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HIGHER COMMUTATORS, IDEALS AND CARDINALITY

CHARLES LANSKI

For an associative ring R, we investigate the relation between the cardinality
of the commutator [R, R], or of higher commutators such as [[R, R], [R, R]], the
cardinality of the ideal it generates, and the index of the centre of R. For example,
when R is a semiprime ring, any finite higher commutator generates a finite ideal,
and if R is also 2-torsion free then there is a central ideal of R of finite index in
R. With the same assumption on R, any infinite higher commutator T generates
an ideal of cardinality at most 2e"d T and there is a central ideal of R of index at
most 2 c " d T in R.

In this paper we investigate the relative cardinalities of certain subsets of a ring
-R, with the specific goal of generalising work of Hirano [4] who showed the equivalence
in a semiprime ring R of the finiteness of the commutator ideal, the additive index
of the centre of R, and the existence of a central ideal of finite index in R. Our aim
is to generalise these results to the set of commutators, to higher commutators, and
to arbitrary cardinalities, and also to consider the relation between the cardinality of
higher commutators and the ideals they generate. A number of papers in the literature
relate the cardinality of a ring to that of special subsets. To mention a few of these, in
[7], Koh shows that a ring is finite if it has finitely many left zero divisors, and at least
two, Hirano extended this to finitely many two-sided zero divisors [3], and recently we
considered the relation between the cardinality of a ring and that of the ideal generated
by various subsets of nilpotent elements [8]. We have also studied the relation between
the cardinality of a ring and that of the subring generated by the set of integral elements
or the set of symmetric elements in a ring with involution [9].

Throughout the paper, R will denote an associative ring, not necessarily with
unit, and Z(R) = Z will be the centre of R. For nonempty subsets A, BCR,
L(A, B) = {[a, b] = ab-ba | a £ A and 6 6 B} is the set of (Lie) commutators of
A with B, [A, B] is the additive subgroup of R generated by L(A, B), (A) is the
subring generated by A, and (.A) is the ideal of R generated by A. We postpone a
discussion of higher commutators until later. Our first results will generalise those in [4]
by considering L(R, R) rather than the commutator ideal ([R, R]), and by considering
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42 C. Lanski [2]

arbitrary cardinalities. Although it is true that L(R, R) finite forces ([R, R\) to be
finite, this not obvious, and it is not immediate that when L(R, R) is infinite, ([R, R])
has the same cardinality. For future reference, we remind the reader that [a, b] = —[6, a]
and that [ , r]: R —» R is an additive map whose kernel is C(r), the centraliser of r in
R. Out first result is an easy lemma relating the index of Z in R with the cardinality
of [R, R]. As usual, the index of an additive subgroup (T, +) of (R, +) is denoted by
[R:T\.

LEMMA 1 . Let [R : Z] = a. If a is finite, then L{R, R) and [R, R] are finite,
and if a is infinite, then card[/2, R] ^ a .

PROOF: Let X = {a;;}/ be a transversal for (Z, +) in (R, +). Clearly cardX =
card/ = a and R = \J{xi + Z | i € / } , so L(R, R) = {[a;,-, XJ] \ x{, XJ G X} and
L(R, R) is finite when a is and otherwise cardL(R, R) ^ card7x7 = a. Note that
when L(R, R) if finite, then each [a, b] 6 L(R, R) is a torsion element since for any
integer n > 0, n[a, b] = [a, nb] £ L(R, R), forcing k[a, b] = s[a, 6] for some 0 < k < s,
and so (s — k)[a, b] = 0. Thus, in this case [R, R] must be finite also. Certainly, if
L(R, R) is infinite, then card[#, R] = ca.idL(R, R)^ct. D

Our first example shows that when R is not a semiprime ring, that is when R
contains nonzero nilpotent ideals, the conclusion of Lemma 1 that card[ii, R] ^ [R : Z]
is optimal. In particular, even the ideal ([R, R]) can be finite regardless of [R : Z].

EXAMPLE 1. Let 0 < a be cardinals with a infinite, F a field of cardinality /? with
char F ^ 2, and X, Y, {z} disjoint sets of noncommuting indeterminates over F with
card X = card Y = a. Assume that I is a set with card/ = a and that X = {xi | i € / }
and Y = {yj | j'• E 1} • In the free algebra F{X, Y, z}, let H be the ideal generated by
{ x i z , z x i , y i z , z y i , z 2 , XiXk, j / i l / t , z ; i / j , j / j X j , siij/j - z ; , I / J X ; + Z i \ i , j , k E I a n d i ^ j }
and R the quotient ring F{X, Y, z}/H. By identifying each indeterminate with its
image in R, we may write R — F + Fz + ^ Fx{ + ̂  Fyi where all products of elements

in {xi, yi, z} are zero except that Xiy, = z and J/JS:,- = — z for all i € / . It follows
easily that card R — a and that Z(R) = F + Fz is finite or has cardinality /?, so
[R: Z] = a. Since [x{, yi] = 2z ± 0, one has Fz = L(R, R) = [R, R] = ({R, R\) has
cardinality /3, or is finite.

Our first theorem will be useful in comparing the cardinality of ideals in Z(R) with
\R : Z], and will also be used later for results concerning higher commutators.

THEOREM 1. If S is a nonempty subset of R, then both L(S, R) and ([S, R})

are finite, or else card L(S, R) = card([S, R}).

PROOF: Assume first that cardL(S, R) = a is infinite. Clearly card[5, R] = a as
weU, so there is A = {a^jCS with card.4 = card/ < a and [5, R] = £[<*». R].
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[3] Higher commutators, ideals and cardinality 43

For each i € I define ft: R -* [S, R] by fi{r) = [ai} r]. Now /< is addi-
tive and fi(R) = [a», iZjCfS, R] has cardinality at most a , so [R: Ker/j] ^ a .
Note that Ker / i = C(ai), the centrahser of ai in R and let Ai = {x»j}j(i) be
a transversal for C(a,i) in R. Clearly, cardAf = cardJ( i ) < a . The identity
[x, yz] = y[x, z] + [x, y]z shows first that [OJ, R] is a C(di) bimodule, and then that

RWi, R]=(\J {xii + C(ai)})[ai, R]C \J {Xij[ai, R} + [oi, R}}Q £ *<,-[*, R] + [ai, R}.

It follows that [5, i2] + -RfS, R] = [S, R] + '£lR[ai, R] = [S, R] + Y,Xij[ai, R] has cardi-
» i,j

nality at most a . A similar computation using the fact that [OJ, R] is a C(aj) bimodule

shows that ([5, R}) = [S, R] + Y,Xij{<H, R] + E[°i> R]*ij + E *<j[«ii R]*ik, proving

the theorem when a is infinite. Finally, when a is finite, then as in Lemma 1, L(S, R)
consists of torsion elements, so [S, R] is finite. But now, following the argument just
given shows that ([5, R]) is also finite, completing the proof. U

COROLLARY 1 . 1 . When L(R, R) is Gnite so is ([R, R]), and otherwise

card L{R, R) = card([.R, R]).

COROLLARY 1 . 2 . If [R : Z) = a, then ([R, R]) if finite when a is, and
card([iZ, R}) ^ a when a is infinite.

PROOF: By Lemma 1, either L(R, R) is finite or cardL(R, R) ^ a , so applying
Theorem 1 with S = R finishes the proof. D

We use Corollary 1.2 to compare the size of ideals in Z with [R : Z). When
[R : Z] is finite, Z must contain an ideal of R of finite index in R by [4, Theorem
1, p.364], or more generally by a result of Lewin [11, Lemma 1, p.85] on subrings
of finite index. Consider the situation when R is a noncommutative prime ring with
Z ^ 0. For a G R — Z, ZaCR — Z and card Za = caxdZ, so since Za must be in
some transversal of Z in A, it follows that [R : Z] ^ cardZ. Therefore, either R
is finite or cardil = max{[i? : Z], caxdZ} = [R : Z] and the ideal (0)CZ satisfies
[R : (0)] = [R : Z], so when R is an infinite prime ring, there is an ideal in the centre
of R whose index is [R : Z). However, it is not always true for infinite rings R that Z
contains an ideal of R of index [R : Z\. The following theorem describes the general
case.

THEOREM 2 . If [R : Z] = a, then there is an ideal I of R with ICZ and

[R : /] ^ 2" when a is infinite, and [R : /] is finite wien [R : Z] is Gnite.

PROOF: We assume that a is infinite but note that it will be clear from our
argument that when a is finite, [R : I] is finite also. If B = ([R, R]), then by
Corollary 1.2 cardB ^ a . Represent R in End(S , +) by left multiplication; that
is, define F: R -> End(B) by F(r)(b) = rb. Clearly, F is a ring homomorphism,
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and since card End (B) ^ aa = 2a, if J = KerF = l(B), the left annihilator of B,
then [R : J] < 2°. Using [R : Z] - a yields [R : J n Z] ^ 2a, so it suffices to
prove that J D Z is an ideal of R. To show this, let x £ J C\ Z and r, s £ R. Then
[a;r, s] = x[r, s] + [x, s]r = 0 since x £ 1{([R, R])) and x £ Z, so xr E Z, finishing the
proof. D

In Theorem 2, the appearance of 2a when a is infinite is certainly different from
the situation when [R : Z] is finite, as in [4]. We have observed that when R is a prime
ring, there is always an ideal I in Z with [R : I] = [R : Z) = a, when a is infinite. To
see that our conclusion that [R : /] ^ 2a is not merely a consequence of our particular
approach, we present an example of a semiprime ring for which the bound of 2a is
required.

EXAMPLE 2. Let a be an infinite cardinal, E a set with cardF, = a, M2(F) the ring
of 2 x 2 matrices over the countable (or finite) field F , and set A = YIE^^F)» ^n e

infinite direct product of a copies of M2(F). Regarding A = {g: E —» M2(F)}, let
D = {g £ A | g(j) = 0 for all but finitely many j 6 E}, the direct sum of a copies
of M2(F), and D, = {g € A | g(i) = 0 if i ^ j}. Note that D is an ideal of A, that
card£> = a , and that Z(A) = X[EFI2, so cardZ(4) = 2a. If R = D + Z(A), then
R is a semiprime ring, caidR = 2a, and Z(R) - Z(A), so [R : 2(.R)] = a . However,
Z contains no nonzero ideal of -R since if / is any nonzero ideal of R with g £ / and
g(j) z£ 0, then DjgDj = DjCl, so I (fi Z. Consequently (0) is the only ideal of R in
Z and we have [R : (0)] = 2".

We now consider a converse to Corollary 1.2. Example 1 shows that no useful
conclusion about [R : Z] can be drawn from card[iZ, R\, in general. When R is a
semiprime ring then [R : Z] is finite exactly when ([R, R]) is by [4]. Our next theorem
obtains a bound on [R : Z] from the size of L(R, R), so even extends [4] in the finite
case.

THEOREM 3 . Let R be a semiprhne ring with caxdL{R, R) = a. There is an
ideal I of R satisfying ICZ and [R : I] ^ 2" wien a is infinite, and [R : /] is
finite when a is finite. Furthermore, R is a subdirect sum of semiprime images Ri
and R2, Ri is commutative, and card #2 ^ 2 a wien a is infinite. When a is finite,
R = Rx®R2 and R2 is finite.

PROOF: Assume that a is infinite, so if B — ([R, R]) then cardi? = a by Corol-
lary 1.1. As in the proof of Theorem 2, R acts on B by left multiplication, and the
kernel of this action, / = 1{B), satisfies [R : I] ^ 2". Now [/, I]CBC\l(B) = 0 because
R is semiprime, and it follows easily [2, Corollary, p.7] that I<ZZ. Observe that the
semiprimeness of R implies that J = l(B) = r(B) = ann-B, and if J = a n n / , then
I n J = 0 and both I and J are semiprime ideals of R. Therefore, R embedds in
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R/J&R/I, c a r d / ? / / = [R : I) ^ 2 a , and R/J is commutative since [R, R}CBCJ,
completing the proof when a is infinite. When a is finite, £ is a finite ideal of R,
again by Corollary 1.1, so a finite semisimple Artinian ring with identity. Thus B is a
direct summand of R, say R — H®B, and since [R, R]C.B and H n B = 0, it follows
that BQZ. D

COROLLARY 3 . 1 . IS R is a. semiprime ring, cardL(R, R) = a, and some x £
{[R, R]) is (left) regular in R, then cardil ^ 2a wien a is infinite and R is finite
when a is finite.

PROOF: AS in the proof of Theorem 3, if B = ([R, R]) then cardB = a or is
finite. But B contains a regular element, so l(B) = 0, and R embeds isomorphically
in End(B, +). Thus cardil ^ 2a when a is infinite, and R is finite when a is. u

As in Theorem 2, the appearance of 2a in Theorem 3 is neither accidental nor
simply a consequence of our approach. A natural question is whether replacing / with
Z in Theorem 3 might allow one to show that [R : Z] ^ a? Our next example shows
that even for prime rings a bound of 2card!R'R] for [R : Z] is necessary when [R, R] is
infinite.

EXAMPLE 3. Let H be the ring of all row finite, countably infinite by countably infinite
matrices over a countable field F. Denote by Mo(F) the subring of if of all matrices
having only finitely many nonzero entries, and observe that MQ(F) is a countable ring.
If {ejj} are the usual matrix units in H, set B = {^2 fie2i-i2i £ 3 \ fi £ F } .

Since there is a bijection between B and all infinite sequences of elements of F, B is
uncountable. Also B2 = 0 and M0{F)B + BM0{F)CM0{F), so R = M0(F) + B is
an uncountable ring with [R, R]C.Mo(F), so countable. As in [9, Example 2, p.365], it
is easy to see that R is a prime ring since {eij}CR, and that Z(R) — 0. Therefore,
although [R, R] is countable, [R : Z] is uncountable. A similar example with Z(R) ^ 0
can be obtained by including in R all the scalar matrices; that is, by taking R =

A final example on commutators shows that unhke the situation in Theorem 3
when L(R, R) is finite, when it is infinite R may not decompose into a direct sum of
a ring of cardinality L(R, R) and a commutative ring.

EXAMPLE 4. Let F{X} be the free algebra over the countable field F in an infinite set
of noncommuting indeterminates X with cardJf = a, and let Y be another infinite set
of commuting indeterminates over F{X} with card Y = j3. If / is the ideal of F{X}[y]
generated by {xy \x £ X and y £ Y} and R = F{X }[Y]/I, then each r e R may be
written as r = a + f{X) + g(Y) for a £ F, f{X) £ F{X}, and g(Y) £ F[Y], where
f[x) and g{y) have no "constant" term. Clearly, ([R, R\) = ([(X), (X)])CF{X} has
cardinality a, Z(R) = F[Y] has cardinality /3, as does {Y)CZ, and [R : (Y)] = a.
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Note that (Y) = ann([#, R]), ann(Y) = (X), R/{Y) * F{X}, and R/(X) = F[Y], so
as in Theorem 3, R embeds in F{X}($F[Y]. However, since R contains no idempotents
other than 0 and 1, R itself cannot be a direct sum of ideals.

We turn now to the notion of higher commutator and consider the same results as
those above for higher commutators replacing [R, R]. It is convenient to discuss higher
commutators in the more general context of Lie ideals which we define next.

DEFINITION: A subgroup (T, +) of (R, +) is a Lie ideal if [T, R]CT.

We note that if A and B are both Lie ideals then [.4, B] is also a Lie ideal
because of the identity [[as, y], r] — [[x, r], y] + [x, [y, r]]. Consequently, expressions
like R, [R, R], [[R, R], R], or [[R, R], [R, R]] are Lie ideals. One question we shall
investigate is the cardinality of the ideal generated by these kinds of Lie ideals compared
to the cardinality of the Lie ideal itself.

DEFINITION: Given a ring A, a higher commutator T of weight k ^ 2 is: [A, A]
if k = 2; and for k > 2, T = [U, R] for U a higher commutator of weight k — 1, or
T = [U, V] for U and V higher commutators of weights 2 ^ m < k — 1 and k — m,
respectively. The special higher commutators A^ of weight i are defined inductively
by A(2) = [A, A] and -4(i+i) = [-4(i)> A], and the higher commutators A^ of weight
2l are given by A™ = [A, A], and A<<i+1*> = [A&, 4 « ] .

Note that any higher commutator of A is a Lie ideal of A. The only higher
commutator of weight 2 is [A, A] = A^ = A(2),

 a n d the only higher commuta-
tor of weight 3 is A^ = [[A, A], A}. There are two higher commutators of weight
4: yl(4) and A^, and because [a, b] = —[6, a], three of weight 5: A^, [A^, A],
and [.4(3), -4(2)]- By using the Jacobi identity [[a, b], c] = [[a, c],b] + [a, [b, c]],
it follows that [A^, A]C[A^, A^}, and by induction on weight, that any higher
commutator of weight w is contained in R(w) • Clearly, for each higher commu-
tator T of weight k there is a multilinear and homogeneous polynomial of degree
k, / T ( S I , •••, Xk) £ Z{s;i, . . . , a:*} with integer coefficients, so that T is the addi-
tive subgroup generated by { /T(OI , . . . , a*) | a< € A}. For brevity we shall write
T = T(A) = fT(A). Specifically, if T = A™, fT(xu . . . , x4) = [[xlt x2], [x3, x4]] and
when T = [4(3), 4( 3 ) ] , / T ( Z I , . . . , a;6) = [[[xi, x2], x3], [[as4, x5], x,]].

We discuss a few examples which illustrate some basic differences between R^
and i2(j) and which will be useful for later reference. Recall from Example 3 that
Mo(F) is the ring of those countably infinite by countably infinite matrices over the
field F which have only finitely many nonzero entries. Writing Mo(F) = ^Feij and
using en — ejj = [e^-, eji] and e;j = [e^, e^j] when i, j and k are distinct, it is easy
to see that for any higher commutator T of weight k > 1, T(M0(F)) = M0(.F)(1) =
£) Feij + 53 F(ea — ejj). The same computation in Mn(F) gives the same result unless
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n = 2 = c h a r F , in which case M2(F)^ = M2(F)^ = {matrices of trace zero},

M 2 ( F ) ( 2 ) = FI2, and M2{Ff}) = 0 if j > 2 . If R is the ring of upper triangular

matrices in M0(F), then [R, R] = £ Fe^- , [T, E] = T for any higher commutator T

of weight w ^ 2, and i ? ( t ) = £{Fe i : 7 - | j ^ i + 2k~1} when fe > 1. Similarly, if A is the

subring of upper triangular matrices in Mn(F), then the A^ strictly decrease until

A^ — 0 for suitably large k. Finally, if B is the subring of all strictly upper triangular

matrices in M0(F), then for any T of weight k, T(B) = Y,{Feij I 3 > * + k} • F o r

convenience, we state these observations for matrices as a lemma for future reference.

LEMMA 2 . Let R = Mn(F) for F a field and n> 1. If n = 2 - c h a r F then

R.W = F and R^ = 0 . If n > 2 or chaxR f 2, then V(R) = R^ for any higher

commutator V.

We investigate how the cardinality of a higher commutator V is related to

[R : Z], as we did for [R, R] in Theorem 3, and also whether c a r d F = c a r d ( F ) .

The latter question is certainly t rue by Theorem 1 for those higher commutators of the

form [T, R], but others constitute a considerable problem. Indeed, for arbitrary higher

commutators V, we know of no counterexample to card V = card (V), but cannot prove

this except for certain special cases, principally in prime PI rings or for finite higher

commutators in semiprime rings. As for the relation between card V and [R : Z], Ex-

ample 1 shows that we must assume that R is a semiprime ring and Example 3 shows

that the bound [R : Z] ^ 2 c a r d v is the best possible when V is infinite. However, unlike

Theorem 3 for [R, R], when V is a general higher commutator, there are difficulties

relating [R : Z] to card V. As we have observed just above, when F is an infinite

field with c h a r F = 2, then [M2{F) : F] = c a r d F , but M2{F)W = FI2 = Z{M2{F)),

and so any higher commutator of M2(F) of the form [U, W] will be zero if either

M2(F) QU or M2(F) C.W. Consequently, for higher commutators we must deal

with the complication introduced by the presence of 2-torsion. Our next result relates

the possibility that a higher commutator of R is zero to the commutativity of R and

the presence of 2-torsion. We recall tha t the standard polynomial of degree n is defined

as Sn(asi, . . . , xn) = ^ (—1)CT2<T(I) • • • xa(n) where a runs over the symmetric group on

n letters. A ring satisfies Sn if Sn(ri, . . . , r n ) = 0 for all r ; £ R, and when R is a

semiprime ring it is well known that R satisfies Sn exactly when R embeds in Mj.{C)

for C a commutative semiprime ring, with d ^ n / 2 [1 , Theorem 6.3.2, p.159] and [5,

Theorem 2, p.35]). Finally, note that Sn(ri, ..., rn) = 0 if some r ; = r;- for i ^ j .

THEOREM 4 . Let R be a semiprime ring, and T a higher commutator which

is Unite. Then R contains only £nitely many prime ideals Pi, ..., Pk of finite in-

dex in R so that T(R/Pi) ^ 0 , and if char R/P{ ^ 2 or R/Pi does not satisfy 5 4 ,
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then for all higher commutators V, V(R/Pi) = (fl/P,-)(1) ^ 0. For any other prime

ideal P of R, T(R/P) = 0 and either R/P is commutative or 2RCP, R/P satisfies
Si, (R/P)WCZ(R/P), and TC[/?(2), R]. In particular, R is a subdirect sum of the

semiprime images Ri, R2, and R3 so that: Ri is finite, T = T(Ri); R2 is com-

mutative; and 2R3 — 0, no prime image of R3 is commutative, R3 satisfies Si, and

RZ
2)QZ{R3). Furthermore, ^(.Ri) = R^ for any higher commutator V when R3 ± 0.

PROOF: Let T = T(R) — fr{R) have weight w, assume that P is a prime
ideal of R so that T(R/P) ^ 0 in R/P, and note that T(R) + P = fT(R) + P =
fT{R/P) = T(R/P). To prove that R/P is finite, it suffices to assume that R is
a prime ring, that T(R) / 0 is finite, and prove that R is finite. If cardT = k,
then SJH-I(/T(ZII, . . . , xlw), ..., /r(sjfc+iij •••, Xk+iw)) is satisfied by R. A theo-
rem of Rowen [5, Theorem 1, p.56] shows that Z(R) ^ 0, and the central localisa-
tion 5 = RZ~X of R at Z — {0} is a simple ring, finite dimensional over its centre
F = QF(Z) [5, Theorem 2, p.57]. But T is a Z module, T is finite, and central
elements in prime rings are regular, so it follows that Z is finite. Hence Z is a field
and the finite dimensionality of S = RZ~1 = R over Z forces R = Mn(Z) to be finite.
When 2R ^ 0 or R does not satisfy 54, V(R) — R^ for any higher commutator V,
by Lemma 2.

Returning to our semiprime ring R, suppose that Plt ..., Pm are distinct prime
ideals, each satisfying T(R/Pi) ^ 0 in R/Pi. Since from above, each R/Pi is a finite
simple ring with identity, R/ f] Pi is a finite semiprime ring with identity whose maximal
ideals are exactly {Pjl(\Pi}. Thus R/f]Pi = @R/Pi, and in particular, m ^
cardTO-R/Pj) = cardT(ie/flPi)- B u t TWC\pi) = T(R) + C\Pi, so m ^ cardT.
Consequently, there are only finitely many prime ideals Pi, . . . , Pj. of R satisfying
T(R/Pi) ^ 0, and for each of them, R/P{ is finite. Set J?i = R/f\Pi.

Now let P be a prime ideal of R so that T(R/P) — 0. To finish the proof it suffices
to assume that R is a prime ring with T — 0, and show either that R is commutative,
or that 2R = 0, i? satisfies 5 4 ) R^CZ,axid TC[R(2\R\. The definition of R^ shows
that RWCRW if i ^ j , so an easy induction proves that R^m^CT for some m ^ 1.
Since R satisfies the polynomial identity /y = 0, as above, Z ^ 0 and 5 = RZ~X

is a simple ring, finite dimensional over its centre F = QF(Z). Now [10, Lemma 7,
p.120] proves that for Lie ideals U and W of R, if [U, W]CZ, then either UCZ or
WCZ, unless 2R = 0 and dimj? 5 ^ 4. Since all the R^ are Lie ideals of R, we
may apply this result to 0 = -R(m) = [i?(m~1), Rf-"1^} and use induction to show that
either R is commutative or it is not but 2R = 0 and dimj? 5 = 4. In the latter case,
either S — Mi(F) or 5 is a division algebra over F and S®FK = M2(K) for K a
maximal subfield of S [1, Corollary, p.96]. Thus R embeds in M2{C) for C a field,
so it follows that R satisfies 5 4 . Also, using Lemma 2, R^CR n M2(C)(2)C# flC =
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Z. Furthermore T(S®FK) - T{R)Z~1^FK = 0, implying that TC[RW, R]. Set
R2 = R/f)P over all primes P with R/P commutative, and R3 = R/ f] P over all
primes P with T(R/P) = 0 but R/P not commutative, and note that R naturally
embeds in Ri@R2@Ra, so T(R) = T(Ri). If R3 ^ 0, then TC[i#2) , R] so no simple
summand of Ri can be M^F), and as we have seen, V(R/Pi) = {R/Piy' for each
such summand, and every higher commutator V. Hence V(Ri) = R\ follows from
V(Ri) = V{R/Pi)© • • • @V(R/Pk), and the proof of the theorem is complete. D

Our first application of Theorem 4 shows that in a semiprime ring any finite higher
commutator generates a finite ideal. Although we cannot prove this for arbitrary rings,
we know of no counterexample.

THEOREM 5 . Let R be a semiprime ring and T a higher commutator of R.

(1) It T is finite then the ideal (T) is finite.
(2) If T is finite and R is 2-torsion free, then R^ = V(R) for any higher

commutator V.
(3) If T is commutative then 2(.#1>) = 0 and Rf-^CZ, the centre of R.
(4) If T is commutative and R is 2-torsion free, then R is commutative.

PROOF: Using Theorem 4, when T is finite R embeds in the direct sum of
semiprime images A®B®C, with A = R/P!® • • • ®R/Pk =R/f)Pi finite, T(R/Pi) ^
0, B commutative, 2C = 0, and up to isomorphism T = T(A). Consequently, (T)CA
is finite. If R is also 2-torsion free, then C = 0 and if A ^ 0 then by Lemma 2,
each summand R/Pi of A satisfies V(R/Pi) = (R/Piy ' for any higher commuta-
tor V. Since V(A) = V(R/P1)® • •-®V(R/Pk), it Mows that V{A) = A™, and
so V(R) = .R(1) since the commutativity of B forces V(B) = 0. When T is com-
mutative, apply Theorem 4 to [T, T] = 0 to conclude that A = 0, so R^CC and
RWCCW r\RCZ{C)r\RCZ(R). When R is also 2-torsion free, C = 0, so R embeds
in B and is commutative. D

By Theorem 5, when T is finite and R is 2-torsion free, any two higher commu-
tators are equal to R^. Without the restriction on torsion, for any two higher com-
mutators, V, WC[RW, R], V = W since V(C) = W(C) = 0 and V(B) = W(B) = 0
force V{R) = V(A) = W(A) = W(R). We turn now to the analogues of Theorem 1
and of Theorem 3 for higher commutators, but now need to assume that R is 2-torsion
free. After our proof, we give an example showing the need for the torsion assumption.

THEOREM 6. Let R be a 2-torsion free semiprime ring, V an arbitrary higher
commutator of R, and T a higher commutator of R with minimal cardinality a. The
following hold:

(1) Tiere is an ideal I of R with IQZ, so that [R : I] ^ 2Q when a is
infinite, and [R : I] is finite when a is finite;
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(2) a ^ cardF ^ card(F) s% 2a when a is infinite;
(3) V = T = i?W wien a is Snite; and
(4) R is the subdirect sum of 2-torsion free semiprime images Ri and R2

with Ri commutative and card .R2 ^ 2™ when a is infinite, and when a
is finite, R2 is finite and R = Ri@R2 •

PROOF: Note that {card V | V is a higher commutator of R} has a minimal ele-
ment a [6, Theorem 23, p.53]. If some V = 0, R is commutative by Theorem 5 and
the theorem holds. If a > 1 is finite then (3) holds by Theorem 5. Now assume that
a is infinite and consider the" higher commutator U = [T, R]CT. If U = 0, then R
is commutative by Theorem 5, forcing the contradiction T — 0. Thus U ^ 0 and
clearly caxdU ^ a, so Theorem 1 shows that for W — (U), caxdW ^ a. As in the
proof of Theorem 2, R acts by left multiplication on W as elements of End(W, +) ,
I = l(W) satisfies [R : I] < 2", and / f~l W = 0 because R is semiprime. Note that if
U = fu{R), then U{I) = /u( J)C/ nW = 0. Since 7 is an ideal of R it is either (0) or
is a 2-torsion free semiprime ring, so applying Theorem 5 forces I to be commutative.
It follows easily [2, Corollary, p.7] that IQZ, proving (1) when a is infinite. Applying
Corollary 1.2 gives card([E, R]) ^ 2", and since (V)C([R, R]), card(F) < 2a follows
and the minimality of a yields a ^ cardV ^ card(V) ^ 2a, proving (2).

Finally, with I — 1{W) as above, set J = /(/) and note that as in the proof of
Theorem 3, I and J are semiprime ideals of R, R is the subdirect sum of Ri = R/J
and R2 = R/I, and card R2 ^ 2a. Each Ri is easily seen to be 2-torsion free, so Ri
is commutative by Theorem 5 because U(R)CWC. J. When a is finite, W is finite by
Theorem 1, so a summand of R and R = I®W, making W = J = R2 and / = i?i. D

Recall [6, p.66] that the Generalised Continuum Hypothesis (GCH) says that for
an infinite cardinal a there are no cardinals strictly between a and 2°. Using this
gives a sharper version of part of Theorem 6.

COROLLARY 6 . 1 . Let R be a 2-torsion free semiprime ring with an infinite
higher commutator. Assuming the GCH, for some infinite cardinal a and any higher
commutator V, either card V = a or card V = 2a, and card (V) = a or card (V) = 2a .

We record an easy example which shows that neither part (1) nor part (3) or
Theorem 6 need hold in the presence of 2-torsion.

EXAMPLE 5. Let R = M2(F) for F a field with charF = 2 and cardF = a, infinite
and not countable. Since charF = 2, we have seen that Rf-3^ = 0, so is finite, but
[R : Z] = a and Z contains no nonzero ideal of R. Also, R is a simple ring so
cannot be a subdirect sum as in Theorem 3. Taking 5 = R®Mn(K) for K a field with
card if ^ /3 < a and either n > 2 or n = 2 and char if > 2, gives a similar example
but with card S^ = /?, or finite and not zero.
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Theorem 6 tells us that in a 2-torsion free semiprime ring with an infinite higher
commutator, there are only two possible cardinalities for these commutators, assuming
the GCH. Of course for R = M2(F) with F a finite field and charF = 2, itf1) R™
and R(3\ have different cardinalities. We present an example to show that different
infinite cardinals can in fact occur.

EXAMPLE 6. As in Example 2, let A = nEM2(F), the infinite direct product of a
copies of M2(F), where F is a finite or countable field, a is any infinite cardinal, and
caxdE = a . If DC A is the direct sum of a copies of M2(F), let B = {g G A \ g(i)
is upper triangular for all i £ E}, and set R = D + B. It is straightforward to check
that: R is a semiprime ring; cardZ? = a; cardB = cardiE = 2°; cardi^1) = 2" ,
since it contains B^\ all functions g: E —> Fe\2\ and cardi2^2^ = a , since R^CD.
Similarly, one can replace M2(F) with Mn(F) for n > 2, in which case for suitably
large s ^ 2, cardi^ ' ) = a but caxdR^ = 2 a if 1 s$ t < s.

The ring in Example 6 satisfies the standard identity 54. We shall show that in a
prime ring satisfying a standard identity, all infinite higher commutators have the same
cardinality. We give an example of a prime ring in which there are higher commutators
with different infinite cardinals.

EXAMPLE 7. We consider a modification of Example 3. Let H be the ring of aJl row
finite, countably infinite by countably infinite matrices over a countable field F. Denote
by Mo(F) the subring of H of all matrices having only finitely many nonzero entries,
and by A the subring of H of all block diagonal 2x2 upper triangular matrices. Observe
that Mo(F) is a countable ring, A is uncountable, AMo(F) + Mo(F)AQMo(F), and
that R = M0(F) + A is a prime ring. Now R^ is uncountable, but J?(2)cM0(.F) is
countable. A similar example can be constructed for any infinite cardinal a and 2 a by
using ax a matrices.

The dichotomy represented by Theorem 6 and the last two examples can fail for
rings which are not semiprime. If R is the ring of all (strictly) upper triangular matrices
in Mn(F) with n large and F a finite field, then {R^} (or {R(i)}) strictly decreases in
cardinality, until i is sufficiently large. We show how to construct a nilpotent example
with an arbitrary finite chain of infinite cardinals.

EXAMPLE 8. Let ai > a2 > • • • > an be infinite cardinals. For each 1 ^ i ^ n let
Fi = J{Xi) be the free algebra over the integers J in a noncommutative set X,- of
indeterminates with cardXj = a,. Set R(i) — (Xi)/H, where H is the ideal of Fi

generated by all monomials of degree i'+2. Note that R(i) is nilpotent of index i+2 , and
card.R(i) = cardil(i) ( ; ) = ai for j < i + 2. Therefore, if R = R(1)®R(2)& • • • ®R(n),

then for 2 ^ i ^ n + 1, i?(i) — R(i - l) ( i )© • • • ®R(n)^ and cardiE(i) — ai-i.

The last results we obtain are conditions under which cardT = card(T) when T
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is an infinite higher commutator. We state first an immediate consequence of Theorem
1, using the fact that any higher commutator is a Lie ideal.

THEOREM 7 . ItT is a higher commutator of R having the iorm T = [A, R] lor
A a higher commutator, then cardT = card(T) when T is infinite, and card(T) is
Unite when T is Unite.

In Theorem 5 we saw that when R is a semiprime ring, any finite higher commu-
tator generates a finite ideal. Although we cannot prove this in general, we can show
in general that the subring generated is finite. Of course, the subring generated by an
infinite set A in a ring R has the same cardinality as A.

THEOREM 8 . II T is a higher commutator in R and is Unite, then (T), t ie
subring T generates, is also Unite.

PROOF: By Theorem 7, / = ([T, R}) is finite, since [T, R]CT is finite. In R/I,
T{R/I) = T(R) + I is central from the definition of / . Now T(R) = fT{R) is torsion,
as in Lemma 1, since nfr{T\, ..., rjt) = / T ( W I , . . . , rj.) and T is finite. Consequently,
T(R/I) consists of finitely many central torsion elements, so (T(R/I)) is finite. Thus
in R, (T) +1 is finite, so (T) is finite. D

We end the paper with two related special cases.

THEOREM 9 . Let R be a simple ring and T a higher commutator oi R. Then
either:

(1) R is Unite;
(2) cardT = card(T) = cardR; or
(3) T = 0 and either R is a Reid or dim^ R = 4, 2R = 0 and R^ = Z.

P R O O F : Assume throughout that R is infinite. If [T, R] ^ 0, then by The-
orem 7, card([T, R]) = card[T, R] ^ cardT, so (2) holds since R is simple and
R = {[T, R])Q(T). Suppose then that [T, R] = 0 and apply Theorem 4 to the higher
commutator [T, R] to conclude that either i? is commutative, or that 2R = 0, R sat-
isfies 54, and R^QZ. When R is commutative it is a field and T = 0. Finally, when
2.R = 0 and R satisfies S4, but is not commutative, a theorem of Kaplansky [5, Theo-
rem p.17] yields dim^ R = 4, and also R^ = Z since R^ is a Z module and Z is a
field. Therefore, when T = 0,(3) holds, and if T ^ 0, then cardT = cardZ = card/?,
since T is a Z module and R is infinite, so (2) holds. D

Our last result is for prime rings satisfying a polynomial identity. If one is unfa-
miliar with this notion, then one may assume instead that the ring satisfies a standard
identity Sn as defined above, an equivalent statement for prime rings. Recall that by
Example 3, for a prime ring not satisfying a polynomial identity, cardT < cardiE can
occur. Our result shows that in a prime ring satisfying a polynomial identity, all infinite
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higher commutators have the same cardinality as the ring itself.

THEOREM 10 . Let R be a prime ring satisfying a polynomial identity. If T is a
higher commutator of R, then either:

(1) R is finite;

(2) cardT = card(T) = cardR; or

(3) T = 0 and either R is commutative or 2R = 0, R satisfies Si, and

PROOF: AS we have seen in the proof of Theorem 4, since R satisfies a polynomial
identity, we may conclude that Z / 0 and that the central localisation 5 = RZ~1 of R
at Z — {0} is a simple ring, finite dimensional over its centre QF(Z). Note that if T =
fT(R), then TZ-1 = fT(R)Z~1 = fT(S) = T(S). The result now follows by applying
Theorem 9 to 5 and T(S). Specifically, if Z is a field, then R = S and T = T(S). If
Z is not a field then cardS = card.fi and cardT(S) = caidT(R), so if (2) of Theorem
9 holds for S and T(S), then card-R = cardT = card(T). Finally, if T(S) = 0, then
T = 0, so if 5 is a field R is commutative, and if 25 = 0 and dirnqp^z) S = 4, then
5, and so R, satisfies S4, and R^CS^ C\R = QF{Z) V\R=Z. D

We observe that in part (3) of Theorem 10, one cannot conclude that R^> — Z
as in Theorem 9. For example, if C is a commutative domain with a proper nonzero
ideal H and if charC = 2, let R = {A £ M2(C) | A12 € H}. Then R is a prime ring
satisfying the standard identity 54 and R^ = HI2 ^ CI2 = Z{R).

Finally, in closing we note that in trying to prove that cardT = card(T) for
any infinite higher commutator in an arbitrary ring, one may assume that TC.Z. By
Theorem 1, we know that card([T, R\) = card[T, R], or both are finite, so if R' —
R/([T,R]) it suffices to prove that cardT(R') = ca.rd(T(R')). Unfortunately, we
cannot make use of this additional assumption.
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