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1. Introduction. The factorization method, initiated by Schrôdinger [4] 
and modified and developed by Infeld [2], Duff [1], and Infeld and Hull [3], 
furnishes an elegant method of solving eigenvalue problems associated with 
certain ordinary differential equations of the second order. Not only the eigen­
values and eigenfunctions can thus be obtained, but also certain matrix elements 
associated with the eigenfunctions. Even if the method cannot be applied 
directly to eigenvalue problems, the factorization of an equation may still be of 
interest, since recurrence formulae may thus be established, e.g. for Bessel 
functions [3]. The connection of the method with Truesdell's [5] method of the 
"F-equation" has been discussed by Duff [1]. 

It is therefore of interest to give explicit forms to those differential equations 
which can be factorized. In the Infeld form of the factorization procedure— 
which is the only one we shall consider—this is equivalent to finding the solution 
of a certain differential-difference equation. 

2. The form of km(x). Infeld's form of the factorization procedure is as 
follows. The differential equation is written in the form 

(2.1) y* + [r(s, m) + \]y = 0, 

where m is a parameter which can vary continuously .The equation (2.1) can 
then (by definition) be factorized if and only if it can be written in the two 
equivalent forms 

(2.2) [£ - k(x, tn)J[£ + k(pc, tn)\y = [i(w) - xjy, 

(2.3) [£ + *(*, m + l ) j [ £ - *(*, m + l ) ] y = [ z ( m + 1) - \jy, 

where L(m) is some function of m. The necessary and sufficient condition that 
(2.2) and (2.3) shall give the same differential equation (2.1) is easily found to be 

(2.4) Km+l Km I ^ w+1 "T* ^ m z=z -L+m -^m+l» 

where we write for brevity km = k(x, m),Lm = L(m), and the dashes stand for 
differentiation with respect to x. The function km must therefore satisfy the 
differential-difference equation 

(2.5) T~ (km+i — km + kf
m+i + k'm) = 0. 
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Having found km from (2.5), Lm is given (to within an additive constant) from 
(2.4), and the function r(x, m) in (2.1) is then given by 

(2.6) r(x, m) = k'm — km
2 — Lm. 

Thus all differential equations which can be factorized can be found if we can 
find all solutions of (2.5). We are only interested in solutions1 which are con­
tinuous functions of m and x. 

Particular solutions of (2.5) have been found by Infeld and Hull [3] and Duff 
[1] under the assumption that km is the sum of a finite number of positive and 
negative powers of m whose coefficients are functions of x. We shall solve (2.5) 
under a much more general assumption, namely that the differential equation 
(2.1) can be transformed into one with rational coefficients. To be more precise, 
our assumption is the following : It is possible to find a transformation to new 
variables z, t defined by 

(2.7) tc=m' y = z^z> 
where f(t) is independent of m> such that the equation (2.1), when multiplied by 
an appropriate function of t, becomes, for all X and m, an equation whose coefficients 
are rational functions of t. 

While we do not thus find the most general solution of (2.5) (which seems to 
be quite hard to find), our solution is nevertheless one of considerable generality, 
since all equations of interest in applications up to the present appear to be 
transformable in the above way, though the assumption that /( / ) is independent 
of m imposes a certain additional restriction. 

Substituting (2.7) in (2.2), which by supposition is equivalent to (2.1), we 
find that (2.1) becomes 

fgz + {if g + ffg)i + if g +fk + gifkm - km
2 -Lm+ \)]z = 0, 

where the dots denote differentiation with respect to t. According to our 
assumption, the ratios of the coefficients of z, z, z, \z are rational functions of /. 
Using the fact that the sum, product, etc. of two rational functions is also a 
rational function, and that the derivative of a rational function is also rational, 
it is then easily shown that the functions/2, fkm — km

2 are rational functions of /. 
Similarly, using (2.3), we find that fkm+i + &m+i2, and hence also fkm + km2, 
is a rational function. Hence /2, fkm, km

2 are rational functions, from which it 
follows that km/f is also rational. Thus we have 

(2.8) /(/) = [R(t)]K km(t) = Rm(t)[R(t)]K 

where R(t), Rm(t) are rational functions of /, of which R(i) is independent of m. 

^ h e whole factorization procedure becomes quite trivial if solutions which are discontinuous 
in m are allowed. We may, for instance, define k(x,tn) arbitrarily for 0 < m < 1. By successive 
use of (2.5) with different values of m, we may then determine a function k(x,m) which 
formally satisfies (2.5), but which is, in general, discontinuous for m = 0, =b 1, ± 2, . . . . 
Such solutions are, of course, of no use in eigenvalue problems. 
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Using (2.8) and the first of (2.7), (2.5) becomes 

(2 .9) " Rm+i — Rm + Rm+1 + Rm + ^(Rm+1 + Rm) = 0. 

We now consider the solution of (2.9) in the neighbourhood of the singularities 
of Rm(f), which can only be poles. Let us first see if these poles can depend on m. 
The poles of Rm(t) are given by the roots of a polynomial equation in /, say 

(2.9a) tN + ai{m)tN-l+ . . . + aN(m) = 0. 

Since Rm(t) is a continuous function of m, the degree N of (2.9a) is independent 
of m. Let the distinct roots of (2.9a) be h(m), . . . , tM{m), where M < N. We 
may assume that these roots remain distinct from each other as m varies, 
except possibly for special values of m. 

Now by considering the solution of (2.9) in the neighbourhood of a pole of 
Rm(t)> it is easily seen that at least one of i?m+i(/) or Rm-i(t) must have a pole 
of the same order at the same point. Hence each of the functions ti(m) must be 
equal either to one of the tt(fn + 1) or to one of the ti(m — 1). Suppose that 
M'(0 < M' < M) of the t^m) are not equal to any of the tt(m + 1), but that 
each of the remaining M — M' of the ti(m) are equal to one of the ti(m + 1). 
Then there are M' of the ti(m + 1) which are not equal to any of the ti(m) ; each 
of them must therefore be equal to one of the ti(rn + 2). Also, since M — M' 
of the ti(m) are equal to one of the tt{m + 1), each of the remaining M — M' 
of the ti(m + 1) must be equal to one of the tt(m + 2). Hence every ti(m + 1) 
{i = 1, . . . , M) is equal to one of the tiirn + 2), and M' must be zero. 

Thus when m is changed into m + 1, the roots of (2.9a) can only undergo a 
permutation among themselves, multiplicities being preserved. Hence any 
symmetric function of the roots of (2.9a) is unaltered when m is changed into 
m + 1. The same is therefore true of the coefficients ai(m), . . . , aN{m) 
occurring in (2.9a). Thus these coefficients, and hence also the poles of Rm(i)r 

are periodic functions of m with period 1. 
In what follows we shall, for simplicity, assume that m is an integer, as is 

indeed assumed by the authors previously mentioned. There is no loss of 
generality in this, since only values of m which differ by an integer occur in 
(2.5), and since if k{xy m) is any solution of (2.5) then k(x, m + c) is also a 
solution, where c is an arbitrary constant (similar remarks apply to (2.9) and 
its solutions R(x, m)). Our final results will hold for arbitrary w, provided 
arbitrary constants are replaced by arbitrary continuous functions of m of 
period 1 and the function ( — l)m which occurs in some of the solutions is 
replaced by eimlr. Our solutions are then continuous functions of m, as required. 
We may now, according to what has been shown above, treat the poles of 
Rm(t) as being independent of m. 

Suppose, then, that in the neighbourhood of any pole of Rm{t) in the finite 
part of the /-plane, say t = tu we have the expansions 
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oo T> OO 

(2.io) Rm(t) = E «.(«)(' - tir+; ~ = z *.e - 'i)_1+8. 
where /> > 1, ao(m) ^ 0 (&o may be zero). Let us, as usual, denote by A the 
difference operator (A um = um+\ — um), and let us put A ' = A + 2. Substitut­
ing (2.10) in (2.9) and equating to zero the coefficients of the p lowest powers of 
(t — h), we obtain 

(2.11) 
A ( X ) dids-i) = 0, s = 0,1, . . . ,p - 2, 

P-\ 

A(J2ai Vp-i-i) + (*o - p)A'a0 = 0. 
*=o 

If p = 1, only the second of (2.11) applies. Since A(a0
2) = A#o • A'ao, we see 

that these equations, solved in succession for a0,ai, . . . , ap_i, give: either 

as(m) = cs( - 1)™, s = 0,1, . . . , £ - 1, 
or 

(as(m) = cs, s = 0,1, . . . ,p - 2, 

ap-i(m) = c m + c', 

where cs, c, cr are arbitrary constants independent of m. Thus the coefficients of 
the negative powers of (t — ti) in the expansion of Rm(t) in the neighbourhood 
of the pole t — h are either linear functions of m or proportional to ( — l ) w . 
If £ — oo is a pole of Rm{t), a similar investigation shows that the coefficients 
of the positive powers of t in the expansion of Rm(t) in the neighbourhood of 
/ = oo are also either linear functions of m or proportional to ( — l)m. We see, 
then, that the function A 2 A ' Rm(t) is an analytic function everywhere in the 
/-plane, which must, therefore, be a constant. Hence 

(2.12) A 2 A ' i ^ « =X«. 

Regarding (2.12) as a difference equation for Rm(t), the general solution can be 
written 

Rm(t) = Ai(t) + mBxif) + ( - l)wCi(/) + M», 

where jum is a particular integral of (2.12) which is a function of m only. From 
(2.8), and returning to the variable x, we see therefore that km(x) must be of 
the form 
(2.13) km(x) = A(x)+m B(x) + ( - l)mC(x) + nmD{x). 

3. The various types. It remains to find the possible forms of the functions 
A (x), . . . , D(x) in (2.13). If (2.13) be substituted in (2.5), we see that, regarded 
as an equation in m, it is a linear relation between the following 11 functions of 
m: 

(3.1) Mm+l2 ~ Mm2, m Mm+l, ( ~ 1 ) ^ + 1 , Mro+1. 

m fxmi ( - l)mMm, Mm, w , m( - l ) m , ( - 1)™, 1. 
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If these functions are all linearly independent (for integral values of m), then 
the coefficient of each of them can be equated to zero in (2.5). This gives D = 
constant, and nm is arbitrary. In the contrary case, there must be one or more 
linear relations between the functions (3.1), and hence fim is not arbitrary. 

The first function, Mm+i2 — Mm2» in (3.1) may be linearly independent of the 
others. In this case, (2.5) gives again D = constant. In the contrary case, 
jum+i2 — /xm

2 is expressible as a linear function of the other 10 functions in (3.1), 
and (2.5) then becomes a linear relation between these ten functions (whose 
coefficients are functions of x). These ten functions cannot be linearly independent, 
since otherwise jum would be arbitrary. There must therefore exist at least one 
linear relation between them. If this relation involves fxm but not fim+i (or vice 
versa), it gives 

n 0\ _ a + mb+ ( - l)mc + m( - l)md 
^'Z) M m ~ a'+mly + i- \)mc 

where a, . . . , c' are constants independent of m. If, on the other hand, the 
relation involves both fim and Mm+i> it can be written in the form 

r**\ ai + mb1+(-l)mc1 • a2 + mb2+(-l)mC2 + m(-l)md2 

Substituting for nm+i from (3.3) in (2.5), after having eliminated /Zm+i2 — Mm2 

in the manner indicated, it becomes a linear relation between the functions 

m2fimi m2( - l)wMm, nifxmi ( - l ) > m , /iw, 

tn\ m2( - l )w , m( - l)m, ( - l)m , w, 1. 

These functions again cannot be linearly independent. Hence we must have 

n ^ _ g V + ^m\ - l)m + cm + cm{ - l)m + c»( - l)w + c* 
VA) nm - am2 + am2{ _ 1 ) W + c^m + cu( _ 1)m + c,& • 

Since (3.2) is included in (3.4), we see that (3.4) is the most general form 
possible for /xw (unless \xm is arbitrary). 

We now write (m — 1) in place of m in (2.5) and subtract this from the 
original (2.5). Writing first 2m, and then 2m — 1, in place of m in the resulting 
equation, we obtain the two equations 

(3.5) J ^ f c » 2 - U-12)D2 + (fw£m -fm-àm-l) + (fut ~ fm+l) 

+ Urn + 27jm + Çm-l)D'\ = 0, 

(S.6) ~A (rjm * - ?/m_i2)Z)2 + (gmVm ~ gm-lVm-l) + (gm ~ gm-i*) 

+ (Vm + 2£m + nm-l)D' J = 0, 

where 
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a i\ f _ _ an^ + bm + c __ <rw2 + frw + c 
(3.7) £m - ,z2m+1 - a m2 + ^ w + - » *• - *** - a,m* + p,m + r > 

fm= (A+B - C) + 2mBt gm = (A + C) + 2mB. 

The constants a, . . . , y' in (3.7) are related to the constants c\% . . . , c'5 occur­
ring in (3.4). From (3.7) we note that 

(3 .8 ) Mm = è £$0n-l) + Vhm\ ~ i ( "~ 1) | £jOn-l) ~" V$m \-

We suppose that £m, rçm in (3.7) are expressed in their lowest terms. 
If a = (I = a! = j8' = 0, then £m, T/W are polynomials in m of degree two (or 

less). Leaving this case aside for the moment, at least one of £m, r]m, say £TO, must 
have a pole of at least the first order at some point in the complex m-plane, say 
m = wo. Then £TO

2 — fw_i2 has at least poles of the second order at w = w0 

and w = wo + 1. On the other hand, rjm can have at most a pole of the second 
order at one of these points. It then follows that %m

2 — %m-i2 is linearly indepen­
dent of all the other functions of m occurring in (3.5).2 This equation therefore 
requires that D is constant. Similarly, if rjm has a pole, (3.6) shows that D is 
constant. 

There remains to be considered the case where £m, rjm are at most quadratics 
in w, say 

(3.9) fm = am2 + bm + c} rjm = a'tn2 + Vm + c'. 

Equating to zero the coefficients of w3 in (3.6), (3.5), we then find that either 
D is constant or a = af = 0. In the latter case we have, from (3.9) and (3.8), 

iim = aw + j8 + ( - \)m{ym + 8), 

where a, . . . , ô are constants. From (2.13), km(x) can then be written 

(3.10) km(x) = A(x) + w £(x) + ( - l)mC(x) + w( - l)m£>(x). 

Apart from this case, which we leave aside for the moment, we have shown 
that we can take D to be constant without loss of generality, so that from 
(2.13) we can always write 

(3.11) km(x) = A(x) + m B{x) + ( - l)mC(x) + nm. 

It is now convenient to write (2.5) in the equivalent form 

(3.12) J £ E (*WI + k'm) + (Wi - kl )J = 0 

obtained by summing (2.5) with respect to w from w0 to w, where Wo is any 
particular value of w. 

2The relation (3.5) need only, according to our assumptions, be satisfied for integral values 
of m, but since, when cleared of fractions, it becomes a polynomial relation in m, it must 
actually be satisfied for all values of m. The same holds for (3.6). 
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Substituting (3.11) in (3.12) we get 

(3.13) 2fxm+lP' + Q' = 0, 

where 

P=(A+B)+mB-(- l)mC, 

Q = rn2F+2rn{A' + AB + F) - 2m(-l)mBC - 2(-l)mC(A + B) -f(tn0,x)f 

F = B2 + B', 

and /(wo, x) is a function which need not be given explicitly. Differentiating 
(3.13), and eliminating nm+i between (3.13) and the equation thus obtained we 
have 

(3.14) P'Q" - Q'P" = 0. 

In (3.14) only known functions of m occur, so that we can equate coefficients 
of independent functions of m separately to zero to get a number of differential 
equations for the functions A, B, C. We thus find 

F'B" - F"B' = 0, 

(3.15) F'A" - F'A' + (A' + AB)'Bn - {Af + AB)nB' = 0, 

FC" - F"C + 2 (BCY B" - 2 (BC)"Bf = 0, 

obtained by equating to zero the respective coefficients of w3, m2, m2 ( — l)m 

in (3.14). These determine B, A, C in succession. 
Having determined the possible forms for A, B, C, the requirement that 

(2.4) must be satisfied identically in x then determines nm and Lm, and also 
restricts the arbitrary constants occurring in these forms. 

First case. If B is not a constant, the solutions of (3.15) are: 

B = a — b tan (foe + c), 

A = bi tan (foe + c) + deax sec (foe + c), 

C = b2 cot(bx + c); 

or B = a-\ T-T, A = — ~ + —VT» C = b2x; 

x + b x + b x + b 
1 h 

or B = — j - T, A = —~T + Cix, C = b2x. 
x + b x + b 

Substitution in (2.4) now gives the following solutions, in which we give also 
the function r(x,m) as given by (2.4): 
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( k(x,m) = — (m + a)b tan(foe + c) — d/(m + a), 
L(m) = (m + a)2b2 - d2/(m + a)\ 

r(x1m) = — (m + a)(m + a + l)ô2sec2(foe + c) — 2bd tan (foc + c); 

(k(x,m) = — (m + a)b tan (foc + c) + d sec (foc + c), L(m) = (m + a)262, 
Il-Jrfora) = — [(m + a)(m + a + l)fr2 + d2]sec2(foc + c) 

+ bd[2(m + a) + 1] sec(foc + c) tan (foc + c) ; 

I II l 

\k(x,rn) = — (w + &)&tan(foc + c) + ( — l)mdcot(foc + c)y 

Lm= (tn + a)2 b2 + 2{- l)mbd(m + a), 
r(x,m) = — (m + a)(m + a + l)62sec2(foc + e) 

- d[d + 6( - l)w]cosec2 (foc + c) + d2\ 

Î V {k{x,m) = (m + a)/(x + b) — c/(w + a), L(m) = — c2/(m + a)2, 
\r(*»w) = - (m + a) (w + a + l)/(x + b)2 + 2c/(x + b) ; 

{ k(x,m) = (m + a)/(x + b) — c(x + &), L(m) = 4^w, 

r(x,w) = - [m + a) (m + a + l)/(x + b)2 - c2(x + b)2 

-c[2(m-a) + 1]; 
(k(x,m) = (m + a)/(x + 6) - ( - l)mc(* + 6), 

VI j L(m) = 2( - l)m c(m + a), 
|/(x,m) = - (m + a)(m + a + l)/(x + b)2 - C2(JC + 5)2 - ( - l)mc. 

Second case. If 5 is constant, which can without loss of generality be taken 
equal to zero, since we may absorb a constant in juw in (3.11), the equations 
(3.15) are then satisfied identically, but we can use the equations 
(3.16) A"'A' - A"2 = 0, A"'C - A"C" = 0 

obtained by equating the coefficients of m, m( — l)m in (3.14) to zero. Solving 
(3.16) for A and C we get: either 

(i) A = a + b ecx, C = a' + V ecx, 

(ii) A = a + bx, C arbitrary. 

Substitution in (2.4) now gives the additional solutions: 

V T T (k(x,m) = a + bm + ce~bx, L(m) = — (a + bm)2, 
V(*>w) = - c[(2mb + 2a + b)e~bx + ce~2bx]; 

Ak(xym) = {a + bx) + (— l)mc/(a + bx), L(m) = - 2bm - 2e(- l )m , 
\r(x,m) = - (a + bx)2 - c[c + b( - l)m]/(a + bx)2 + (2m + l)b; 

T V j^(x,m) = / (w), where fis an arbitrary function of mt L(m) = {f(m)}2, 
\r(x,m) = 0; 

^.(k{x,m) = ( — l)mC(x)y where Cis an arbitrary function of x, L(m) = 0, 
A V(x,m) = ( - l)mC'(x) - [C(x)]2. 
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We now return to the case where km(x) is given by (3.10). Substituting in 
(2.5), and equating to zero the coefficients of the various independent functions 
of m, we have 

(3.17) BD = cu BC + AD = c2, B
2 + B' + D2 = c* 4AC+-D' = c4, 

A' + AB + CD = c5, 

where Ci, . . . , c& are arbitrary constants. If B = 0 or d = 0 we see that D = 
constant. If B ^ 0, C\ ^ 0, it is possible to eliminate D, C, A'> D' between the 
above equations, and obtain two equations between A and B which must be 
compatible. These equations are 

2 

4A2 - &BA + P - 1 )Bi - %• + c, = 0, 
ci \ci / B2 

+(B'+?-4CI-I>+I*']=°-
They are compatible if 

Ci = c2
2/ci, Ci — c2 Cz/2ci, 

where ci, c2l c% may be arbitrary. 
The general solution of (3.17) can then be written 

(3.18) 

Thus we have the additional solution of (2.4): 

ikm(x) = A(x) +m B(x) + ( - \)mC(x) + m( - l)mD(x), 
JZ,(ra) = - [cz m2 + (c2 c*/ci)m + 2( - l)m{ci m2 + c2 m + c2

2/4c1}]1 

I r(x,m) = m(m + l)B' + (2m + l)A' + ( - l)m[(m + \)D' + C] 

I ~ ( ^ 2 + C 2 ) , 
where A,B,C,D are given by (3.18). 

The above types I-XI exhaust all the possible solutions under our assumption. 
They include as special cases all those which have been given previously [1, 3] 
Of these eleven types IX, X are trivial, though X is perhaps of some interest 
as it shows that any equation of the form 

(3.19) y" + [r(x) + \]y = 0, 

can be formally factorized by the Infeld procedure, regarding it3 as a particular 
3Such a device is termed "artificial factorization" by Infeld and Hull [3]. 

\ \ 

B2 

-^i z^-- 2dB — — x + constant, 
±> — CzB + d 

w'-^M+^-iy-^+«..o. 
( D = Cl/B, C = (c2/B) - (c,A/B2). 
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case of the more general form (2.1) for a particular value of m. For a function 
C(x) can always be found such that 

(3.20) C{x) - [C(x)Y = r(x), 

and then (3.19) coincides with X for any even m. 
Of the remaining types, V, VI, and VII lead to differential equations which 

can be made to coincide for special values of m by proper choice of the arbitrary 
constants or by absorbing constants that occur in r(x,m) in the parameter X. 
They thus represent different ways of factorizing the same differential equation, 
namely one of the type 

(3.21) y" + [a(x + bf + ^ T j j s + \ [ y = 0. 

Similarly, types II and III are essentially the same, as can be seen by writing 
\{bx + c) instead of (foe + c) in III. 

On the other hand XI is an essentially new type, though it is doubtful if it 
can be applied to eigenvalue problems. The integral occurring in (3.18) can 
easily be evaluated, but it is not possible in general to express B as an explicit 
function of x in terms of standard functions. 

It remains to be seen whether all these types can be transformed to differential 
equations with rational coefficients in accordance with our original assumption. 
This is not necessarily the case, since we have only deduced necessary conditions 
that the differential equation (2.1) shall be thus transformable. It is easily seen 
that the following substitutions suffice: 

For I and I I I : tan(èx + c) = /, dt/dx = i ( l + t2). 

For I I : sin (foe + c) = t, dt/dx = 6(1 - t2)\ 

For VII: e~bx = /, dt/dx = - bt. 

IV, V, VI, VIII, IX are already in the required form. It is evident that X cannot 
in general be so transformed, nor does it seem possible in general to transform 
XI. In the particular case in which A, as determined by the quadratic equation 
in (3.18), is a rational function of B (which occurs if Cz — ± 2ci), it is possible 
to transform XI to a differential equation with rational coefficients by means of 
the substitution 

•or \ ± dt 2 C\ 
B{x) = t' Tx = C3 ~ l ~ T-

It will be seen that, in all the above cases, it is not necessary to change the 
dependent variable, as envisaged by (2.7), in order to effect the required 
transformation. 

Apart from X and XI, all the differential equations, when reduced to forms 
with rational coefficients, are either of hypergeometric or confluent hypergeo-
metric type. 

One of us (A.F.S.) wishes to acknowledge interesting discussion with Professor 
Infeld, Dr. Hull, and Dr. Duff. 

https://doi.org/10.4153/CJM-1952-035-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1952-035-7


THE SCHRODINGER-INFELD METHOD 395 

REFERENCES 

1. G. F. D. Duff, Factorization ladders and eigenfunctions, Can. J. Math., vol. 1 (1949), 
379-396. 

2. L. Infeld, On a new treatment of some eigenvalue problems, Phys. Rev., vol. 59 (1941), 
737-747. 

3. L. Infeld and T. E. Hull, The factorization method, Rev. Mod. Phys., vol. 23 (1951), 21-68. 
4. E. Schrôdinger, Proc. Royal Irish Acad., vol. A46 (1940), 9. 
5. C. A. Truesdell, A unified theory of special functions (Princeton, 1948). 

Farouk I University, Alexandria, Egypt 

https://doi.org/10.4153/CJM-1952-035-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1952-035-7

