A SIMPLE RING SEPARATING CERTAIN RADICALS

by G. A. P. HEYMAN and W. G. LEAVITT

(Received 3 December, 1973; revised 7 May, 1974)
All rings considered will be associative. For a class M of rings let $U M$ be the class of all rings having no non-zero homomorphic image in M. A hereditary class M of prime rings is called a "special class" [see 1, p. 191] if it has the property that when $I \in M$ with I an ideal of a ring R, then $R / I^{*} \in M$ where I^{*} is the annihilator of I in R, and the corresponding radical class $U M$ is then a "special radical". Let S be the class of all subdirectly irreducible rings with simple heart.

Proposition 1 [1; Theorem 7, p. 202]. For any class W of simple rings the class M of all $R \in S$ with heart in W is a special class so $U M$ is a special radical.

For the class

$$
T=\{R \in S \text { whose heart contains an idempotent }\}
$$

the special radical $U T$ has been called the "Behrens radical" [see 3]. Notice that if D is the class of all rings with unit, then the Brown-McCoy radical $U D \supseteq U T$. In attempting to characterize the Behrens radical one might consider the classes:

$$
\begin{aligned}
& V=\{R \in S \text { with von Neumann regular heart }\} \\
& N=\{R \in S \text { whose heart contains a minimal left ideal }\}
\end{aligned}
$$

Since both $V \subseteq T$ and $N \subseteq T$, we have

$$
\begin{equation*}
U T \subseteq U D \cap U V \cap U N \tag{1}
\end{equation*}
$$

Note that since a semiprime ring contains a minimal left ideal if and only if it contains a minimal right ideal [3, p. 65], we actually have

$$
N=\{R \in S \text { whose heart contains a minimal left and a minimal right ideal }\} .
$$

Using the following proposition, we will show that the inequality in (1) is proper.
Proposition 2. The inclusion (1) is proper if and only if there exists a simple ring without unit, not von Neumann regular, and not containing a minimal one-sided ideal, but which does contain an idempotent.

Proof. The sufficiency is clear, so suppose that there exists some $R \in U D \cap U V \cap U N$ such that $R \notin U T$. Since radical classes are homomorphically closed, we may assume that $R \in T$. But T is hereditary and since the radicals in (1) are special, they are also hereditary [1, Corollary 5, p. 195]. Thus the heart of R is a simple ring in $T \cap U D \cap U V \cap U N$.

The following two propositions are well-known, but we give the proofs for completeness:
Proposition 3. If I is a proper right ideal of a simple ring R with unit, then $I / I \cap l(I)$ is a simple ring, where $l(I)$ is the left annihilator of I in R.

Proof. If $x \notin l(I)$ then $x I \neq 0$ so by simplicity $0 \neq R x I=R$. Also since R has a unit, $I R=I$. Thus if $x \in I$ and (x) is the ideal of I generated by x, we have $I R x I=I R=I \subseteq(x)$. Thus $I=(x)$ and so $I / I \cap l(I)$ is simple.

PROPOSITION 4. No proper right ideal of a prime ring has a unit.

Proof. Let $0 \neq I$ be a right ideal of a prime ring R. If e is the unit of I then $R=I \oplus V$, where $V=\{x-e x\}$ for all $x \in R$. Since $e x=e x e$, we have $e x(y-e y)=0$ and so $I V=0$. But in a prime ring this implies that $V=0$, so that $I=R$ is not proper.

Corollary. If the left annihilator $l(I)=0$ for a proper right ideal I of a simple ring R with unit, then I is a simple ring without unit.

Now consider the ring $R=Z_{2}[x, y, u, v]$ in non-commuting variables with relations $x u=y v=1, x v=y u=0$, and $u x=1+v y$. Note: R can be regarded as a polynomial ring in which all elements are "reduced"; that is, no term contains $x u, y v, x v, y u$, or $u x$ and if such a term occurs in a product it is immediately reduced (using the above relations) [see 4 for details]. R is a ring with unit which has been shown [5, Theorem 2, p. 307] to be simple.

We consider the right ideal $I=(u+1) R$.
Lemma 1. I is a proper right ideal of R.
Proof. Certainly $I \neq 0$. Suppose that $I=R$. It will follow that $(u+1) a=1$ for some $a \in R$. But any longest term w of a will produce a longest term $u w$ (or $v y u^{\prime}$ if $w=x u^{\prime}$). In either case it will not be equal to any other term and so will not be cancelled in the product. Thus the product cannot equal 1.

Lemma 2. $l(I)=0$.
Proof. Suppose that $\left(h_{0}+h x+g y\right)(u+1)=0$, where h_{0} is a function of u, v alone. We obtain $h_{0}(u+1)+h+h x+g y=0$. A longest term w of h would produce an uncancelled longest term $w x$ and thus $h=0$. But then $g y=0$, so that $g=0$, and clearly $h_{0}(u+1)=0$ implies that $h_{0}=0$.

Lemma 3. Iis not von Neumann regular.

Proof. If $(u+1)(u+1) a(u+1)=u+1$ for some $a \in R$, then, since $l(I)=0$, we have $(u+1)^{2} a=1$, contradicting the fact that I is proper.

Lemma 4. I does not contain a minimal right ideal.

Proof. We show first that any non-zero right ideal J of I contains a non-zero element $(u+1) b$, where b is a function of u and v alone. Suppose $0 \neq(u+1) a \in J$, where $a=h_{0}+$ $h_{1} x+h_{2} y$ with h_{0} a function of u and v alone. Suppose first that $h_{1}=0$. Then if $h_{0} \neq 0$ we can multiply $(u+1) a$ on the right by $(u+1) u$, or if $h_{0}=0$ multiply by $(u+1) v$ and use induction on the length of a.

Thus suppose that $h_{1} \neq 0$. We use induction on the longest term of a ending in x. We have $(u+1) a(u+1) u=(u+1)\left(h_{0} u^{2}+h_{0} u+h_{1} u+h_{1}\right)$. If any term ending in x were to remain, it would be in $h_{1} u+h_{1}$ shorter than the longest such term in $h_{1} x$, and the result would follow by induction. If no term ending in x remains but there is one ending in y, then again we can complete the proof by the argument of the first paragraph. We will thus have the desired result unless the product reduces to zero, that is unless $h_{0} u^{2}+h_{0} u+h_{1} u+h_{1}=0$. But then the terms of h_{1} would end in u (which is not permitted, since $h_{1} x$ is reduced).

It is now clear that J cannot be minimal; for if $(u+1) b \in J$ with b a function of u and v alone, then this would mean $(u+1) b I=J$. Thus $(u+1) b(u+1) a=(u+1) b$, for some $a \in R$, which would then also have to be a function of u and v alone, giving terms on the left that are too long.

Corollary. I contains no minimal left ideal.

Theorem. The inclusion (1) is proper.
Proof. From Lemmas 1 and 2, the ring I is simple without unit, and Lemmas 3 and 4 say that it is not von Neumann regular and does not contain a minimal one-sided ideal. However, I does contain the idempotent $(u+1) v y$.

REFERENCES

1. V. A. Andrunakievitch, Radicals of Associative rings I, Mat. Sbornik 44 (1958), 179-212.
2. A. E. Behrens, Nichtassoziative Ringe, Math. Ann. 127 (1954), 441-452.
3. Nathan Jacobson, Structure of Rings, Amer. Maṭh. Soc. Colloq. Publ. vol. 37, 1964.
4. W. G. Leavitt, The module type of a ring, Trans. Amer. Math. Soc. 103 (1962), 113-120.
5. W. G. Leavitt, The module type of homomorphic images, Duke Math.J. 32 (1965), 305-311.

University of the Orange Free State
University of Nebraska-Lincoln, U.S.A. Bloemfontein, South Africa

