B") =p+P(v:A)

D(right (v):AP+B") =r+d(v:A)

®(nil : LP(A)) =0

®(cons (vi,v2) 1 LP(A)) = p+P(vi:A) +P(v2: L(A))
P(v:A—B) =0

Figure 2. Potential associated with value v of annotated type A. Note that value v exists at runtime only, while the annotated
type A exists at compile time only.

The according typing rules are

>q +oxi >p+4q +c
qq_ 1 - Nil (L:NIL) 1=p 7 1 Consa (L:CONS)
[ b nil 1 IP(A) x1:A,x2: LP(A) b cons (x1,x2) : I (A)

F'T?j'ell(? F,xle,xZ:LP(A)I%i—eZ:C
q = q1+ CCaseNil g+ P = q2 + CCaseCons q’l > q/ q/z > q’
T,x:LP(A) - case x{nil < e | cons (x1,%) < e;}:C

(L:MATCHLIST)

A consequence of associating free resources with values through annotated types is that referenc-
ing values more than once could lead to an unsound duplication of potential. This is prevented
by an explicit contraction rule, which governs how associated resources are distributed between
aliased references, thus becoming an affine type system according to Walker (2002). Aliasing
is thus not all problematic for the formulation of AARA, since potential is based per-reference

anyway.

AY (A, A)  T,x1:ALx:A; H-e:B
I'x:A I%— share x as x1,x; in e: B

(L:SHARE)

The contraction rule L:SHARE relies on the sharing relation A Y (B, C) linearly distributing poten-
tial between two annotated types, that is, for all values v the inequality ®(v:A) > ®(v:B) +
®(v: C) holds whenever A 'Y (B, C) is true. Note that variables that have types without potential
may be freely duplicated using the explicit form for sharing.

SH:U 5 S ; (SH:ARR)
anity (unit, unit) OO ALY, By (ALY, B ALLY, )
AY(A,A) p=pi+p AY (A1, Az) BY (B1, By)
(SH:LIST) (SH:PAIR)
LP(A)Y (LF'(A1), LP2 (Ay)) A X BY (A1 x By, Ay X By)
AY (A1, A2) BY (B1,B2)  p=p1+p2 r>r+n
(SH:SUM)

Ap _,’_B”r'y(APl +Br1 APZ +B;2)
The two remaining typing rules for function application and abstraction simply track the con-

stant part of the resource cost for evaluating a functions body, the input dependent part being
automatically tracked through the annotated argument and result types.
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azp+capp  4—q =p—p +capp
X1 ALLE S Byt A I% x1(x2): B

(L:App)

TY(@,T) T,f:A25Bx:AE-e:B  q>q +cru
I B fun fx=e: AL, B

(L:FUN)

The restriction of pointwise sharing of all types within the context to themselves by I' Y (I', I")
is a simple way to prevent closures from capturing potential, which we will comment upon this
in Section 4 and discuss further alternatives there. In a nutshell, this is necessary since we allow
unrestricted sharing of functions. If a closure would capture potential, then two uses of that closure
would lead to a duplication of the captured potential. Technically, the judgment I Y (", I') forces
all resource annotations in the context I" to be zero.

3.2 Program example: Append
Consider as an example the following definition of a function? that concatenates two lists:

fun append (x,y) = case x {nil < y| cons (h, t) — let z=append(t,y) in cons (h,z))}

Let us first consider the expected result intuitively: It is fairly easy to see that function append
constructs precisely one new cons (,) node for each cons (,) node contained within its first
argument, so a simple heap-space execution cost might expected to be to size of a cons (,)
node times the length of the first argument. We will now show how the analysis concludes this
as well.

Annotating the type with fresh resource variable yields LP(A) x L"(A)-4L9> [5(A). The type
rules of AARA then construct the cost constraints by starting with g resources, as detailed by the
annotation of the function arrow. The resource-annotated type together with the set of constraints
can be seen as the most general type. Another point of view would be to consider the constraints
to be a description of a set of possible concrete numeric potential annotations.

Since the outermost term is a case distinction, type rule L:MATCHLIST applies. The Nil-
branch being a simple variable, we obtain, in the terms of type rule L:MATCHLIST, the constraint
q=¢q + cnil + ccasenit from rule L:VAR. However, we also note that the types L"(A) and L%(A)
must be identical, so we note the constraint r =5, as well, for which most works use an explicit
subtyping mechanism omitted here.

For the Cons-branch, the constraint g + p > g2 + cCaseCons Shows that from the initial amount
of resources g, we must pay the cost for the case distinction and gain the potential associated with
one node of the first input list p. Note that the overall potential remains unchanged, since the
reference x is no longer available within the typing context; instead, we have the new references h
and t. The rule L:IMATCHLIST mandates the typings h: A and ¢ : LP(A). In this way, it is ensured
the potential assigned by p to each element in x and that potential carried by the elements is not
duplicated nor lost.?

The subsequent application of L:LET threads these resources to the function application and
we obtain the constraints g2 > g+ capp and g2 — q3 > q — q' + capp with g3 being the amount
of resources being supplied to the body of the let expression. The body of the let expression is
typed by L:CONs and we obtain g3 > s+ ¢’ + ccons. Gathering and simplifying these constraints,
we obtain:

/
q — CCaseNil =4 + CNil P — CCaseCons = CApp
r=s P — CCaseCons = CApp + CConsy 1S

https://doi.org/10.1017/5S0960129521000487 Published online by Cambridge University Press


https://doi.org/10.1017/S0960129521000487

Mathematical Structures in Computer Science 739

For heap-space usage, it is reasonable to set all occurring cost constants to zero, except for ccons,
which denotes the cost for allocating a list node for a list of type A. Simplifying the constraints
further, we thus inferred the following type for any p, g € Qxo:

append : LCmatP(A) x [P(A)-4LL> [P(A)

which expresses that the heap-space cost for applying append is precisely n - ccons, , where n is the
length of the first argument list, thus providing a tight upper bound.

Nested Recursive Data Types and Linear Resource Bounds Note that the presented method for lin-
ear resource bounds already entails the inference of bounds for functions dealing with arbitrarily
nested data structures.

For example, given a function that takes a list of lists of type unit as its input, the first paper
(Hofmann and Jost, 2003) could infer a bound of the form an+b ) !, m; with a,b e QT and
n, m; € N, where n is the length of the outer list and m; is the length of each inner list for
i€1,...,n Suchan upper bound would be expressed by the annotated input type L*(L? (unit)).

For m = max(m;) we then obtain the upper bound # - m, which might be considered to be a
quadratic bound. Likewise, in this way a list of lists of lists would lead to a cubic bound.

However, since the early versions of AARA could not yet infer general bounds involving
expressions such as n - m;, we consider these versions to deliver linear resource bounds only. See
Section 5 for the proper treatment of truly super- and sub-linear bounds.

3.3 Accounting for different resources

Most of the research papers considered in this survey focused on heap-space usage. However,
Jost et al. (2009a) showed that it is straightforward to eschew any resource whose cost can be
statically bound to each individual instruction by choosing the appropriate cost constants. Note
that soundness can be proven independently of these cost constants by proving soundness with
respect to a cost-instrumented operational semantics using the same symbolic cost constants.
Thereby, the same proof holds for arbitrary resource cost models and one must just verify the
cost-instrumented operational semantics match reality.

In addition to the flexibility provided by the cost constants, it is easy to also include a general
cost-counting statement tick q for explicitly stating costs within the code:

do=9q+q
T I’Zf' tick IE 1 (L:TICKVAR)
The tick-statement evaluates to the unit value and in functional code is mostly used by constructs
like let = tick g in e or so.

Considering stack-space usage is straightforward in principle, but the linear bounds of the early
research were a practical hindrance. This was addressed by Campbell (2009) in 2009. However,
significant further progress should be expected if the insights of the decade of AARA research that
followed after 2009 would be applied to the problems shown by Campbell.

Determining the WCET in actual processor clock cycles is also possible, as shown in detail in
Jost et al. (2009a,b). However, this requires one to obtain the WCET for each basic block that
might be produced by the binary compiler, since AARA excels at the high level where nested data
structures and recursion are abundant. Thus, in the aforementioned works on WCET, the bounds
on the basic blocks were established by abstract interpretations methods working on the low-level
code. For a simple processor like the Renesas M32C/85, this combined analysis delivered a WCET
bound less than 34% above the worst measured runtime in the considered scenarios.

Another application area of AARA gas analysis is smart contracts (Das et al., 2021; Das and
Qadeer, 2020). Gas is a high-level resource that used to model the execution cost of a smart
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contract. Gas is important to prevent denial-of-service attacks on blockchains. Commonly, users
of smart contracts are required to pay for the gas consumption of a transaction in advance without
knowing the memory state of the contract. As a result, statically predicting the gas cost is desirable.
Technically, gas can treated like execution time in AARA.

Another resource of interest is energy. We believe that an analysis of the energy consumption
of a program with AARA is possible but we are not aware of any works in this space. A challenge
could be the need to not only model the energy cost of the processor but also of other devices,
such as radios or sensors, that are used by a program.

3.4 Soundness

The main result of many AARA papers is the proof of soundness for the annotated type system,
which formally guarantees that the resource bounds are indeed an upper bound on resource usage
with respect to a formal cost-instrumented operational semantics.

Usually a big-step semantics is used, as it fits the type rules best. Since big-step semantics only
deal with terminating computations, an additional big-step semantics for partial evaluation can
be provided. This also allows to prove that even the resource usage of failing or non-terminating
programs respects the inferred resource bounds (Hoffmann and Hofmann, 2010a; Jost, 2012).
However, the semantics for partial evaluations are usually just a straightforward variant of the
ordinary big-step semantics, so we do not repeat this common simple solution to the problem of
big-step semantics in this survey paper.

There are several ways to define the cost-instrumented operational semantics. Here, we write

Vielv|(pp)

to denote that expression e evaluates in environment V to value v, with p being the minimal
amount of resources needed for the evaluation, and p’ the amount of unused resources being
available after the evaluation.

The soundness proof usually proceeds by induction on the lexicographically ordered lengths
of the formal evaluation and the typing derivation. The proof is primarily divided by a case dis-
tinction on the syntactic construct at the current end of the type derivation, but due to structural
type rules and the lengthening of the typing derivation in case of function calls or thunks, the
lexicographic ordering with a formal evaluation is usually required. A typical formulation of the
soundness proof has the following structure:

If programme term e is well-typed F'H-e:A
and  context I' is consistent with environment V v:r

and e evaluates in environment V to value v VEelv|(pp)
then value v is consistent with type A v:iA

and  the predicted initial resources are sufficient S(V:T)+gq=>p

and  the total consumption does not exceed the ®(V:I)+q— (P(v:A)+q)>p—p
prediction

Type preservation v : A must sometimes be proven simultaneously within the main soundness
theorem as included above, since resource usage becomes an intrinsic property of functions and
thunks. Type systems without higher-order types nor laziness typically allow preservation to be
proven independently.

Note that some AARA presentations separated the evaluation environment V = (S, H) into
stack S and heap H (Hofmann and Jost, 2003; Jost et al., 20094a). This facilitates motivating the cost
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annotation for stack and heap space usage but is not mathematically relevant since the assigned
cost and computed values are identical.

Alternative Cost-Instrumented Operational Semantics The above depicted cost-instrumented big-
step semantics deliver the minimal resources required for evaluation; this allows for a concise
theorem statement at the expense of requiring more care within the proof itself.

Alternatively, the big-step operational semantics could be instrumented with a simple counter
that just increases and decreases with each rule application, according to the cost constants. We
write

V H-ensy

to denote that expression e evaluates in environment V to value v, with m resources being initially
available and and m’ resources being unused after the evaluation. The derivation in this semantics
simply fails whenever the amount of available resource would become negative. So if m is chosen
too small, then no derivation is possible within these cost-instrumented semantics.

Usually, one can prove that for all # > m that there exists an #" with #' > m’ 4+ (n — m) such
that V I-ﬁ- e ~» v is possible, that is, excess resources are harmless and preserved.

This latter version of cost-instrumented semantics was especially used in earlier AARA papers,
since it simplifies the proof at the cost of a more complicated statement of the soundness theorem,
which then becomes:

If programme term e is well-typed FHre:A

and context I is consistent with environment V/ v.r

and e evaluates in environment V to value v Vie~sv

then for all r, m € Q> satisfying m>r+q +®(V:I)
there exists m’ € Q¢ with m>r+q +d(v:A)

such that e evaluates in environment V to value v with limited VHE- e~y

free resources m before and m’ after evaluation

and v being consistent with type A viA

Note the inverted inequalities involving the resource bounds.

The value r allows threading of unused excess resources to subsequent subexpressions; pro-
grams in LNF then require this for local let -definitions only. Note that an explicit r can be avoided
by referring to differences, similarly to the type rule L:RELAX depicted above.

The theorem sketched above intuitively says that an evaluation with restricted resources can-
not fail due to a lack of resources if the amount of available resources exceeds the upper bound
indicated by the annotated types.

3.5 Manual amortized analysis

The similarity of the program analysis outlined above and the manual amortized analysis tech-
nique by Tarjan (1985) was only later pointed out to us by our colleague Olha Shkaravska around
2004.

Tarjan’s amortized analysis basically allows any kind of mathematical potential function that
abstracts any program configuration to simple number. However, the onus is on the user to find a
suitable abstraction so that the proof of the desired program property succeeds.

In contrast, the presented analysis restricts this vast search space to a certain set of functions
encoded through the type only in a canonical way. This reduced inference to solving a set of linear
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inequalities, which by chance had the property to be easily solvable. The research that followed
the initial work then pushed hard to enlarge the search space again, while retaining a feasible
inference.

An important advantage of AARA over Tarjan’s original amortized analysis is the idea to assign
potential per reference to a data structure. While the manual amortized analysis generally breaks
in the presence of persistent data structures (Okasaki, 1998), the potential per typed reference is
the key to the success of AARA in a functional setting.

4. Higher-Order and Other Extensions

Adapting AARA to a higher-order functional language required several steps, most of which are
not directly related to higher-order types. Instead, these features are already beneficial in a first-
order setting, albeit arguably less urgently so. We discuss these steps in no particular order.

Resource Parametricity Consider the heap-space usage of a function zip:LP(A) x
L9(B)2L95 [7(A x B) that zips a pair of lists into a list of pairs. Assume the cost cpair =2
for constructing a list node of the output, including a pair constructor. It is then easy to see that
the cost constraints are p +q > 7 + cpair, and indeed the AARA will infer a more elaborate LP
which could then be simplified to this equation.

The problem then arises by our insistence to have a single solution to a single LP, which pre-
vents simultaneous calls with the otherwise valid types zip : L3(A) x L°(B)-2£%> L1(A x B) and
zip L9(A) x L3(B)2£% [1(A x B). The solution presented in Jost et al. (2010), Jost (2012) is an
annotated function type that also stores a set of constraints, as well as the set of bound con-
straint variables. Note that free constraint variables must allowed to be retained as well. Upon
each function application, this set of constraints is simply copied into the actual constraints for
the programs, with the bound constraint variables being renamed.

Note that this makes the size of the LP exponential in the depth of the call graph, which turned
out to be mostly unproblematic in practice.

Mutual Recursion Mutual recursion can in principle be dealt with easily, since the annotated type
of a function featuring numeric variables instead of numeric constant values is created before the
examination of the function body. Each application simply refers to these previously determined
annotated types, recursive or otherwise. This requires the annotations to become first-class ele-
ments to be manipulated during the inference, as well as explicitly passing sets of constraints at
the time of function application.

Polymorphism Dealing with polymorphic functions requires to defer a part of inference: a
function’s constraint set then contains symbolic constraints that are instantiated upon function
application, given the appropriate types. These symbolic constraints simply express the number
of times an argument must be shared to the various references occurring within a function’s body.

Currying and Closures with Potential Type rule L:FUN in Section 3 contains the premise
Y (T, T') that effectively disallows potential to be captured in closures. Any potential captured
within a function closure would be available for each application, leading to an unsound duplica-
tion of potential. Restricting potential to zero is one easy way out of this problem, another would
be use-once (or use-n-times) function types. Both of these strategies are not in opposition but can
be combined in one type system, as demonstrated by Rajani et al. (2021).

Note that restricting potential of closures for thunks to zero is not an acceptable solution, but
thunks being use-once functions resolve this problem automatically, albeit making soundness
much more harder to prove, see Section 6.

An important consequence of restricting closure potential to zero is that only the last function
argument is allowed to yield any potential, which in turn gives AARA a strong preference for fully
uncurried functions, which do not suffer from this limitation at all.
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Beyond Worst-Case Bounds It is also possible to use AARA to derive lower bounds on the best
case resource usage and to precisely characterize the resource usage of programs (Ngo et al., 2017).
For a precise characterization, we simply remove the weakening rules and require that all potential
needs to be consumed in every branch. Such precise characterizations are interesting in the context
of software security, where we would like to show the absence of side channels based on resource
usage.

For lower bounds, we also remove weakening but allow to create potential. However, we require
that all potential needs to be used to pay for cost at some point. Intuitively, the goal is to spend as
much potential as possible to justify a tighter lower bound.

The original AARA corresponds to an affine treatment, the precise analysis to a linear
treatment, and the lower-bound analysis to a relevant treatment of potential.

5. Non-Linear Potential Functions

AARA, as introduced by Hofmann and Jost (2003), was well received by the research community.
However, the correlation of the technique with linear potential functions, and thus linear bounds,
has often been cited as its main limitation. Indeed, the association of a constant potential with
each element of a data structure seemed to be the focal point that enabled local and intuitive
typing rules as well as the type and bound inference via off-the-shelf LP solvers. A naive exten-
sion to non-linear potential functions would require non-linear constraint solving an additional
expressivity in the type system as offered by dependent types (Martin-Lof, 1984) or refinement
types (Freeman and Pfenning, 1991). An AARA in such a setting would not share many of the
characteristics of the original linear version and it is not clear if the potential method would
provide advantages (Radicek et al., 2017).

Maybe unexpectedly, even to the surprise of Hofmann and Jost, it could be demonstrated that
AARA can be extended to non-linear potential functions while preserving all benefits of the tech-
nique, including local typing rules and reducing bound inference to linear constraint solving. The
first such extension uses univariate polynomial potential functions and has been developed by
Hoffmann and Hofmann in 2009 (Hoffmann and Hofmann, 20106). Subsequently, extensions
to multivariate polynomial potential functions (Hoffmann et al., 2011) and exponential potential
functions (Kahn and Hoffmann, 2020) have been developed. Recently, an AARA with logarithmic
potential has been proposed (Hofmann et al., 2021; Hofmann and Moser, 2018).

The extensions to polynomial potential and exponential potential are conservative over the
original linear system. However, while potential in linear AARA can be parametric in the values
of general recursive types (Jost et al., 2010, 2009a), polynomial potential has been introduced for
a particular form of inductive types® only (Hoffmann et al., 2017) and exponential potential has
only been developed for lists thus far. Polynomial potential can be a function of either the size
or the height of data structures (Hoffmann, 2011). In this section, we focus on lists for which the
notions of height and size coincide.

5.1 Univariate polynomial potential

Univariate polynomial AARA (Hoffmann and Hofmann, 2010b) is a conservative extension of
linear AARA (Hofmann and Jost, 2003). The only type rules that differ between the systems are
the ones for constructing and destructing data structures. In the following, we explain the idea for
lists. It can be extended to other tree-like inductive types.

Resource Annotations In linear AARA, list types are annotated with a single non-negative ratio-
nal number g that defines the potential function g-#, where n is the length of the list. In
univariate polynomial AARA, we use potential functions that are non-negative linear combina-
tions of binomial coefficients (Z), where k is a natural number and 7 is the length of the list.
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Consequently, a resource annotation for lists is a vector g = (qy, . . . » qx) € (Q=0)* of non-negative
rational numbers and list types have the form LEI(A).

One intuition for the resource annotations is as follows: The annotation g assigns the potential
q1 to every element of the data structures, the potential g, to every element of every proper suffix
(sublist or subtree, respectively) of the data structure, g3 to the elements of the suffixes of the
suffixes, etc.

The choice of binomial coefficients is beneficial compared to the standard basis (n, n?, .. ) ifwe
ensure that potential functions are non-negative by only allowing non-negative potential annota-
tions. With non-negative coefficients, functions like (g) cannot be expressed in the standard basis.
Binomial coefficients with non-negative coefficients are also a canonical choice since they are the
largest class of inherently non-negative polynomials (Hoffmann et al., 2011).

The Potential of Lists Let us now consider the construction or destruction of non-empty lists. For
linear potential annotations, we can simply assign potential to the tail using the same annotation
as on the original list. This would however lead to a substantial loss of potential in the polynomial
case. For this reason, we use an additive shift operation to assign potential to sublists. The additive

shiftof g=(q1, . .., qx) is
AP =(q1 +9292+43 > qk—1 + k> qk) -
The definition of potential ®(v: A) of a value v of type A is extended as follows:
®([]:L94)) =0
D(vy vy 1 LI(A)) = ©(v; 1 A) + q1 + D(v, : LI9(A)

The potential of a list can be written as a non-negative linear combination of binomial
coefficients. If we define

k
pmi)=> C)q
i=1

then we can prove the following lemma.

Lemma 1. Let £ =[v; ..., v,] be a list whose elements are values of type A. Then
n
D(E:LUA) = (n, ) + Y P(vi:A).
i=1

The use of binomial coefficients instead of powers of variables is not theoretically appealing but
has also several practical advantages. In particular, the identity

n+1 n n
Z q,-( ; >=q1+ Z ‘1i+1<i)+ Z %‘(l.)
i=1,....k i=1,...k—1 i=1,....k

gives rise to a local typing rule for cons and pattern matching, which naturally allows the typing
of both recursive calls and other calls to subordinate functions in branches of a pattern match.

Typing Rules Like for linear potential functions, the type rules define a judgment of the form
r I—Zr e:A.

The rules of linear AARA remain unchanged except for the rules for the introduction and elimi-
nation of inductive types. Below are the rules for lists. To focus on the novel aspects, we assume
that the cost constants are zero. They can be added like in the linear case.
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——  (U:N1L) = = (U:Cons)
- - nil : IP(A) x1: A, x  LIP(4) F2- cons (x1,%2) : LP(A)
I'Hre:B  Toxi:Ax: L9PA) F- ¢ B
(U:MATL)

F,x:Lﬁ(A) I—Zr case x{nil < ¢y | cons (x1,x2) <~ e1}:B

The rule U:NIL requires no additional constant potential and an empty context. It is sound to
attach any potential annotation p to the empty list since the resulting potential is always zero. The
rule U:CONS reflects the fact that we have to cover the potential that is assigned to the new list
of type LP(A). We do so by requiring x, to have the type L9®)(A) and to have p, resource units
available. The rule U:MATL accounts for the fact that either ey or e is evaluated. The cons case is
inverse to the rule U:CONS and uses the potential associated with a list: p; resource units become
available as constant potential and the tail of the list is annotated with <i(p).

Example: Alltails Recall the function append from Section 3.2 and consider again the resource
metric for heap space in which all costs are 0 except for ccops, » which is the cost of list cons.

fun append (x,y) = case x {nil < y| cons (h,t) — let z=append(t,y) in cons (h,z))}

With this metric, heap-space cost for evaluating append(x,y) is |x| - ccons,. This exact bound is
reflected by the following typing:

The typing is similar to the one that is discussed in Section 3.2. However, we are considering
the special case in which resulting potential is zero as indicated by the annotations on the result
type. Moreover, we have added quadratic potential annotations. For instance, the annotated type
Lconsa 9 (A) on the first argument x of append assigns the potential |x| - ccons, + (I’ZC‘) -0. To give
the most general type for append with quadratic potential, we need multivariate annotations. More
details are discussed in Section 5.2.

For an example with non-trivial quadratic annotations, consider the following function alltails
that creates a list that is a concatenation of all tails, that is, all proper suffixes, of the argument.

fun alltails x =
case x {nil < nil | cons (h,t) — share t as t;,t, in let y=alltails(t;) in append(t,, y)}

With the heap resource metric, the resource consumption of the alltails is (g) - CConsy» Where n is
the length of the argument. In the univariate system, this exact bound can be expressed by the
following typing:

alltails ; LOcConsa) (4) LL0, 1000 (4)

The key aspect of the type derivation is the treatment of the cons case of the case analysis
in the function body. The types of the variables are i : A and t : L(€Consa-Consa) (A). The annota-
tion (cConsy» CConsy) s the result of the additive shift <1(0, ccons, ). The potential is then shared
as t; : L(®Consa)(A) to match the argument type (and cover the cost) of the recursive call and
t, : Lcconsa)0(A) to match the argument type of append.

Note that we assume AY (A, A), that is, the type A does not carry potential. This is needed
because elements of the inner list are copied. In the multivariate system, we can type the function
alltails with element types that carry potential.

https://doi.org/10.1017/5S0960129521000487 Published online by Cambridge University Press


https://doi.org/10.1017/S0960129521000487

746 J. Hoffmann and S. Jost

Soundness The soundness theorem has the same form as for linear AARA. Given the appropriate
extensions of sharing and subtyping, the change in the proof is limited to the cases that involve
the syntactic forms for lists.

Theorem. Let T’ |—g— e:Aand V T IfViel v|(p,p') for somevand (p,p’) then ®(V :T) + g >
pand ®(V:T)+q— (®(v:A)+4q)=p—7p.

The proof is by induction on the evaluation judgment and an inner induction on the type
judgment. The inner induction is needed because of the structural rules.

Type Inference and Resource-Polymorphic Recursion The basis of the type inference for the uni-
variate polynomial system is the type inference algorithm for the linear system, which reduces the
inference of potential functions to LP. A further challenge for the inference of polynomial bounds
is the need to deal with resource-polymorphic recursion, which is required to type many functions
that are not tail recursive and have a superlinear cost.

It is a hard problem to infer general resource-polymorphic types, even for the original linear
system. A pragmatic approach to resource-polymorphic recursion that works well and efficiently
in practice is to apply so-called cost-free typings that only transfer potential from arguments to
results. More details can be found in the literature (Hoffmann and Hofmann, 2010a).

5.2 Multivariate polynomial potential

Linear AARA is compositional in the sense that the typeability of two functions f and g is often
indicative of the typeability of the function composition f o g. However, this is not the case to the
same extent for univariate polynomial AARA. Consider for instance the function append : L(1) x
L(1) — L(1) for integer lists and the sorting function quicksort : L(1) — L(1). Using univariate
AARA, we can derive a linear bound like 7 for append and a quadratic bound like n? for quicksort.
Here, we assume that the lengths of the two arguments of append are n; and n,, respectively, and
that the length of the argument of quicksort is n. Now consider the function

fun app-gs (x,y) = quicksort(append(x,y)).

Assuming the bounds #; and n2, a tight bound for the function app-gs is n% +2ni1ny + n% + ny.
This bound is not expressible in the univariate system, but one might expect that a looser bound
like 4n? + 4n3 + ny is derivable. However, the function app-gs is not typeable in univariate AARA
since univariate potential functions cannot express suitable invariants in the type derivation of
append. The desire to improve compositionality of polynomial AARA and to express more precise
bounds leads to the development of multivariate polynomial AARA in 2010 (Hoffmann et al,,
2011).

Multivariate AARA is an extension of univariate AARA. It preserves the principles of the
univariate system while expanding the set of potential functions so as to express dependen-
cies between different data structures. The term multivariate refers to the use of multivariate
monomials like n17, as base functions. They enable us to derive the aforementioned bound
n? + 2nym; + n3 + ny for the function app-gs.

Resource Annotations and Base Polynomials Other than in univariate, potential annotations are
now global and there is exactly one annotation per type. More formally, we can write data types
that do not contain function arrows as pairs (7, Q) so that t is a standard type like L(L(1)) and the
potential annotation Q = (g;)icr(r) is a family of non-negative rational numbers g; € Qxo.

The (possible infinite) index set I(t) contains an index i for every base polynomial p; for
that type. In a well-formed potential annotation only finitely many g; are larger than 0. For
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example, we have I(L(1)) = N and p;(n) = (’:) The potential defined by an annotation Q is then
> ic1zq1y 4iPi- Note that the constant potential ((g)) is also included in the global annotation. As

another example, we have I(L(1) x L(1)) =N x N and p(;j(n, m) = () (']”)

The Potential of Lists and Pairs In general, the base polynomials %t are inductively defined
for inductive data structures and can, for example, take into account the number of certain
constructors used in that data structure. For lists and pairs, the inductive definition looks as
follows.
HB(unit) = {A(v) 1}
B(t1 X 1) = {A({v1, v2)) pr(v1)-p2(v2) | pi € B(7:)}
BL) = Mvis-val) Y. T pivi) 1 keN, pe B(r)}

I<ji<e-<jk=n 1<i<k

The last part of the definition is based on the observation that typical polynomial computa-
tions operating on a list v=[ay, . . ., a,] consist of operations that are executed for every k-tuple
(@ir> .. .>ay)with 1 <i; <- .. < i <n. Thesimplest examples are linear map operations that per-
form some operation for every a;. Another example are common sorting algorithms that perform
comparisons for every pair (a;, a;) with 1 <i < j < n in the worst case.

The potential functions are non-negative linear combination of base polynomials.
Consequently, potential annotation consists of coefficients of base polynomials. To assign a
unique name to each base polynomial, define the index set .# () to denote resource polynomials
for a given type 7.

A (unit) = {*}
F (11 x 1) = {(i1,i2) | iy € F(11) and i, € I (12)}
F(L(7)) = {lir, ..., ix] | k= 0,i; € F(1)}

For each i € # (1), we define a base polynomial p; € () as follows: If t = unit or r = A — B for
some A, B, then

p«(v)=1.
If t = 11 X 13 is a product type and v = (vy, 1), then
Plinin) (v, v2)) = piy (V1) - pi (v2) .
Ift=L(z")isalistv=[vy,...,v,], then
Plivid® =" D i) pi ().
1<ji<-<jk<n

If we identify the index [, . . ., *] with its length, then we have I(L(1)) = N and I(L(1) x L(1)) =
N x N as previously asserted.

Typing Rules For use in the type system, we have to extend the definition of resource polynomials
to typing contexts, which are treated like a product type. The typing rules define a multivariate
resource-annotated typing judgment of the form

IQFe: (7,Q)

where e is an expression, ['; Q is a resource-annotated context, and (t, Q') is a resource-annotated
type. The intended meaning of this judgment is that if there are more than ®(I"; Q) resource units
available then this is sufficient to pay for the cost of the evaluation e and there are more than
®(v:(t, Q') resource units left if e evaluates to a value v.
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The rules for lists are given below. We again leave out the cost constants to focus on the novel

parts.
q0 = q; Q=<(Q)
: 7~ (M:NIL) — (M:CONS)
?; QFnil : (L(z), Q) x1:T, %2:L(7); Q= cons (x1,x2) : (L(7), Q)
R=m; (Q I';REe:B P=<1(Q) [, x1:7,x0:L(1);P ey : B
(M:MATL)

I, x:L(1);QF case x{nil < e; | cons (x1,x,) <> e;}:B

A key notion in the type system is the multivariate additive shift <i1(Q) that is used to assign
potential to typing contexts for list cons and for contexts that result from a pattern match on lists.
We omit the definition here for brevity, but it is crucial to note that the multivariate shift can be
expressed with simple linear inequalities on annotations like the univariate shift.

In the rule M:CONs, the additive shift <1;(Q’) transforms the annotation Q' for a list type into
an annotation for the context x;:4, x2:L(7). In the rule M:MATL, the initial potential defined by
the annotation Q of the context I', x:L(7) has to be sufficient to pay the costs of the evaluation
of e; or e; (depending on whether the matched list is empty or not) and the potential defined by
the annotation Q' of the result type. To type the expression e; of the nil case, we use the projec-
tion ng (Q) that results in an annotation for the context I'. To type the expression e, of the cons
case, we rely on the shift operation <11.(Q) for lists that results in an annotation for the context
I, x1:7, x:L(7).

Like in the linear and univariate systems, sharing of variables is permitted but slightly more
complex as we have to encode a basis transformation for higher-degree polynomials.

Example: Append Revisited Consider again the functions append and alltails from the example
in Section 5.1. In the univariate polynomial system, we derived the following types, considering
quadratic and linear annotations. For simplicity, we assume that the element type A is the unit
type 1 here.

append : L0 (1) x 100 (1) 2L2, 100(q)

alltails : L(%¢const) (1) 20, 1 (00)(7)
To express the equivalent potential annotations in the multivariate system, we can derive the types
(lppe”d: (L(l) X L(l), Q) — (L(l)’ Q/) and  alltails : (L(l), P) N (L(l),P/)

where

« all constant annotation are zero, that is, g(,;j) = q/[] =pp= ph =0,
« the non-constant potential assigned to the result of both functions is zero, that is, q/[ o=

D) = Pla) = Plas) =0

o the argument potential of append is linear in the first argument and zero otherwise, that is,
4([+1.1) = CCons AN q((1,[+]) = q([x%1,11) = d([L.[+]) = 4([+].[+])) = 0> and

« the argument potential of alltails is quadratic, that is, pr«) = 0 and p[. ] = ccons; -

Now consider the case that we mentioned at the beginning of this subsection and consider the
following function:

funf(xy) = let z=append(x,y) in alltails(z)

We can assign the type

https://doi.org/10.1017/5S0960129521000487 Published online by Cambridge University Press


https://doi.org/10.1017/S0960129521000487

Mathematical Structures in Computer Science 749

where g(«,11) = CConsi> 4([1,151) = 0> d(lxx111) = G([1 L)) = G([#),[x]) = CConsy» and p; =0 for all
indices i. This is a tight bound that exactly reflects the cost (n + (";m)) - CCons, if n is the length of
the first argument and m is the length of the second argument. Note that the cost # - ccops, is the
cost of the call to append and ("’;m) - CCons, is the cost of the call to alltails.

With the multivariate system, we are also able to derive most general type of append with

quadratic annotations. We have

append: (L(1) x L(1), Q) — (L(1), Q)

with the following constraints:

a0 = 4q; (11 = (s T CConsy 405D = i)
Al Z Dy AD Z Dl A1) = D]

Soundness We can prove the familiar soundness theorem for AARA. The proof follows the same
structure as for linear AARA.

Theorem (Soundness of AARA). Let I'; Qle:Aand V:T. If Vel v|(p, p') for some v and
(b, p') then Dy(Ts Q) > p and Dy (T3 Q) — D(v: A)> p—p.

5.3 Beyond polynomial potential

AARA can also be used with non-polynomial potential functions. A key property for retaining
compositionality is to identify function spaces for potential functions that are closed under opera-
tions like addition, multiplication, and composition. Another desired property is that potential
functions decompose well when constructing and destructing data structures. For example, if
f is a potential function and a:: as a non-empty list, then we would like to be able to express
fla:as) =7, cigi(a) + dihi(as) as a weighted sum of potential functions g; and h; for the head a
and the tail as, respectively. Another consideration is the interaction with (multivariate) polyno-
mial potential functions. Ideally, for a set of potential functions &7 there exists a function space
with the aforementioned properties that includes both 22 and the polynomial potential functions.

Exponential Potential Functions For exponential potential functions, Stirling numbers of the sec-
ond kind have these desired properties. Stirling numbers of the second kind {}} = % Zf:o (=1

(];)(k —i)" count the number of ways to partition a set of n elements into k subsets. Recent

Zﬂ} with arguments #, k offset by 1
n+1

as base functions. Potential functions for lists then have the form >, p; - {’ h }, where n is the
length of the list and p; € Q>¢. In the type system, the coefficients p; can be associated with list
types P (A) like in the (univariate) polynomial case.

Stirling numbers of the second kind satisfy the recurrence { Zii} = (k+ D{,} + {¢} This
gives rise to a definition of a shift function that can be used to distribute potential when construct-
ing or destructing lists. If a list £ : IP(A) is deconstructed in a pattern matching, then the tail of £
can be assigned the type LZI(A) such that g; = (i + 1)p; + piy1. Here p; and g; are the coefficients
of {Zﬁ} This shift operation yields a linear relation, as the coefficient of a given p; is a constant
scalar. Thus, inference can again be automated via LP. Other exponential bases, like Gaussian
binomial coefficients, could be similarly automated.

Because {Zﬂ} = % Z?:o (— l)kfi(l,?)(i +1)" € O((k + 1)), the offset Stirling numbers of the

second kind can form a linear basis for the space of sums of exponential functions. Each function
An.b" with b > 1 can be expressed as a linear combination of the functions )m.{”Jrl }. The function

work (Kahn and Hoffmann, 2020) uses Stirling numbers {

k+1

An{z_ﬂ} is also non-negative for natural #» and non-decreasing with respect to n. While there are

https://doi.org/10.1017/5S0960129521000487 Published online by Cambridge University Press


https://doi.org/10.1017/S0960129521000487

750 J. Hoffmann and S. Jost

exponential functions that cannot be expressed by the Stirling numbers, they form a maximally
expressive basis in the following sense. It is not possible to express additional potential functions
using a different basis without losing expressibility elsewhere. The standard exponential basis is
not maximal in this sense (Kahn and Hoffmann, 2020).

It is possible to combine the existing polynomial potential functions with these new exponen-
tial potential functions to not only conservatively extend both, but further represent potentials

functions with their products. This leads to potential functions of the form Y,  pp - () {Zi} }. It

is straightforward to find a linear constraints that describe a shift operation for this basis.
Logarithmic Potential Functions While exponential potential might be required to type programs
with overall polynomial resource consumption, it is arguable that logarithmic bounds and loga-
rithmic potential functions are more relevant for many programs. Hofmann was in fact interested
in logarithmic potential functions for many years and actively worked on this subject with Georg
Moser prior to his death (Hofmann and Moser, 2018).

Logarithmic potential is particularly challenging in the context of AARA because it seems to
usually require global reasoning (“split the list in the middle until it is empty”). This is in contrast
to the polynomial and exponential case, where potential functions can be decomposed to a sum of
potential for every sublist. More concretely, if we assign the potential log, # to a list, then differ-
ence log, n — log, (n — 1) remains as a spill if we assign the same logarithmic potential to the tail
of the list in a pattern match. This spill cannot be directly assigned to the tail of the list like in the
polynomial case where, for example, the spill (}) — (”;1) =n — 1 can be directly assigned to the
tail of a list.

To address this issue, Hofmann and Moser propose (Hofmann and Moser, 2018) to use
potential functions

Plap)(£) =log(a- |£] + b)

for a, b > 0.° When constructing or deconstructing a list, we can relate the potential of a list x :: xs
and its tail xs with the identity p(, ) (x :: x5) = p(4,p+a)(x5). The downsides of this approach are that
inferring potential functions requires non-linear constraints and that it is not directly clear how
to restrict the type system to a finite set of base functions.

6. Lazy Evaluation and Co-Recursion

Lazy evaluation allows to defer the evaluation of subexpressions until the first time they are
needed at runtime; these unevaluated subexpressions are referred to as thunks. Upon the first
time a reference to a thunk is accessed, the subexpression in memory is replaced by the computed
value, which is then readily available for subsequent accesses. Lazy evaluation enables the practi-
cal implementation of co-recursive algorithms that construct and work on possibly infinite data
structures.

At first glance, a thunk can be treated like a function without an argument, similar to a function
of type 1-44%5 A, Accounting for lazy evaluation thus also requires the solutions needed to deal
with higher-order AARA as well. A crucial point of lazy evaluation is that thunks that are not
needed do not incur any evaluation cost. The AARA for lazy evaluation accounts for this in two
ways:

(1) A constant part of a thunks evaluation cost may be paid through its g annotation, just like
for a function of type 1-4/%> A. However, treating a thunk like a function would imply that
this cost is paid for every access to it. Instead, the g annotation may be prepaid at any time,
effectively changing the thunks type to a function type similar to 1-2£%5 A, which can then
be shared. The choice is either to pay the fixed cost g for every access or just once, the latter
having the disadvantage that the cost is accounted for even if the thunk is never accessed at
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all. This decision can be left to the LP solver, which picks the solution that yields the overall
lower cost bound.

(2) Another part of a thunks evaluation cost may be paid through the potential captured in
its closure. Since we know that a thunk is evaluated at most once, the types in its closure
can safely be allowed to have potential, unlike for function closures requiring I' Y (I, I")
as mentioned before. Even if a thunk references itself, there is no unsound duplication of
potential: any thunk that needs to access itself before it is evaluated to weak-head normal
form will never evaluate at all. Correspondingly, implementations of lazy evaluation usually
mark all thunks currently under evaluation to prevent entering indefinite loops, a technique
commonly referred to as black-holing. The invariant used in the soundness proof of the
AARA for lazy evaluation similarly uses black-holing to track the potential within self-
referencing thunk closures.

First explored by Hugo Simées, it turned out to be quite difficult to find a suitable invariant
for the soundness proof of the AARA for a lazily evaluated language (Simdes, 2014; Simdes et al.,
2012).

Building on this, the successful analysis of co-recursive programs required an even more intri-
cate proof invariant. The key idea was to track a single type A per memory location, whose
potential must then share to the multi-set of types Ay, . .., A; associated with all mutually exist-
ing references to that location, that is, AY (Al,...,A;) must be satisfied (Jost et al., 2017;
Vasconcelos et al., 2015). In retrospective, it turned out that this condition is somewhat similar
to the write-view in the object-oriented setting.

The resulting AARA is then capable to infer, for an example, that function repeat has finite
heap-space usage, while repeat ’ has an infinite hunger for heap space. Note that both functions’
are functionally indistinguishable:

repeat x let xs = x:xs in xs -- repeat 8 = [8,8,8,8,...
repeat’ x = x : repeat’ x

7. Imperative Programs

AARA is mostly associated with type systems for functional languages, following the original
presentation of Hofmann and Jost (2003). However, the technique can also be integrated with
program logics for programs that modify state. If potential is associated with data structures, then
separation logic is a natural framework for introducing potential, as explored by Atkey (2010).
If potential is associated with integers, then a standard Hoare logic can be the foundation for an
automatic analysis (Carbonneaux et al., 2017, 2015). Moreover, Hofmann and his collaborators
have applied AARA to object-oriented languages (Bauer, 2019; Bauer and Hofmann, 2017; Bauer
et al., 2018; Hofmann and Jost, 2006; Hofmann and Rodriguez, 2009; Rodriguez, 2012).

Separation Logic Separation logic is a program logic for succinctly reasoning about mutable data
structures and pointers (Ishtiaq and O’Hearn, 2001; Reynolds, 2002). A key concept is the sepa-
rating conjunction P * Q, which is satisfied by a program state if it can be split into two disjoint
parts such that one part satisfies P and the other part satisfies Q. For example, a linked list can be
specified by the (recursive) formula

Iseg(x, y) £ (x =yAemp)V (Ad,z.x+— (d,z) xIseg(z, y)) .

Here, x, y, and z are memory addresses on the heap and x — (d, z) expresses that address x con-
tains the pair (d, z). To satisfy this formula, either x = y and the list is empty (emp is satisfied by an
empty heap) or the heap can be split into two disjoint parts: the first part contains head at address
x and the second contains the tail, starting at address z and ending at address y.
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Atkey (2010) extended machine states with non-negative numbers that represent the available
potential and separation logic with a predicate ¢ that can be satisfied by one potential unit in
the machine state. When used in a separating conjunction P ¢, the state has to be split into
one potential unit and an empty heap to satisfy ¢, and the remaining heap and potential units
to satisfy P. For example, a list with two potential units per element can be specified with the
following formula:

Iseg (x, y) £ (x=yAnemp)V (3d,z. x> (d,2) * o x o xlsega(z, ).

While the heap is treated linearly in separation logic, potential can be treated as an affine
resource. The potential annotations can also be inferred via LP like in the linear case (Atkey,
2010).

Such diamond predicates have been used with concurrent separation logic to verify progress
properties of non-blocking concurrent data structures (Hoffmann et al., 2013). An extended ver-
sion of this separation logic has been implemented in the Coq proof assistant to prove tight bounds
on complex data structure operations such as union-find (Charguéraud and Pottier, 2019; Mével
etal., 2019).

Quantitative Hoare Logic and Integers Similarly, potential functions can also be integrated in
Hoare logic. Carbonneaux et al. (2014, 2015) have introduced a Hoare logic where predicates map
states to non-negative numbers instead of Booleans as in standard Hoare logic. Using these pred-
icates, a quantitative Hoare triple {®} S {®'} is valid if ®(c) > n + ®’(0”) for all states o and o’
such that (S,0) U, o’. Here, (S,0) U, o’ is an evaluation judgment that expresses that the state-
ment S evaluates to state o’ using # resources if executed in state o. Like in the functional case,
® (o) must provide sufficient potential for covering the resource cost of the execution and the
potential ®'(c”).

Quantitative Hoare triples enable us to reason compositionally about sequential compositions
S1382.If (0, S1) Yn o’ and (07, $2) Ym0, we get ®(0) > n+ ®'(0’), ' (0') > m+ ®”(¢0”), and
thus ®(o) > (n+ m) + ®”(¢”). This provides the justification for the following familiar looking
rule:

{@}Si{e} {95 (2"}
{®) §155; {@")

In the previous rule, ® gives a bound for S;; S, through the intermediate potential ®’, even though
it was derived on S; only. For loops, the potential functions before and after the loop body have to
be identical, similar to an invariant.

The derivation of a resource bound using potential functions is best explained by example. If we
use the tick metric that assigns cost n to the function call tick(n) and cost 0 to all other operations,
then the resource consumption of the following statement is 2|[x, y]| = 2 max (y—x, 0):

while (x<y) { x=x+2; tick(1); }

Figure 3 shows a derivation of this bound in the quantitative Hoare logic. We start with the
initial potential ®¢ = 2|[x, y]|, which we also use as the loop invariant. For the loop body, we
must derive a triple {®o} x=x+1I;tick(1) {Po}. We start with the potential 2|[x, y]| and the fact that
[[x, y]| > O before the assignment. If we denote the updated version of x after the assignment by
x/, then the relation 2|[x, y]| = 2|[x/, y]| + 2 between the potential before and after the assignment
x=x+1 holds. This means that we have the potential 2|[x, y]| 4 2 before the statement tick(2). Since
tick(2) consumes 2 resource units, we end up with potential 2|[x, y]| after the loop body and have
established the loop invariant again.

https://doi.org/10.1017/5S0960129521000487 Published online by Cambridge University Press


https://doi.org/10.1017/S0960129521000487

Mathematical Structures in Computer Science 753

{5 0+2:[x, ]|}
while (x < y) {
{x<y; 0+2:|[x, y][}
x=x+1;
{x<y; 24 2:|[x, ¥l [}
tick(2);
{x <y 0+2:|[x,y][}

{x>y;042:|[x, y]|}

Figure 3. Derivation of a tight bound on the number of ticks for a for loop. The parameters K > 0 and T > 0 denote concrete
but arbitrary constants.

To automatically find derivations in the quantitative logic, we can start with template propo-
sitions that contain unknown coefficients for each potential assertion. One possibility is to use
potential functions that are non-negative linear combinations q;|[x, ¥]| + q2|[y, x] + g3|[z, y]| of
interval sizes (Carbonneaux et al., 2015). Another, more flexible approach is to use general polyno-
mials in integer variables (Carbonneaux et al., 2017). General polynomials create the obligation to
ensure that potential is non-negative. While it is possible to allow negative potential when deriving
a bound on the net cost (as opposed to the high watermark, i.e. the maximum amount of simulta-
neously used resources, thus including all temporarily used resources that are released again before
the end of execution), one still has to ensure the soundness of the weakening rule by preventing
the “waste” of negative potential.

7.1 Object-oriented programs

Several research works are dedicated to adapt AARA to an object-oriented imperative set-
ting: Hofmann and Jost (2006), Hofmann and Rodriguez (2009), Rodriguez (2012), Bauer and
Hofmann (2017), Bauer et al. (2018), Bauer (2019). A major difference in this setting being that
circular references are highly common place, whereas these only occur in the functional setting
concerned with co-recursion and lazy evaluation.

Consider, for example, a doubly linked list with at least three elements: any element can then
be referenced through an infinite number of access paths of arbitrary length, each going back-
and-forth between the same three nodes. This is a problem for AARA, since potential is crucially
counted by reference-path, as pointed out earlier in Section 3.5. An infinite amount of references
to a single memory location then implies that only a finite amount of these reference-paths may
be awarded potential, since an otherwise infinite potential would lead to a useless infinite upper
bound.

The key idea from Hofmann and Jost (2006) is to track two types for each entity, one for writing
and one for reading. The writing type must share to all existing reading types, thereby ensuring
that potential is soundly conserved. The different types for an object are referred to as “Views”
on that entity, which form a hierarchy of diminishing potential. In the case of circular structures,
each reference will lead to a structure of overall decreased potential, until the last view holds no
more potential and thus freely shares to an infinite amount of references as needed.

The inference must determine not only the annotated types but also the number of required
views and thus becomes much more difficult: it requires solving pointwise linear inequalities
between infinite trees labeled with non-negative rational numbers. In general, this is at least as
hard as solving the Skolem-Mahler-Lech problem, as shown by Bauer (2019). However, Bauer
could also surprisingly show that the constraints generated by the AARA are once more of a
benign shape, such that satisfiability is indeed decidable (Bauer et al., 2018), neatly mirroring the
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observation from the first paper (Hofmann and Jost, 2003), where the generated ILP turned out
to be only as difficult as the LP.

8. Parallel Evaluation and Concurrency

Apart from strict and lazy evaluation, AARA is also applicable to parallel evaluation (Hoffmann
and Shao, 2015) and concurrent programs using session types (Das et al., 2018).

Parallel Evaluation In parallel evaluation, we allow two subexpressions of an expression that do
not depend on each others result to be evaluated in parallel. The exact cost of parallel evaluation
depends on the underlying hardware features like the number of processor cores. However, we can
avoid reasoning about these low-level details by deriving bounds on a more abstract cost model
that consists of the work and the depth of an evaluation of a program (Blelloch and Greiner, 1996).
Work measures the evaluation time of sequential evaluation and depth measures the evaluation
time of parallel evaluation assuming an unlimited number of processors. One can show (see, e.g.,
Harper 2012) that a program that evaluates to a value using work w and depth d can be evaluated
on a shared-memory multiprocessor system with p processors in time K - max (%, d) for some
fixed constant K.

To derive a bound on the work, we can simply apply (sequential) AARA. To derive a bound
on a parallel composition, we need to compose potential functions using max instead of addition
like in sequential composition. However, a complication arises since potential is not only used to
cover the evaluation cost but also to assign potential to resulting data structures. A naive use of
the maximum would therefore be unsound.

One solution (Hoffmann and Shao, 2015) is to use cost-free typings to reason about parallel
composition. A cost-free typing is a type derivation in AARA with respect to the cost-free resource
metric that assigns cost 0 to every operation. While cost-free typings can trivially assign 0 to every
potential annotations, they can express how to soundly transfer potential from the inputs of the
inputs of a computation to its result.

Hoffmann and Shao (2015) applied this idea to a language with binary fork-join parallelism.
Parallel computation is explicitly introduced with a parallel let binding of the form

par x;=e; and x, =¢; ine

In the typing rule, we would type e; and e, twice: First, we split the potential in the context to type
e1 with the regular cost metric and e, with the cost-free metric. Second, we split the potential in the
context to type e; with the cost-free metric and e, with the regular metric. This rule is compatible
with the type rules for sequential computation, and the structure of the soundness proof remains
unchanged.

Session Types To reason about the work cost of concurrent processes, the potential method of
AARA can be integrated with session types (Honda, 1993; Honda et al., 1998). Session types spec-
ify communication protocols between message-passing processes, and the type rules ensure that
well-typed processes follow these protocols.

AARA has been successfully integrated with binary session types that are based on intuitionis-
tic linear logic (Pfenning and Griffith, 2015) to reason about the work performed by concurrent
systems (Das et al., 2018). Session types and AARA fit together seamlessly since both are based
on substructural logics. Apart from the traditional advantages of AARA, like type inference with
LP and amortized reasoning, resource-aware session types are naturally compositional. The key is
that processes can store potential and that potential can be transferred between processes. In this
way, session-typed protocols can contain payment schemes where processes have to send potential
to cover the cost that is incurred at the receiving process by sending a certain message.
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Resource-aware session types find applications in programming digital contracts (Das et al.,
2021) in which resource (or “gas”) consumption plays a prominent role in protecting against
denial-of-service attacks.

9. Probabilistic Programming

AARA has also been applied to derive bounds on the (worst-case) expected cost of impera-
tive (Ngo et al., 2018) and functional (Wang et al., 2020) probabilistic programs. Probabilistic
programs are equipped with probabilistic branching and sampling expressions and describe distri-
butions over possible results. For example, a functional language can be extended with a syntactic
form

flip p{H—e1 | T — e2}

for probabilistic branching, where p € [0, 1] is a probability and e, e, are expressions. The seman-
tics expression is that e; is evaluated with probability p and e, is evaluated with probability 1 — p.
For example, the function bernoulli below implements a Bernoulli process across the elements
of an input list. It terminates with probability 1 and has worst-case cost 1 - |Ist|. However, the
expected cost of bernoulli is only 1.

let rec bernoulli 1lst =
match 1st with
| [ — false
| hd::t1l —
let _ = tick 1 in
match flip 0.5 with
| H - true
| T — bernoulli tl

To derive the tight bound 1 on the expected cost, we use the following typing rule for flip
expressions:

CY(@pxT,(1—=p)xTy)
q=p-q1+1—p)-q2 Fi;qibe:A Iyqpbe:A
Ciqb flip p{H—e; | T e} A

To understand the rule, consider the expression flip p {H <> e; | T < e,} and assume that
e; requires ®; units of potential and e, requires @, units of potential. The evaluation of the
flip expression requires a weighted average of ®; and &, specifically p - &1 + (1 — p) - ®,. This
should be covered by the typing context I and constant potential g, both of which are shared
between branches. The distribution of this sharing is expressed using a sharing relation t Y (1, 12),
which apportions the potential indicated by t into two parts to be associated with 7; and 13,
alongside a potential-scaling operation.

Proving the soundness of the expected resource analysis is more challenging than in the deter-
ministic case. It relies on a probabilistic operational cost semantics based on Borgstrom et al.’s
trace-based and step-indexed-distribution-based semantics (Borgstrém et al., 2016). It is also
possible to assign potential to symbolic probabilities (Wang et al., 2020). However, automatic
inference is still possible using linear constraints only.

(L:FL1P)

10. Sponsored Research Projects
AARA was used notably within the following research projects:

https://doi.org/10.1017/5S0960129521000487 Published online by Cambridge University Press


https://doi.org/10.1017/S0960129521000487

756 J. Hoffmann and S. Jost

Project Mobile Resource Guarantees The “Mobile Resource Guarantees” (MRG) project (Mobile
Resource Guarantees, 2002 — 2005) was funded from 2002 to 2005 under the EU FP5-IST funding
scheme with a budget of 1.252.000 EUR. Principal investigators were Don Sanella (Coordinator),
David Aspinall, Stephen Gilmore, Ian Stark from the University of Edinburgh, and Martin
Hofmann from LMU Munich. A total of 19 researchers were involved.

MRG developed the infrastructure needed to endow mobile code with independently verifiable
certificates describing its resource behavior (space, time, etc.). These certificates are condensed
and formalized mathematical proofs of a resource-related property which are by their very nature
self-evident and unforgeable (proof-carrying code). Arbitrarily complex methods may be used by
the code producer to construct these certificates, but their verification by the code consumer will
always be a simple computation.

One way to produce proofs of resource bounds was provided by the available AARA at the
time, which was implemented as a part of the Camelot compiler produced within the project. The
bytecode produced by the compiler included a protected encoding of the annotated type deriva-
tion. The proof lies then in the verification that the supplied annotated type derivation complies
with the AARA type rules and fits the program, which is significantly easier as a full annotated
type inference.

Project EmBounded The “EmBounded” project (Embounded, 2005 — 2008) was funded from
2005 to 2008 under the EU FP6-IST funding scheme with a budget of 1.479.377 EUR. Principal
investigators were Kevin Hammond (Coordinator), Roy Dyckhoff from St Andrews; Greg
Michaelson, Andrew Wallace from Heriot-Watt; Martin Hofmann, Hans-Wolfgang Loidl from
LMU Munich; Jocelyn Sérot from Lasmea, Clermont-Ferrand; Christian Ferdinand, and Reinhold
Heckmann from AbsInt GmbH, Saarbriicken. Several more researchers contributed to the project
for a total of at least 190.5 person-months.

EmBounded identified, quantified, and certified resource bounds for a domain-specific high-
level programming languages called “Hume” which is targeted at real-timed embedded system.
The AARA at the time was implemented into the compiler produced within the project; numerous
resource metrics were available: heap- and stack-space usage as well as WCET.

Within the EmBounded project, WCET is measured in actual processor clock cycles for the
target processor Renesas M32C/85. All possible building blocks produced by the Hume com-
piler were analyzed on the low level by the experts at AbsInt GmbH, Saarbriicken, giving fixed
WCET bounds for each block using abstract interpretation methods. This information was then
lifted to the high-level language through the cost constants of the AARA depicted earlier. For this
to be precise, some cost constants had to be parameterized further, for example, the number of
clock cycles required for returning after calls, branching operations or even subexpressions (cret3),
depends on the total number of return labels within the entire program (Jost et al., 2009a,b).
The implementations thus required a great deal of attention to details. The combined analysis
delivered a WCET bound less than 34% above the worst measured runtime for the programs
considered in the project, such as an inverted pendulum controller and line tracking by image
recognition.

11. Conclusion

In the past two decades, AARA grew from Hofmann’s ideas for implicitly characterizing the
complexity class PTIME into an active research area that studies the (automatic) analysis of the
resource requirements of programs. AARA evolves steadily and preserves the principles that have
been established in Hofmann and Jost’s seminal work (Hofmann and Jost, 2003): local inference
rules and easily checkable bound derivations, a soundness proof with respect to a cost semantics,
amortized reasoning, and bound inference via numeric optimization.
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We and many others who work on AARA have been inspired not only by Hofmann’s works
but also by his vision, ambition, and optimism. While there has been great progress in automatic
resource analysis, many open problems remain. Among them are smoothly integrating manual
and automatic analyses, automating bound inference for object-oriented programs, and taking
into account automatic memory management. We hope that this survey will be of use for iden-
tifying and ultimately solving such open problems, and that Hofmann’s work will continue to
inspire researchers in this area.
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Notes

1 Not to be confused with the obsolete and haplessly named notion of benign sharing (bs) within the same paper, that had
been used to exclude program failure due to access attempts to previously deallocated memory addresses.

2 We omit pair destruction here and allow function definitions receiving multiple arguments at once for simplicity.

3 Let vy, vy, v¢ denote any well-typed runtime values associated with the variables x, h, t, respectively. We must then have
vx = cons (vy, v¢) and thus by ®(vy : LP(A)) = p + P(vj, : A) + @ (v : LP(A)) the potential is preserved. Equivalently, since v;
is a list one element short of list v,, the potential p of a list node becomes available at top level.

4 In this survey, as in the literature on AARA, we consider a potential function that is defined by a type like L°(L?(unit)) to
be linear. It could as well be considered a quadratic function as the potential 3 is assigned to the elements of each inner list,
which corresponds to the bound #n - m, where n is the length of the outer list and m is the maximal length of the inner lists.

5 Values of these inductive types correspond to trees with nodes that have an arbitrary but fixed branching number.

6 For a trees t, we would use potential functions a - |t|; + b, where |t|; denotes the number of leaves in the tree.

7 Defined here in Haskell syntax, since Martin Hofmann was not so much interested in laziness.
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