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1. Introduction. Let R" denote real Euclidean space of n dimensions. If

define IJx = | x^2 ... xn | and (as usual), | x | = (** + ...+**)*, so that, by the inequality of
arithmetic and geometric means,

|2
\2/nl-^-i- ^ (77x)2/n. (1)

n
Let Ao be the integer lattice, consisting of those points in R" whose co-ordinates are integers.
A non-singular « x n matrix M will be called a Minkowski matrix, if, for any point a € R", there
exists a point x e Ao such that

77(Mx-a) ^ 2"" | det M |. (2)

It was shown by Minkowski that, when n = 2, every non-singular matrix is a Minkowski
matrix, and that, for general n, every rational non-singular matrix is a Minkowski matrix.
Minkowski is also said to have conjectured that every non-singular matrix is a Minkowski
matrix, whatever the value of n. For n = 3, this was proved by Remak [5], and a much simpler
proof was given later by Davenport [2]. For n = 4, it was proved by Dyson [3], who used a
method similar to that of Remak and Davenport, but required the methods of algebraic
topology to deal with some of the complications which arise in the higher dimension. Since
this method depends also on the reduction of quadratic forms, it is quite likely that it might
fail for higher values of n even if the topological difficulties could be overcome. Therefore, an
alternative proof for n = 3, due to Birch and Swinnerton-Dyer [1], is of some interest, though
in this dimension it is more complicated than Davenport's proof. A good deal of their
analysis applies to general n, and they showed that for all n there is a neighbourhood of the
unit matrix / that consists entirely of Minkowski matrices.

In the present note, I show more generally that, if Mo is any non-singular matrix with
rational elements, there is a neighbourhood of Mo consisting entirely of Minkowski matrices.
This is done by showing that the family of Minkowski matrices includes all those which can be
expressed as a product of four matrices of certain types. It remains an open question whether
all non-singular matrices can be factorized in such a manner, even for n = 3. For n = 2, the
factorization is possible with little difficulty, and is, essentially, the basis of the proof due to
Heilbronn given in Hardy and Wright's book [4, p. 394].

2. Definitions. A matrix U is called unimodular if all its elements are integers and its
determinant is ± 1. Since U maps Ao onto itself, MU is a Minkowski matrix if M is.
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An orthogonal matrix is one whose transpose is its own inverse (A' = A'1) and a skew
matrix £ is one whose transpose is its own negative. If exp £ is denned by the convergent
power series

- S 2 + ....
2!

then exp (—2) = (exp S)"1, so that, if £ is skew, exp £ is orthogonal.
A matrix T is called unit-triangular if t.. = 1, tl} = 0(i >j). A matrix T is called zero-

triangular if T(J. = 0 ( / ^ / ) . We shall also require diagonal matrices D with di} = 0 for /+_/.
A matrix M is called a D07T/-matrix if it can be expressed as a product

M = zurc/,

where D is non-singular diagonal, A is orthogonal, T is unit-triangular and U is unimodular.
Our results are as follows.

THEOREM 1. Every DOTU-matrix is a Minkowski matrix.

THEOREM 2. If D, A, T, U are fixed matrices of the appropriate families, A = (ay), and
det (af.) + 0, tfien f/ie matrix Mo = DATU is an inner point of the family of Minkowski matrices.

COROLLARY. Every rational non-singular matrix R is an inner point of the family of
Minkowski matrices.

For, by the theory of elementary divisors, R = DTU, and Theorem 2 can be applied with
A replaced by the unit matrix /.

3. Proof of Theorem 1. Let M denote the set of Minkowski matrices.

LEMMA 1. IfMeM and D is non-singular diagonal, then DMeM.

Proof. We have
i7Z)u = | det D | 77u. (3)

If aei?" (so that D"1ae/?n), then since M e M , there exists x e A 0 such that

Applying (3) with u replaced by Mx — D 'a, we have

n(DMx-a) = | det £> | n{Mx-D~\) ^ 2"" | det DM \ .

This proves the lemma.
Because of Lemma 1, and because (see § 2) MC/eM if M e M and U is unimodular, we

need now only show that ATeM if A is orthogonal and Tunit-triangular. Let the columns
of A be els . . . , en and let

T= 1 '12 ••• « ln- l 'In

tn_u

1

1
0

0
0

ti

0
0
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Let aeR". Since eu ...,en form an orthonormal set, a must be expressible in the form
a = <x1e1 + ...+<xnen. If x = (xu..., xn), then

= p1ei + ...+j}nen (4)

and a simple calculation shows that

Pn— 1 = an— 1 ~ *n— 1 ~ 'n—ln-^n)

Choose an integer xn so that | /?„ | ^ \, then xn_t so that | /?„_! | ^ £, etc. Then x e Ao, and,
since the e, form an orthonormal set,

By (1), it follows that

Il(a-ATx) S 2"" = 2~n det AT.

Thus /4JeM and Theorem 1 is proved.

4. Proof of Theorem 2. Let T, 2, A be variable matrices, T zero-triangular with elements
tiJ(.i<j), 2 skew symmetric with elements atJ(i>j), and A a diagonal matrix with diagonal
elements Su ..., 5n. This makes a total of n2 variables in all. Consider the variable matrix

M = D(/+AM(expE)(/+r)rC/. (5)

For small A and all T, Z, the matrix Mis a Z)0rj/-matrix, since D(/+A) is diagonal, A exp Z
is orthogonal and (/+ t)T is unit triangular. The equation (5) represents n2 equations in n2

variables T, 2, A, and Mo is the value for T = 2 = A = 0. We shall show that the Jacobian of
these equations is not zero at this point. It then follows from the implicit function theorem
that, if M is close enough to Mo, the equations (5) have a solution (T, 2, A), and hence Mo is
an inner point of the family of Z)Or[/-matrices. Since the Jacobian at the origin is derived
from the linear terms of the power series for M in terms of T, 2, A, we shall neglect terms of
higher than first order.

Make a linear transformation in Af-space by putting

P = / T 1 D - 1 ( M - M 0 ) i r 1 T - 1 .

Since A, D, U, T are non-singular, M will describe a neighbourhood of Mo if and only if P
describes a neighbourhood of zero. Thus it suffices to calculate the Jacobian dPjd{x, 2, A).
Now

P = .4"1A^+2 + T+higher terms.
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Take the elements pi} of P in the following order, using the fact that A is orthogonal, so that
A~l=(aki).

(i) (i <;) Pij = Ty-<7;j+terms in A+higher terms.
(ii)(i>j) Pij= <Jij+terms in A + higher terms.

( i i i )0=; ) Pu= EflfcA + higher terms.
k

If we write out the Jacobian matrix in partitioned form, it is seen to be

T 2 A
i<j I -I L
i>j 0 I M
i=j 0 ON

where N is the matrix (a|().
Thus dP/d(x, 2, A) = det iV4= 0 by hypothesis. Hence Mo is an inner point of the family

of DOrCZ-matrices, and so an inner point of M, by Theorem 1.
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