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BMO Functions and Carleson Measures
with Values in Uniformly Convex Spaces

Caiheng Ouyang and Quanhua Xu

Abstract. This paper studies the relationship between vector-valued BMO functions and the Carleson

measures defined by their gradients. Let dA and dm denote Lebesgue measures on the unit disc D and

the unit circle T, respectively. For 1 < q < ∞ and a Banach space B, we prove that there exists a

positive constant c such that

sup
z0∈D

Z

D

(1 − |z|)q−1‖∇ f (z)‖qPz0 (z)dA(z) ≤ cq sup
z0∈D

Z

T

‖ f (z) − f (z0)‖qPz0 (z)dm(z)

holds for all trigonometric polynomials f with coefficients in B if and only if B admits an equivalent

norm which is q-uniformly convex, where

Pz0 (z) =
1 − |z0|2

|1 − z̄0z|2
.

The validity of the converse inequality is equivalent to the existence of an equivalent q-uniformly

smooth norm.

1 Introduction

Let T be the unit circle of the complex plane equipped with normalized Haar measure

dm. Recall that an integrable function f on T is of bounded mean oscillation (BMO)

if

‖ f ‖∗ = sup
I

1

|I|

∫

I

| f − fI |dm < ∞,

where the supremum runs over all arcs of T and fI = |I|−1
∫

I
f dm is the mean of f

over I. Let BMO(T) denote the space of BMO functions on T. The means over arcs

in this definition can be replaced by the averages of f against the Poisson kernel Pz0

for the unit disc D:

Pz0
(z) =

1 − |z0|
2

|1 − z̄0z|2
, z0 ∈ D, z ∈ T.

Then

‖ f ‖2
∗ ≈ sup

z0∈D

∫

T

| f (z) − f (z0)|2Pz0
(z)dm(z),
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with universal equivalence constants. Here, as well as in the sequel, we denote also by

f its Poisson integral in D:

f (z0) =

∫

T

f (z)Pz0
(z)dm(z), z0 ∈ D.

On the other hand, it is well known that BMO functions can be characterized by

Carleson measures. A positive measure µ on D is called a Carleson measure if

‖µ‖C = sup
z0∈D

∫

D

1 − |z0|
2

|1 − z̄0z|2
dµ(z) < ∞.

Let f ∈ L1(T). Then f ∈ BMO(T) if and only if |∇ f (z)|2(1−|z|2)dA(z) is a Carleson

measure, where dA(z) denotes Lebesgue measure on D. In this case, we have

(1.1) ‖ f ‖2
∗ ≈ sup

z0∈D

∫

D

|∇ f (z)|2
(1 − |z|2)(1 − |z0|

2)

|1 − z̄0z|2
dA(z).

We refer to [6] for all these results.

This paper concerns the vector-valued version of (1.1). More precisely, we are

interested in characterizing Banach spaces B for which one of the two inequalities in

(1.1) holds for B-valued functions f . Given a Banach space B, let Lp(T; B) denote the

usual Lp-space of Bochner p-integrable functions on T with values in B. The space

BMO(T; B) of B-valued functions on T is defined in the same way as in the scalar case

just by replacing the absolute value of C by the norm of B. Then the vector-valued

analogue of (1.1) is the following:

(1.2) c−1
1 ‖ f ‖2

∗ ≤ sup
z0∈D

∫

D

‖∇ f (z)‖2 (1 − |z|2)(1 − |z0|
2)

|1 − z̄0z|2
dA(z) ≤ c2‖ f ‖2

∗

for all f ∈ BMO(T; B), where c1, c2 are two positive constants (depending on B), and

where

‖∇ f (z)‖ =

∥∥∥
∂ f

∂x
(z)

∥∥∥ +
∥∥∥

∂ f

∂y
(z)

∥∥∥ , z = x + i y.

It is part of the folklore that (1.2) holds if and only if B is isomorphic to a Hilbert

space (see [2]). We include a proof of this result at the end of the paper for the

convenience of the reader.

However, if one considers the validity of only one of the two inequalities in (1.2),

the matter becomes much subtler and the corresponding class of Banach spaces is

much larger. The following theorem solves this problem.

Theorem 1.1 Let B be a Banach space.

(i) There exists a positive constant c such that

sup
z0∈D

∫

D

‖∇ f (z)‖2 (1 − |z|2)(1 − |z0|
2)

|1 − z̄0z|2
dA(z) ≤ c‖ f ‖2

∗

holds for all trigonometric polynomials f with coefficients in B if and only if B

admits an equivalent norm that is 2-uniformly convex.
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(ii) There exists a positive constant c such that

sup
z0∈D

∫

D

‖∇ f (z)‖2 (1 − |z|2)(1 − |z0|
2)

|1 − z̄0z|2
dA(z) ≥ c−1‖ f ‖2

∗

holds for all trigonometric polynomials f with coefficients in B if and only if B

admits an equivalent norm that is 2-uniformly smooth.

We refer to the next section for the definition of uniform convexity (smoothness).

This theorem is intimately related to the main result of [15], where the vector-valued

Littlewood–Paley theory is studied. Given f ∈ L1(T; B), define the Littlewood–Paley

g-function
(

G( f )(z)
) 2

=

∫ 1

0

(1 − r)‖∇ f (rz)‖2dr, z ∈ T.

The following fact is again well known. The equivalence

‖G( f )‖L2(T) ≈ ‖ f − f (0)‖L2(T;B)

holds uniformly for all B-valued trigonometric polynomials f if and only if B is iso-

morphic to a Hilbert space. However, the two one-sided inequalities are related to

uniform convexity (smoothness). More precisely, we have the following result from

[15].

Theorem 1.2 Let B be a Banach space.

(i) B has an equivalent 2-uniformly convex norm if and only if for some p ∈ (1,∞)

(or equivalently, for every p ∈ (1,∞)) there exists a positive constant c such that

(1.3) ‖G( f )‖Lp(T) ≤ c‖ f ‖Lp(T;B)

holds for all B-valued trigonometric polynomials f .

(ii) B has an equivalent 2-uniformly smooth norm if and only if for some p ∈ (1,∞)

(or equivalently, for every p ∈ (1,∞)) there exists a positive constant c such that

(1.4) ‖ f − f (0)‖Lp(T;B) ≤ c‖G( f )‖Lp(T)

holds for all B-valued trigonometric polynomials f .

According to [15], the spaces satisfying (1.3) (resp. (1.4)) are said to be of Lusin

cotype 2 (resp. Lusin type 2). The name Lusin refers to the fact that the Littlewood–

Paley g-function can be replaced by the Lusin area function. At this stage, let us

also recall that by Pisier’s renorming theorem [10], B has an equivalent 2-uniformly

convex (resp. smooth) norm if and only if B is of martingale cotype (resp. type) 2.

The value p = ∞ is, of course, not allowed in Theorem 1.2. At the time of the

writing of [15], the second author guessed that a correct version of Theorem 1.2 for

p = ∞ should be Theorem 1.1, but could not confirm this. Our proof of Theorem

1.1 relies heavily on Theorem 1.2 and Calderón–Zygmund singular integral theory.

In fact, we will work in the more general setting of a Euclidean space R
n instead of

T. On the other hand, the power 2 in ‖∇ f ‖2 no longer plays any special role in the

vector-valued setting. We will consider the analogue of Theorem 1.1 for ‖∇ f ‖q with

1 < q < ∞. The corresponding result is stated separately in Theorems 4.1 and 5.1

below, which correspond to the end point p = ∞ of the results of [9, 15].
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2 Preliminaries

Our references for harmonic analysis are [5, 6, 14]. All results quoted in this paper

without explicit reference can be found there. However, one sometimes needs to

adapt arguments in the scalar case to the vector-valued setting.

Let (Ω, µ) be a measure space and B a Banach space. For 1 ≤ p ≤ ∞, we denote

by Lp(Ω, µ; B) the usual Lp-space of Bochner (or strongly) measurable functions on

Ω with values in B. The norm of Lp(Ω, µ; B) is denoted by ‖ · ‖p. The n-dimensional

Euclidean space R
n is equipped with Lebesgue measure, and L1

loc(R
n; B) denotes the

space of locally integrable functions on R
n with values in B. Recall the Poisson kernel

on R
n:

Pt (x) =
Γ( n+1

2
)

π(n+1)/2

t

(t2 + |x|2)(n+1)/2
, x ∈ R

n, t > 0.

Let f ∈ L1
loc(R

n; B) such that

∫

Rn

‖ f (x)‖
1

1 + |x|n+1
dx < ∞.

The Poisson integral of f is then defined by

Pt ∗ f (x) =

∫

Rn

Pt (x − y) f (y)dy.

The function Pt ∗ f (x) is harmonic in the upper half space R
n+1
+ . Let us make a

convention to be used throughout this paper. For a function f ∈ L1
loc(R

n; B), we also

denote by f its Poisson integral (whenever the latter exists); thus f (x, t) = Pt ∗ f (x).

The space BMO(R
n; B) is defined as the space of all functions f ∈ L1

loc(R
n; B) such

that

‖ f ‖∗ = sup
Q

1

|Q|

∫

Q

‖ f (x) − fQ‖dx < ∞,

where the supremum runs over all cubes Q ⊂ R
n (with sides parallel to the axes),

and where fQ denotes the mean of f over Q. Equipped with ‖ · ‖∗, BMO(R
n; B) is a

Banach space modulo constant. BMO(R
n; C) is simply denoted by BMO(R

n).

We will also need the Hardy space H1. There exist several different (equiva-

lent) ways to define this. It is more convenient for us to use atomic decomposition.

A B-valued atom is a function a ∈ L∞(R
n; B) such that

supp(a) ⊂ Q,

∫

Rn

adx = 0, ‖a‖∞ ≤
1

|Q|

for some cube Q ⊂ R
n. We then define H1

a (R
n; B) to be the space of all functions

f that can be written as f =
∑

k≥1 λkak, with ak atoms and λk scalars such that∑
k |λk| < ∞. The norm of H1

a (R
n; B) is defined by

∥∥ f
∥∥

H1
a (Rn;B)

= inf
{ ∑

k≥1

|λk| : f =
∑
k≥1

λkak

}
.
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This is a Banach space. It is well known that H1
a (R

n; B) coincides with the space of

all f ∈ L1(R
n; B) such that supt>0 ‖ f (·, t)‖ ∈ L1(R

n). Fefferman’s duality theorem

between H1 and BMO remains valid in this setting (with a slight condition on B).

More precisely, BMO(R
n; B∗) is isomorphically identified as a subspace of the dual

H1
a (R

n; B)∗; moreover, it is norming in the following sense. For any f ∈ H1
a (R

n; B),

‖ f ‖H1
a (Rn;B) ≈ sup

{
|〈 f , g〉| : g ∈ BMO(R

n; B∗), ‖g‖∗ ≤ 1
}

with universal equivalence constants. Note that this duality result follows immedi-

ately from the atomic definition of H1
a . If B∗ has the Radon–Nikodym property (in

particular, if B is reflexive), then H1
a (R

n; B)∗ = BMO(R
n; B∗). We refer to [1] and [3]

for more details.

BMO functions can be characterized by Carleson measures. Let Γ = {(z, t) ∈
R

n+1
+ : |z| < t}, the standard cone of R

n+1
+ . Γ(x) denotes the translation of Γ by

(x, 0) for x ∈ R
n: Γ(x) = Γ + (x, 0). Let Q be a cube. The tent over Q is defined by

Q̂ = R
n+1
+ \

⋃
x∈Qc Γ(x). A positive measure µ on R

n+1
+ is called a Carleson measure if

‖µ‖C = sup
Q cube

µ(Q̂)

|Q|
< ∞.

Then f ∈ BMO(R
n) if and only if µ( f ) = (t|∇ f (x, t)|)2dxdt/t is a Carleson mea-

sure. Moreover, ‖ f ‖2
∗ ≈ ‖µ( f )‖C . This is the analogue of (1.1) for R

n. Our main

concern is the validity of each of the two one-sided inequalities of the equivalence

above in the vector-valued setting. The previous result is, of course, part of the

Littlewood–Paley theory. In this regard let us recall its Lp-analogue. Let f ∈ Lp(R
n).

Define the Lusin integral function of f :

(
S( f )(x)

) 2
=

∫

Γ

(t|∇ f (x + z, t)|)2 dzdt

tn+1
, x ∈ R

n.

Then

‖ f ‖p ≈ ‖S( f )‖p, ∀ f ∈ Lp(R
n), 1 < p < ∞.

The vector-valued Littlewood–Paley theory is studied in [9, 15]. Let 1 < q < ∞ and

f ∈ Lp(R
n; B). Define

(
Sq( f )(x)

) q
=

∫

Γ

(t‖∇ f (x + z, t)‖)q dzdt

tn+1
, x ∈ R

n,

where

‖∇ f (x, t)‖ =

∥∥∥
∂

∂t
f (x, t)

∥∥∥ +

n∑

i=1

∥∥∥
∂

∂xi

f (x, t)
∥∥∥ .

According to [9, 15], B is said to be of Lusin cotype q if for some p ∈ (1,∞)

(or equivalently, for every p ∈ (1,∞)) there exists a positive constant c such that
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‖Sq( f )‖p ≤ c‖ f ‖p for all compactly supported, B-valued, continuous functions f

on R
n. Similarly, we define Lusin type q by reversing the inequality above. Note that

if B is of Lusin cotype (resp. type) q, then necessarily q ≥ 2 (resp. q ≤ 2). By [9, 15],

Lusin cotype (resp. type) q is equivalent to martingale cotype (resp. type) q. We

will not need the latter notion and refer the interested reader to [10, 11]. By Pisier’s

renorming theorem [10], B is of martingale cotype (resp. type) q if and only if B has

an equivalent norm which is q-uniformly convex (resp. smooth). Let us recall this

last notion for which we refer to [8] for more information. First define the modulus

of convexity and modulus of smoothness of B by

δB(ε) = inf
{

1 −
∥∥∥

a + b

2

∥∥∥ : a, b ∈ B, ‖a‖ = ‖b‖ = 1, ‖a − b‖ = ε
}

, 0 < ε < 2,

ρB(t) = sup
{ ‖a + tb‖ + ‖a − tb‖

2
− 1 : a, b ∈ B, ‖a‖ = ‖b‖ = 1

}
, t > 0.

B is called uniformly convex if δB(ε) > 0 for every ε > 0, and uniformly smooth if

limt→0 ρB(t)/t = 0. On the other hand, if δB(ε) ≥ cεq for some positive constants c

and q, B is called q-uniformly convex. Similarly, we define q-uniformly smoothness

by demanding ρB(t) ≤ ctq for some c > 0 and q > 1. It is well known that for 1 <
p < ∞, any (commutative or noncommutative) Lp-space is max(2, p)-uniformly

convex and min(2, p)-uniformly smooth.

3 A Singular Integral Operator

Let the cone Γ = {(z, t) ∈ R
n
+ : |z| < t} be equipped with the measure dzdt/tn+1.

Let 1 < q < ∞ and B be a Banach space. Set A = Lq(Γ; B). For h ∈ Lp(R
n; A),

we will consider h as a function of either a sole variable x ∈ R
n or three variables

(x, z, t) ∈ R
n × Γ. In the first case, h(x) is a function of two variables (z, t) for every

x ∈ R
n. Thus h(x)(z, t) = h(x, z, t).

We will consider singular integral operators with kernels taking values in L(A),

the space of bounded linear operators on A. Recall that Pt denotes the Poisson kernel

on R
n. Let

(3.1) ϕt (x) = t
∂

∂t
Pt (x).

For h ∈ Lp(R
n; A), define

(3.2) Φ(h)(x, u, s) =

∫

Γ

∫

Rn

ϕs ∗ ϕt (x + u + z − y)h(y, z, t)dy
dzdt

tn+1
.

Then Φ(h) is well defined for h in a dense vector subspace of Lp(R
n; A). Indeed,

let h : R
n → A be a compactly supported continuous function such that for each

x ∈ supp(h) the function h(x) : Γ → B is continuous and supported by a compact of

Γ independent of x. Then it is easy to check that Φ(h) is well defined and belongs to

Lp(R
n; A) for all p. On the other hand, it is clear that the family of all such functions

https://doi.org/10.4153/CJM-2010-043-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2010-043-6


BMO Functions and Carleson Measures with Values in Uniformly Convex Spaces 833

h is dense in Lp(R; A) for every p < ∞. In the sequel, h will be assumed to belong to

this family whenever we consider Φ(h).

The following will be crucial later on. We refer to [15] for a similar lemma on the

circle T.

Lemma 3.1 The map Φ extends to a bounded map on Lp(R
n; A) for 1 < p < ∞, and

also a bounded map from H1
a (R

n; A) to L1(R
n; A). Moreover, denoting again by Φ the

extended maps, we have

‖Φ : Lp(R
n; A) → Lp(R

n; A)‖ ≤ c, ‖Φ : H1
a (R

n; A) → L1(R
n; A)‖ ≤ c,

where the constant c depends only on p, q and n.

A similar statement holds for each of the n partial derivatives in xi instead of ∂/∂t in

the definition of ϕ in (3.1).

Proof The proof is based on Calderón–Zygmund singular integral theory for vector-

valued kernels, for which we refer to [5]. We will represent Φ as a singular integral

operator. Let

ks,t (x) = ϕs ∗ ϕt (x) =

∫

Rn

ϕs(x − y)ϕt (y)dy.

Then

(3.3) Φ(h)(x, u, s) =

∫

Γ

∫

Rn

ks,t (x + u + z − y)h(y, z, t)dy
dzdt

tn+1
.

On the other hand, using the definition of ϕt and the semigroup property of Pt , we

find

(3.4) ks,t (x) = st
∂2

∂r2
Pr(x)

∣∣
r=s+t

.

Now consider the operator-valued kernel K(x) : A → A defined by

K(x)(a)(u, s) =

∫

Γ

ks,t (x + u + z)a(z, t)
dzdt

tn+1
, a ∈ A.

Then Φ(h) can be rewritten as

Φ(h)(x) = K ∗ h(x) =

∫

Rn

K(x − y)(h(y))dy.

Thus Φ is a convolution operator with kernel K. We will show that K is a regular

Calderón–Zygmund kernel with values in L(A). Namely, K satisfies the following

norm estimates

‖K(x)‖ ≤
c

|x|n
and ‖∇K(x)‖ ≤

c

|x|n+1

for some positive constant c depending only n. To this end first observe that by (3.4)

(3.5) |ks,t (x)| ≤
cst

(s + t + |x|)n+2
.

https://doi.org/10.4153/CJM-2010-043-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2010-043-6


834 C. Ouyang and Q. Xu

Here as well as in the rest of the paper, letters c, c ′, c1, . . . denote positive constants

that may depend on n, q, p, or B but never on particular functions in consideration.

They may also vary from line to line. Let a ∈ A with ‖a‖ ≤ 1. Let q ′ denote the

conjugate index of q. Then by the Hölder inequality and (3.5), we deduce

‖K(x)(a)(u, s)‖q ′

≤ cq ′

∫

Γ

sq ′

tq ′

(s + t + |x + u + z|)(n+2)q ′

dzdt

tn+1
.

Since |z| < t , we have

1

2
(s + t + |x + u|) ≤ s + t + |x + u + z| ≤ 2(s + t + |x + u|).

It then follows that

‖K(x)(a)(u, s)‖q ′

≤ c
q ′

1

∫

Γ

sq ′

tq ′

(s + t + |x + u|)(n+2)q ′

dzdt

tn+1

≤ c
q ′

2

sq ′

(s + |x + u|)(n+1)q ′
.

Therefore,

‖K(x)(a)‖
q
A =

∫

Γ

‖K(x)(a)(u, s)‖q duds

sn+1

≤ c
q
2

∫

Γ

sq

(s + |x + u|)(n+1)q

duds

sn+1
≤

c
q
3

|x|nq
.

Taking the supremum over all a in the unit ball of A, we deduce that K(x) is a

bounded operator on A and ‖K(x)‖ ≤ c3/|x|
n. Similarly, we show ‖∇K(x)‖ ≤

c4/|x|
n+1. Therefore, K is a regular vector-valued kernel.

Since Φ is the singular integral operator with kernel K, by [5, Theorem V.3.4] (see

also [9, Theorem 4.1]), the lemma is reduced to the boundedness of Φ on Lp(R
n; A)

for some p ∈ (1,∞). Clearly, the most convenient choice of p is p = q. By (3.3) and

the Hölder inequality ‖Φ(h)(x, u, s)‖ ≤ α · β, where

αq ′

=

∫

Γ

∫

Rn

|ks,t (x + u + z − y)|dy
dzdt

tn+1
,

βq
=

∫

Γ

∫

Rn

|ks,t (x + u + z − y)|‖h(y, z, t)‖qdy
dzdt

tn+1
.

Using (3.5), we find

αq ′

≤ c

∫

Γ

∫

Rn

st

(s + t + |x + u + z − y|)n+2
dy

dzdt

tn+1

≤ c1

∫

Γ

st

(s + t)2

dzdt

tn+1
≤ c2.
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Hence,

∥∥Φ(h)
∥∥ q

q
=

∫

Rn

∫

Γ

‖Φ(h)(x, u, s)‖q duds

sn+1
dx

≤ c3

∫

Rn

∫

Γ

∫

Γ

∫

Rn

st

(s + t + |x + u + z − y|)n+2
dx

duds

sn+1
‖h(y, z, t)‖q dzdt

tn+1
dy

≤ c4

∫

Rn

∫

Γ

‖h(y, z, t)‖q dzdt

tn+1
dy = c4

∥∥h
∥∥ q

Lq(Rn;A)
.

Thus Φ extends to a bounded map on Lq(R
n; A), so the lemma is proved.

4 Carleson Measures and Uniform Convexity

The following theorem is the main result of this section. Recall that Q̂ denotes the

tent over Q for a cube Q ⊂ R
n.

Theorem 4.1 Let B be a Banach space and 2 ≤ q < ∞. Then the following statements

are equivalent:

(i) There exists a positive constant c such that for all f ∈ BMO(R
n; B),

(4.1)
(

sup
Q cube

1

|Q|

∫

bQ

(
t‖∇ f (x, t)‖

) q dxdt

t

) 1/q

≤ c‖ f ‖∗.

(ii) B has an equivalent norm which is q-uniformly convex.

Inequality (4.1) means that (t‖∇ f (x, t)‖)qdxdt/t is a Carleson measure on R
n+1
+

for every f ∈ BMO(R
n; B). In this regard, let us introduce one more function Cq,

besides the Lusin function Sq. Given f : R
n → B, define

(4.2) Cq( f )(x) =

(
sup

Q

1

|Q|

∫

bQ

(
t‖∇ f (y, t)‖

) q dydt

t

) 1/q

,

where the supremum runs over all cubes Q containing x. Then (4.1) can be rephrased

as ‖Cq( f )‖∞ ≤ c‖ f ‖∗.
The proof of Theorem 4.1 and that of Theorem 5.1 below rely heavily on the re-

sults on Lusin type and cotype in [9]. We collect them in the following lemma for the

convenience of the reader and also for later reference.

Lemma 4.2 Let B be a Banach space and 2 ≤ q < ∞. Then the following statements

are equivalent:

(i) B is of Lusin cotype q. Namely, for some p ∈ (1,∞) (or equivalently, for every

p ∈ (1,∞)) there exists a positive constant c such that ‖Sq( f )‖p ≤ c‖ f ‖p for all

f ∈ Lp(R
n; B).

(ii) There exists a constant c such that ‖Sq( f )‖1 ≤ c‖ f ‖H1
a (Rn;B), ∀ f ∈ H1

a (R
n; B).

(iii) B has an equivalent q-uniformly convex norm.

(iv) B∗ is of Lusin type q ′, where q ′ is the conjugate index of q.
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(v) B∗ has an equivalent q ′-uniformly smooth norm.

Proof of Theorem 4.1 (ii) ⇒ (i). Let f ∈ BMO(R
n; B) with ‖ f ‖∗ ≤ 1. Let Q ⊂ R

n

be a cube. Set Q̃ = 2Q, the cube of the same center as Q and of double side length.

Write

f = ( f − feQ)1leQ + ( f − feQ)1leQc + feQ

def
= f1 + f2 + feQ.

Then

∇ f (x, t) = ∇ f1(x, t) + ∇ f2(x, t),

so ( 1

|Q|

∫

bQ

(t‖∇ f (x, t)‖)q dxdt

t

) 1/q

≤ α1 + α2,

where

αk =

( 1

|Q|

∫

bQ

(t‖∇ fk(x, t)‖)q dxdt

t

) 1/q

, k = 1, 2.

For α1, by the Fubini theorem, we have

|Q|α
q
1 ≤ cq

n

∫

Q

∫

Γ

(
t‖∇ f1(x + z, t)‖

) q dzdt

tn+1
dx

= cq
n

∫

Q

(
Sq( f1)(x)

) q
dx ≤ cq

n‖Sq( f1)‖q
q,

where cn is a constant depending only on n. By (ii) and Lemma 4.2, B is of Lusin

cotype q. Thus ‖Sq( f1)‖q ≤ c‖ f1‖q. However, by the John–Nirenberg theorem,

‖ f1‖q ≤ c ′|Q|1/q‖ f ‖∗ ≤ c ′|Q|1/q.

It then follows that α1 ≤ cncc ′. To deal with α2, we write

∇ f2(x, t) =

∫

Rn

∇Pt (x − y) f2(y)dy =

∫

eQc

∇Pt (x − y) f2(y)dy.

Note that

|∇Pt (x − y)| ≤
cn

(t + |x − y|)n+1
.

On the other hand, for (x, t) ∈ Q̂ and y ∈ Q̃c,

1

(t + |x − y|)n+1
≈

1

(ℓ + |x − y|)n+1
,

where ℓ = ℓ(Q) is the side length of Q. Thus

‖∇ f2(x, t)‖ ≤ c ′n

∫

eQc

‖ f2(y)‖
1

(ℓ + |x − y|)n+1
dy

≤
c ′ ′n

ℓ

∫

Rn

‖ f2(y)‖Pℓ(x − y)dy.
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We now use a well known characterization of BMO functions, in which averages

over cubes are replaced by averages against the Poisson kernel. Namely, a function

g : R
n → B belongs to BMO(R

n; B) if and only if

sup
(x,t)∈R

n
+

∫

Rn

‖g(y) − g(x, t)‖Pt (x − y)dy < ∞.

If this is the case, the supremum above is equivalent to ‖g‖∗ with relevant constants

depending only on n. Then we deduce ‖∇ f2(x, t)‖ ≤ c
ℓ . Therefore,

α
q
2 ≤

cq

ℓq|Q|

∫

bQ

tq dxdt

t
≤ c ′.

Combining the preceding inequalities, we find that (t‖∇ f (x, t)‖)qdxdt/t is a Car-

leson measure on R
n+1
+ with constant depending only on n, q and B for every f ∈

BMO(R
n; B) with ‖ f ‖∗ ≤ 1. This concludes the proof of (ii) ⇒ (i).

(i) ⇒ (ii). This proof is harder. Let A = Lq(Γ; B) (recall that the cone Γ is

equipped with the measure dzdt/tn+1). Given a function f ∈ Lp(R
n; B), define

Sq( f )(x, z, t) = t
∂

∂t
f (x + z, t), x ∈ R

n, (z, t) ∈ Γ.

We regard Sq( f ) as a function on R
n with values in A. Then

‖Sq( f )(x)‖A = St
q( f )(x),

where St
q( f ) is the Lusin integral function of f , but using only the partial derivative

in t . Also note that Sq( f )(x, z, t) = ϕt ∗ f (x + z), where ϕ is defined by (3.1). As in

section 3, Sq can be represented as a singular integral operator with a regular kernel

taking values in the space of bounded linear maps from B into A (see [13] for the

scalar case and [15] for T). By [9, 15], (ii) is equivalent to the following inequality

(4.3) ‖Sq( f )‖∗ ≤ c‖ f ‖∞, ∀ f ∈ L∞(R
n; B).

Note that this inequality is a finite dimensional property. Namely, if (4.3) holds for

every finite dimensional subspace E of B in place of B with constant independent of E,

then (4.3) holds for the whole B too. Thus we can assume dim B < ∞ in the rest of

the proof. To prove (4.3) we will use duality. We first show that (i) implies

(4.4) ‖g‖H1
a (Rn;B∗) ≤ c‖St

q ′(g)‖1

for all compactly supported continuous functions g : R
n → B∗. To this end let f ∈

BMO(R
n; B) with ‖ f ‖∗ ≤ 1. Then by Plancherel’s theorem

∫

Rn

〈 f (x), g(−x)〉dx = 4

∫

R
n+1
+

〈t
∂

∂t
f (x, t), t

∂

∂t
g(−x, t)〉

dxdt

t
.
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Note that since dim B < ∞, this equality is reduced to the scalar case, in which it is

well known and immediately follows from Plancherel’s theorem. Let Ct
q( f ) denote

the function defined by (4.2) using only the partial derivative in t . Then by (4.1) we

find
∣∣∣
∫

Rn

〈 f (x), g(−x)〉dx
∣∣∣ ≤ 4

∫

R
n+1
+

t
∥∥∥

∂

∂t
f (x, t)

∥∥∥ t
∥∥∥

∂

∂t
g(−x, t)

∥∥∥
dxdt

t

≤ c ′
∫

Rn

Ct
q( f )(x)St

q ′(g)(−x)dx

≤ cc ′‖ f ‖∗‖St
q ′(g)‖1,

where we have used [4, Theorem 1(a)] for the next to last inequality. Note that the

inequality there is proved only for q = 2, but the arguments can be easily modified

to our situation. Taking the supremum over all f in the unit ball of BMO(R
n; B), we

obtain (4.4).

Return to (4.3). We use duality again, this time that between BMO(R
n; A) and

H1
a (R

n; A∗). Fix a function f ∈ L∞(R; B). Recall that Sq( f ) is a function from R
n to

A and the left hand side of (4.3) is ‖Sq( f )‖BMO(Rn;A). Thus it suffices to prove

(4.5) |〈Sq( f ), h〉| ≤ c‖ f ‖∞‖h‖H1
a (Rn;A∗), ∀h ∈ H1

a (R
n; A∗).

Again by approximation, we need only to consider a nice h. We have

〈Sq( f ), h〉 =

∫

Rn

∫

Γ

〈ϕt ∗ f (x + z), h(−x, z, t)〉
dzdt

tn+1
dx

=

∫

Rn

∫

Γ

〈 f (y), ϕt (· + z) ∗ h(·, z, t)(−y)〉
dzdt

tn+1
dy

=

∫

Rn

〈 f (y),Ψ(h)(−y)〉dy,

where

Ψ(h)(x) =

∫

Γ

ϕt ( · + z) ∗ h( · , z, t)(x)
dzdt

tn+1

=

∫

Γ

∫

Rn

ϕt (x + z − y)h(y, z, t)dy
dzdt

tn+1
.

(4.6)

Note that Ψ(h) is a function on R
n with values in B∗. Therefore, by (4.4)

|〈Sq( f ), h〉| ≤ ‖ f ‖∞‖Ψ(h)‖1 ≤ ‖ f ‖∞‖Ψ(h)‖H1
a (Rn;B∗)

≤ c‖ f ‖∞‖St
q ′(Ψ(h))‖1 = c‖ f ‖∞‖Sq ′(Ψ(h))‖L1(Rn;A∗).

Here we use the same notation S in the dual setting, which is consistent with the pre-

ceding meaning, because A∗ is the space associated with B∗ in the same way as A as-

sociated with B: A∗
= Lq ′

(Γ; B∗). Now it is easy to see that Sq ′(Ψ(h)) = Φ(h), where

Φ is the map defined by (3.1) with (B∗, q ′) instead of (B, q). Thus by Lemma 3.1,

‖Sq ′(Ψ(h))‖L1(Rn;A∗) ≤ c‖h‖H1
a (Rn;A∗).
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Combining the preceding inequalities, we obtain (4.5), and consequently, (4.3) too.

This shows the implication (i) ⇒ (ii). Thus the proof of the theorem is complete.

The previous proof of (i) ⇒ (ii) shows the following result, which extends [9,

Theorem 5.3] (and [15, Theorem 2.5]) to the case p = 1.

Corollary 4.3 Let B be a Banach space and 1 < q ≤ 2. Then the following statements

are equivalent:

(i) B is of Lusin type q.

(ii) There exists a constant c such that ‖ f ‖H1
a (Rn;B) ≤ c‖Sq( f )‖1 holds for all compactly

supported continuous functions f from R
n to B.

(iii) There exists a constant c such that ‖ f ‖1 ≤ c‖Sq( f )‖1 holds for all compactly

supported continuous functions f from R
n to B.

5 Carleson Measures and Uniform Smoothness

This section deals with the properties dual to those in Theorem 4.1. The following

theorem gives the characterization of Lusin type in terms of Carleson measures.

Theorem 5.1 Let B be a Banach space and 1 < q ≤ 2. Then the following statements

are equivalent:

(i) There exists a positive constant c such that

(5.1) ‖ f ‖∗ ≤ c
(

sup
Q cube

1

|Q|

∫

bQ

(
t‖∇ f (x, t)‖

) q dxdt

t

) 1/q

holds for all compactly supported continuous functions f from R
n to B.

(ii) B has an equivalent q-uniformly smooth norm.

Proof (ii) ⇒ (i) First note that by Lemma 4.2, (ii) is equivalent to

(5.2) ‖Sq ′(g)‖1 ≤ c‖g‖H1
a (Rn;B∗), ∀g ∈ H1

a (R
n; B∗).

Let f : R
n → B be a compactly supported continuous function. We are going to

prove (5.1). This proof is similar to that of (4.4) but in a converse direction. By

approximation, we can assume that f takes values in a finite dimensional subspace

of B; then replacing B by this subspace, we can simply assume dim B < ∞. Using

the duality between BMO(R
n; B) and H1

a (R
n; B∗), we find a function g ∈ H1

a (R
n; B∗)

of unit norm such that ‖ f ‖∗ ≈
∫

Rn〈 f (x), g(−x)〉dx, where the equivalence constants

depend only on n. By approximation, we can further assume that g is sufficiently nice

so that all calculations below are legitimate. By Plancherel’s theorem,

∫

Rn

〈 f (x), g(−x)〉dx =

∫

R
n+1
+

〈t∇ f (x, t), t∇g(−x, t)〉
dxdt

t
.
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By [4] and (5.2), we find

∫

Rn

〈 f (x), g(−x)〉dx ≤

∫

R
n+1
+

t‖∇ f (x, t)‖t‖∇g(−x, t)‖
dxdt

t

≤ c ′
∫

Rn

Cq( f )(x)Sq ′(g)(−x)dx

≤ c ′‖Cq( f )‖∞‖Sq ′(g)‖1

≤ c ′ ′‖Cq( f )‖∞‖g‖H1
a (Rn;B∗) ≤ c ′ ′‖Cq( f )‖∞.

Combining the preceding inequalities, we deduce (5.1).

(i) ⇒ (ii) Assume (i). It suffices to prove (5.2). We will do this only for the Lusin

function involving the partial derivative ∂/∂t . The others can be treated similarly.

Thus let St
q ′ denote this Lusin function. Our task is to show

(5.3) ‖St
q ′(g)‖1 ≤ c‖g‖H1

a (Rn;B∗), ∀g ∈ H1
a (R

n; B∗).

We can clearly assume dim B < ∞. Let A = Lq(Γ; B) be as in section 3 and keep

the notations introduced there. Note that A∗
= Lq ′

(Γ; B∗). Now fix a nice function

g ∈ H1
a (R

n; B∗). Recall that

‖St
q ′(g)‖1 =

∫

Rn

(∫

Γ

(
t
∥∥∥

∂

∂t
g(x + z, t)

∥∥∥
B∗

) q ′

dzdt

t

) 1/q ′

dx = ‖g̃‖L1(Rn;A∗),

where g̃(x, z, t) = t ∂
∂t

g(x + z, t). Thus there exists a function h ∈ L∞(R
n; A) of norm

1 such that

‖St
q ′(g)‖1 =

∫

Rn

∫

Γ

〈t
∂

∂t
g(x + z, t), h(−x, z, t)〉

dzdt

t
dx

=

∫

Rn

〈g(x),Ψ(h)(−x)〉dx,

where Ψ is defined by (4.6). Therefore, by (5.1), we deduce

‖St
q ′(g)‖1 ≤ cn‖g‖H1

a (Rn;B∗)‖Ψ(h)‖∗ ≤ cnc‖g‖H1
a (Rn;B∗)‖Cq(Ψ(h))‖∞.

Thus we are reduced to proving

‖Cq(Ψ(h))‖∞ ≤ c‖h‖L∞(Rn;A), ∀h ∈ L∞(R
n; A).

We will do this only for the partial derivative in the time variable in the gradient.

Namely, we have to show

(5.4)
1

|Q|

∫

bQ

(
s‖

∂

∂s
Ψ(h)(x, s)‖

) q dxds

s
≤ cq‖h‖

q
L∞(Rn;A)
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for any cube Q ⊂ R
n. The argument below is similar to the proof of (ii) ⇒ (i) in

Theorem 4.1. Using ϕ and ks,t in Section 3, we have

s
∂

∂s
Ψ(h)(x, s) =

∫

Rn

∫

Γ

ks,t (x + z − y)h(y, z, t)
dzdt

t
dy

def
=Φ̃(h)(x, s).

Now fix a cube Q and a nice h ∈ L∞(R
n; A) with ‖h‖L∞(Rn;A) ≤ 1. Let Q̃ = 2Q.

Decompose h:

h = h1leQ + h1leQc

def
=h1 + h2.

Then (5.4) is reduced to

βk =

( 1

|Q|

∫

bQ

(
‖Φ̃(hk)(x, s)‖

) q dxds

s

) 1/q

≤ c, k = 1, 2.

It is easy to estimate β1. Indeed, using the map Φ in (3.2) and Lemma 3.1, we find

|Q|β
q
1 ≤ cq

n

∫

Q

‖Φ(h1)(x)‖
q
Adx ≤ cq

n‖Φ(h1)‖
q
Lq(Rn;A)

≤ cq
ncq‖h1‖

q
Lq(Rn;A) ≤ cq

ncq|Q|;

whence the desired result for β1. For β2 a little more effort is needed. By (3.5), we

have

‖Φ̃(h2)(x, s)‖ ≤ c

∫

eQc

∫

Γ

st

(s + t + |x + z − y|)n+2
‖h(y, z, t)‖

dzdt

tn+1
dy.

By the Hölder inequality and the assumption that ‖h‖L∞(Γ;A) ≤ 1, the internal inte-

gral is estimated as follows:
∫

Γ

st

(s + t + |x + z − y|)n+2
‖h(y, z, t)‖

dzdt

tn+1

≤

(∫

Γ

(st)q ′

(s + t + |x + z − y|)(n+2)q ′

dzdt

tn+1

) 1/q ′

‖h(y)‖A

≤

(∫

Γ

sq ′

tq ′

(s + t + |x + z − y|)(n+2)q ′

dzdt

tn+1

) 1/q ′

≈
s

(s + |x − y|)n+1
.

On the other hand, for (x, s) ∈ Q̂ and y ∈ Q̃c, we have

s

(s + |x − y|)n+1
≈

s

|x − y|n+1
.

Therefore,

‖Φ̃(h2)(x, s)‖ ≤ c ′s

∫

eQc

dy

|x − y|n+1
≤

c ′ ′s

ℓ
,

where ℓ is the side length of Q. It then follows that β2 ≤ c. Thus (5.4) is proved. This

finishes the proof of (5.3), so the implication (i) ⇒ (ii) is proved as well.
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Proof of Theorem 1.1 Except for the difference between T and R, Theorem 1.1 is a

particular case of Theorems 4.1 and 5.1. The proofs of these two latter theorems can

be easily adapted to the case of the circle.

Remark 5.2 The two “if” parts in Theorem 1.1 can also be proved by using the

invariance of the expression ‖∇ f (z)‖2dA(z) under Möbius transformations of D.

This invariance means that if w = ϕ(z) is a Möbius transformation of D, then

‖∇ f (ϕ(z))‖2dA(z) = ‖∇ f (w)‖2dA(w).

Now assume that B is 2-uniformly convex. Then B is of Lusin cotype 2. Therefore

there exists a constant c such that
∫

T

∫ 1

0

(1 − r)‖∇ f (rz)‖2drdm(z) ≤ c‖ f − f (0)‖2
2, ∀ f ∈ L2(T; B).

Then one easily deduces that (with a different c)
∫

D

(1 − |z|2)‖∇ f (z)‖2dA(z) ≤ c‖ f − f (0)‖2
2.

Now let z0 ∈ D and let ϕ(z) = (z + z0)/(1 + z̄0z). Applying the preceding inequality

to f ◦ ϕ, we get
∫

D

‖∇ f ◦ ϕ(z)‖2(1 − |z|2)dA(z) ≤ c‖ f ◦ ϕ − f ◦ ϕ(0)‖2
2.

Then a change of variables and the previous Möbius invariance yield
∫

D

‖∇ f (z)‖2 (1 − |z|2)(1 − |z0|
2)

|1 − z̄0z|2
dA(z) ≤ c

∫

T

‖ f (z) − f (z0)‖2Pz0
(z)dm(z).

Taking the supremum over all z0 ∈ D gives the first inequality in Theorem 1.1. The

same argument applies to the “if” part in (ii) there. Unfortunately, this simple proof

works neither for the case of q 6= 2 nor for that of R
n.

We end the paper with some comments on (1.2). If (1.2) holds, then B has an

equivalent 2-uniformly convex norm as well as an equivalent 2-uniformly smooth

norm. In particular, it is of both cotype 2 and type 2, so isomorphic to a Hilbert

space by Kwapień’s theorem [7] (see also [12] to which we refer for the notion of

type and cotype too). Conversely, if B is isomorphic to a Hilbert space, we get (1.2)

as in the scalar case. Let us give a much more elementary argument showing that the

validity of (1.2) implies the isomorphism of B to a Hilbert space. The main point is

the following remark.

Remark 5.3 Let 1 < q < ∞ and B be a Banach space. Given a finite sequence

(ak) ⊂ B, consider the function f (z) =
∑

k≥1 akz2k

. Then

(5.5) sup
z0∈D

∫

D

(1 − |z|)q−1‖ f ′(z)‖qPz0
(z)dA(z) ≈

∑

k≥1

‖ak‖
q

with universal equivalence constants.
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Recall the following well-known (and easily checked) fact:

‖ f ‖∗ ≈
∥∥∥

∑

k≥1

akz2k
∥∥∥

1
.

Combining this with (5.5), we deduce the following result from [2]. If

sup
z0∈D

∫

D

(1 − |z|)q−1‖ f ′(z)‖qPz0
(z)dA(z) ≤ cq‖ f ‖q

∗

holds for any lacunary polynomial f with coefficients in B with some positive con-

stant c, then B is of cotype q; the converse inequality implies that B is of type q.

Let us show (5.5). Since f ′(z) =
∑

k≥1 2kakz2k−1, replacing ak by 2kak, we see that

(5.5) is reduced to

sup
z0∈D

∫

D

(1 − |z|)q−1‖ f (z)‖qPz0
(z)dA(z) ≈

∑

k≥1

2−qk||ak‖
q.

The lower estimate is very easy. Indeed, we have (with z0 = 0)

∫

D

(1 − |z|)q−1‖ f (z)‖qdA(z) =

∫ 1

0

(1 − r)q−1

∫

T

‖ f (rz)‖qdm(z)rdr

=

∑

n≥1

∫ 1−2−n

1−2−n+1

(1 − r)q−1

∫

T

‖ f (rz)‖qdm(z)rdr

≥
∑

n≥1

∫ 1−2−n

1−2−n+1

(1 − r)q−1‖an‖
qrq2n

rdr

≈
∑

n≥1

2−qn‖an‖
q.

For the upper estimate, we first majorize f pointwise. For n ≥ 1 and 1 − 2−n+1 ≤
|z| < 1 − 2−n, we find

‖ f (z)‖ ≤
∑

k≤n

‖ak‖ +
∑

k>n

‖ak‖ exp(−2k−n).

Let 0 < α < 1. Then,
∑

k≤n ‖ak‖ ≤ c2nα
( ∑

k≤n 2−kαq‖ak‖
q
) 1/q

. Similarly, for

β > 1,

∑

k>n

‖ak‖ exp(−2k−n) ≤
( ∑

k>n

2−kβq‖ak‖
q
) 1/q( ∑

k>n

2kβq ′

exp(−q ′2k−n)
) 1/q ′

≤ c2nβ
( ∑

k>n

2−kβq‖ak‖
q
) 1/q

.
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It follows that for any z0 ∈ D

∫

D

(1 − |z|)q−1‖ f (z)‖qPz0
(z)dA(z)

≤ c
∑

n≥1

2−nq
[

2nqα
∑

k≤n

2−kαq‖ak‖
q + 2nqβ

∑

k>n

2−kβq‖ak‖
q
]

≤ c
∑

k≥1

2−qk‖ak‖
q.

Therefore, (5.5) is proved.
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