ISOPERIMETRIC FUNCTIONS OF GROUPS ACTING ON L_{δ}-SPACES

JON CORSON
University of Alabama, Tuscaloosa, Alabama 35487, USA
e-mail: jcorson@bama.ua.edu
and DOHYOUNG RYANG
Talladega College, Talladega, Alabama 35160, USA
e-mail: dryang@talladega.edu

(Received 9 December, 2005; revised 18 September, 2006; accepted 22 November, 2006)

Abstract

A finitely generated group acting properly, cocompactly, and by isometries on an L_{δ}-metric space is finitely presented and has a sub-cubic isoperimetric function.

2000 Mathematics Subject Classification. 20F65.

1. Introduction. Recently the L_{δ}-property has been introduced by Chatterji [2]. In [3], spaces with the L_{δ}-property are shown to have applications to group C^{*}-algebras. This property is used to define L_{δ}-groups, which are a generalization of hyperbolic groups. The precise definitions are given in Section 2.

Hyperbolic groups are characterized as the groups with a linear Dehn function [5]. Elder showed that if a Cayley graph $\Gamma(G, A)$ enjoys the L_{δ}-property, then G has a subcubic Dehn function [4]. This suggests the following question asked by I. Chatterji and K. Ruane (Albany conference talk, 2004): If a group G acts properly, cocompactly, and by isometries on an L_{δ}-space, then what is a bound for the Dehn function of G ?

In this paper we give an answer to this question by showing that Elder's result generalizes to groups that are quasi-isometric to an L_{δ}-metric space (Theorem 3.2). It should be noted that it is unknown whether or not such a group always admits a finite generating set for which the Cayley graph is an L_{δ}-metric space.
2. Preliminary results. Let G be a group with finite presentation $\langle A \mid R\rangle$ and let Δ be a connected graph in \mathbb{R}^{2} whose edges are oriented and labeled by elements in A. The graph Δ is said to be a van Kampen Diagram for $w \in A^{*}$ if reading the labels around the boundary of Δ gives w, and reading the labels on the boundary of each region gives a relator in $R^{ \pm}$. A word w has a van Kampen diagram if and only if $\bar{w}=1$, and the area $\mathcal{A}(w)$ is equal to the minimum number of regions in a van Kampen diagram for w.

The function $\mathcal{D}(n)=\max \left\{\mathcal{A}(w):|w|_{A} \leq n, \bar{w}=1\right\}$ is called the Dehn function for the group presentation $\langle A \mid R\rangle$. An isoperimetric function for this presentation is any function satisfying $\mathcal{D}(n) \leq f(n)$. To make the Dehn function independent of the presentation, we define an equivalence relation on functions. The notation $f \leq g$ means that there are positive constants A, B, C, D, E such that $f(n) \leq A g(B n+C)+D n+E$.

Two functions f and g are said to be equivalent, denoted $f \sim g$, if $f \preceq g \preceq f$. If two finitely presented groups G and H are quasi-isometric, then their Dehn functions are equivalent; see for example [7]. In particular, the Dehn function of G is independent of its presentations up to this equivalence.

Let (X, d) be a metric space and let $\delta \geq 0$ be a constant. A finite sequence $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of points $x_{1}, x_{2}, \ldots, x_{n}$ in X is said to be a δ-path, if $d\left(x_{1}, x_{2}\right)+$ $d\left(x_{2}, x_{3}\right)+\ldots+d\left(x_{n-1}, x_{n}\right) \leq d\left(x_{1}, x_{n}\right)+\delta$. Choose $x, y, z \in X$. If there exists a point $t \in X$ so that the paths $(x, t, y),(y, t, z)$, and (z, t, x) are all δ-paths, t is called a δ-center for a triple x, y, z. We say that a geodesic metric space (X, d) has the L_{δ}-property and call it an L_{δ}-metric space, or an L_{δ}-space for short, if every triple $x, y, z \in X$ has a δ-center in X. Of course the L_{δ}-property makes sense for metric spaces in general, but here we are only interested in geodesic metric spaces.

Definition 2.1 (L_{δ}-group). An L_{δ}-group is a finitely generated group G that acts properly, cocompactly, and by isometries on an L_{δ}-space for a constant $\delta \geq 0$.

Next we introduce the Rips graph of a geodesic metric space (X, d). Let $s>0$ be a constant. Construct a metric graph $\Gamma_{s}(X)$ by requiring that $\mathcal{V}\left(\Gamma_{s}(X)\right)=X$ and $[x, y] \in \mathcal{E}\left(\Gamma_{s}(X)\right)$ if and only if $0<d(x, y) \leq s$. By d_{s} denote the path metric obtained by making each edge isometric to the unit interval $[0,1]$. If γ is an edge path in $\Gamma_{s}(X)$, then $\ell(\gamma)$ is the number of edges in γ. That is, $\Gamma_{s}(X)$ is the 1 -skeleton of the Rips complex for (X, d) with parameter s. It is easy to see that $\left(\Gamma_{s}(X), d_{s}\right)$ is a geodesic space. Moreover, the Rips graph is a generalization of the Cayley graph: Taking $(X, d)=\left(G, d_{A}\right)$, where G is a group generated by a finite set A and d_{A} is the corresponding word metric, $\Gamma_{s}(X)$ is the Cayley graph $\Gamma(G, A)$.

Lemma 2.2. Let (X, d) be a geodesic space and $\Gamma_{s}(X)$ be its associated Rips graph. Then for all $s \geq 1$,
(1) $\frac{1}{s} d(x, y) \leq d_{s}(x, y)<\frac{1}{s} d(x, y)+1$ for all $x, y \in X$,
(2) (X, d) and $\left(\Gamma_{s}(X), d_{s}\right)$ are quasi-isometric.

Proof. (1) For the first inequality, let $d_{s}(x, y)=n$. Then there is a geodesic path $\gamma=\left[x_{0}, x_{1}\right]\left[x_{1}, x_{2}\right] \ldots\left[x_{n-1}, x_{n}\right]$ where $\gamma(0)=x_{0}=x, \gamma(1)=x_{n}=y$. Note that each $\left[x_{i}, x_{i+1}\right]$ is an edge in $\Gamma_{s}(X)$, i.e., $d_{s}\left(x_{i}, x_{i+1}\right)=1$ and $d\left(x_{i}, x_{i+1}\right) \leq s$. Thus

$$
d(x, y) \leq d\left(x_{0}, x_{1}\right)+d\left(x_{1}, x_{2}\right)+\ldots+d\left(x_{n-1}, x_{n}\right) \leq s \cdot n=s \cdot d_{s}(x, y)
$$

For the second inequality, let γ be a geodesic path from x to y. Choose a partition $\mathcal{P}: t_{0}<t_{1}<\cdots<t_{n}$ on $[0,1]$ where $t_{0}=0, t_{n}=1, d\left(\gamma\left(t_{i-1}\right), \gamma\left(t_{i}\right)\right)=s$ for all $1 \leq i \leq$ $n-1$, and $0<d\left(\gamma\left(t_{n-1}\right), \gamma\left(t_{n}\right)\right) \leq s$. Let $x_{i}=\gamma\left(t_{i}\right), x=x_{0}$, and $y=x_{n}$. Then there is an edge path $\left[x_{0}, x_{1}\right]\left[x_{1}, x_{2}\right] \cdots\left[x_{n-1}, x_{n}\right]$ in $\Gamma_{s}(X)$ from x to y. Thus,

$$
d_{s}(x, y) \leq \frac{1}{s} \sum_{i=1}^{n-1} d\left(x_{i-1}, x_{i}\right)+1 \leq \frac{1}{s} \ell(\gamma)+1=\frac{1}{s} d(x, y)+1
$$

(2) By the above fact (1), the identity $\iota:(X, d) \rightarrow\left(\Gamma_{s}(X), d_{s}\right)$ is a quasi-isometric embedding. And every point in $\Gamma_{s}(X)$ is less than one edge apart from some vertex in $X \subset \Gamma_{s}(X)$.

It is an open question whether or not the L_{δ}-property is invariant under quasiisometries. Nevertheless, in the next section we reduce to the case of a metric graph by way of the following lemma.

Lemma 2.3. If (X, d) is an L_{δ}-space, then $\left(\Gamma_{s}(X), d_{s}\right)$ is an $L_{\delta^{\prime \prime}}$-space where $\delta^{\prime \prime}=\frac{\delta}{s}+6$ and $s \geq 1$.

Proof. First choose $x, y, z \in X \subset \Gamma_{s}(X)$ and let $t \in X$ be a δ-center of the triple x, y, z in (X, d). By Lemma 2.2.(1),

$$
d_{s}(x, t)+d_{s}(t, y) \leq d_{s}(x, y)+\frac{\delta}{s}+2 .
$$

Also, $d_{s}(y, t)+d_{s}(t, z) \leq d_{s}(y, z)+\frac{\delta}{s}+2$ and $d_{s}(x, t)+d_{s}(t, z) \leq d_{s}(x, z)+\frac{\delta}{s}+2$. So $t \in X$ is a δ^{\prime}-center of the triple x, y, z in $\left(X, d_{s}\right)$, and hence $\left(X, d_{s}\right)$ is an $L_{\delta^{\prime}}$ space for $\delta^{\prime}=\frac{\delta}{s}+2$.

Now let x, y, z be in $\Gamma_{s}(X)$. Choose $x^{\prime}, y^{\prime}, z^{\prime} \in X=\mathcal{V}\left(\Gamma_{s}(X)\right)$ such that $d_{s}\left(x, x^{\prime}\right)<$ $1, d_{s}\left(y, y^{\prime}\right)<1$, and $d_{s}\left(z, z^{\prime}\right)<1$. Let $t \in X \subset \Gamma_{s}(X)$ be a δ^{\prime}-center for $x^{\prime}, y^{\prime}, z^{\prime}$ in $\left(X, d_{s}\right)$. A simple calculation shows that

$$
\begin{aligned}
d_{s}(x, t)+d_{s}(t, y) & \leq d_{s}\left(x, x^{\prime}\right)+d_{s}\left(x^{\prime}, t\right)+d_{s}\left(t, y^{\prime}\right)+d_{s}\left(y^{\prime}, y\right) \\
& \leq d_{s}\left(x^{\prime}, y^{\prime}\right)+\delta^{\prime}+2 \\
& \leq d_{s}\left(x^{\prime}, x\right)+d_{s}(x, y)+d_{s}\left(y, y^{\prime}\right)+\delta^{\prime}+2 \\
& \leq d_{s}(x, y)+\delta^{\prime}+4 .
\end{aligned}
$$

Similarly, $d_{s}(y, t)+d_{s}(t, z) \leq d_{s}(y, z)+\delta^{\prime}+4$ and $d_{s}(z, t)+d_{s}(t, x) \leq d_{s}(z, x)+\delta^{\prime}+4$. Take $\delta^{\prime \prime}=\delta^{\prime}+4=\frac{\delta}{s}+6$. Then $t \in \Gamma_{s}(X)$ is a $\delta^{\prime \prime}$-center for the triple $x, y, z \in \Gamma_{s}(X)$, and hence $\left(\Gamma_{s}(X), d_{s}\right)$ is an $L_{\delta^{\prime \prime}}$-space for $\delta^{\prime \prime}=\frac{\delta}{s}+6$.
3. Main result. We first observe a fact about polygons in \mathbb{R}^{2}. By a polygon in \mathbb{R}^{2}, we mean a simple closed curve consisting of a finite number of line segments, called edges. For each edge e of a polygon P, let H_{e} be the open half-plane on the side of the line through e determined by a P-inward pointing normal vector to e. Define the convex core of P by $\mathcal{C}(P)=\bigcap_{e \in \mathcal{E}(P)} H_{e}$. Being an intersection of half-planes, $\mathcal{C}(P)$ is convex, and in some bad cases it is empty.

Assume that $\mathcal{C}(P)$ is non-empty, and choose $c \in \mathcal{C}(P)$. Then for all $x \in P,[x, c] \cap$ $P=\{x\}$, where $[x, c]$ is a straight line segment. Note, in particular, that if P is a convex polygon, then $\mathcal{C}(P)$ is the inside of P. The following lemma is obvious and easy to prove.

Lemma 3.1. Suppose that P is a polygon in \mathbb{R}^{2} with non-empty convex core and let x, y, z be distinct vertices of P. If $c \in \mathcal{C}(P)$, then the three line segments $[x, c],[y, c]$, and $[z, c]$ subdivide P into three polygons, each with non-empty convex core.

Let (X, d) be an L_{δ}-space and $\Gamma_{s}(X)$ be the associated Rips graph with parameter $s \geq 1$. We now give a procedure for constructing a sequence of planar combinatorial graphs and combinatorial maps to $\Gamma_{s}(X)$ which we use in the proof of the main theorem. This is similar to the procedure used by Elder [4] in a Cayley graph. By Lemma 3.1, these combinatorial graphs can be constructed by vertices and straight edges.

Let a convex n-gon Δ_{0} in \mathbb{R}^{2} with vertices $v_{0}, v_{1}, \ldots, v_{n-1}$ in this order and a combinatorial map $\varphi_{0}: \Delta_{0} \rightarrow \Gamma_{s}(X)$ be given. Put $x_{i}=\varphi_{0}\left(v_{i}\right)$. Note that $d\left(x_{i}, x_{i+1}\right) \leq s$ since $\left[x_{i}, x_{i+1}\right]$ is an edge in $\Gamma_{s}(X)$.

Construct Δ_{1}. If $n>3 \delta^{\prime \prime}+8$, then we subdivide Δ_{0} as follows: Let $p=\left\lfloor\frac{n}{3}\right\rfloor$ and $q=\left\lfloor\frac{2 n}{3}\right\rfloor$, where $\left\rfloor\right.$ is the greatest integer function. Then the three vertices v_{0}, v_{p}, v_{q} subdivide Δ_{0} into three sub-paths, each of edge length less than or equal to $\left\lfloor\frac{n}{3}\right\rfloor+1$. Let t be a δ-center for x_{0}, x_{p}, x_{q} in (X, d). Then by Lemma 2.3 and its proof, t is also a $\delta^{\prime \prime}$-center for x_{0}, x_{p}, x_{q} in $\left(\Gamma_{s}(X), d_{s}\right)$, where $\delta^{\prime \prime}=\frac{\delta}{s}+6$. Since Δ_{0} is convex, its convex core is non-empty. Choose a point $c \in \mathcal{C}\left(\Delta_{0}\right)$ so that the three line segments [$\left.v_{0}, c\right],\left[v_{p}, c\right]$ and $\left[v_{q}, c\right]$ intersect only at c. Then Δ_{1} has 3 regions.

Define a map $\varphi_{1}: \Delta_{1} \rightarrow \Gamma_{s}(X)$ by requiring that $\left.\varphi_{1}\right|_{\Delta_{0}}=\varphi_{0}, \varphi_{1}(c)=t$, and $\varphi_{1}\left[c, v_{i}\right]$ is a geodesic path in $\Gamma_{s}(X)$ from $t=\varphi_{1}(c)$ to $x_{i}=\varphi_{1}\left(v_{i}\right)$ where $i=0, p, q$. Subdivide each of $\left[v_{0}, c\right],\left[v_{p}, c\right]$, and $\left[v_{q}, c\right]$ so that φ_{1} maps them combinatorially onto their images in $\Gamma_{s}(X)$. Define the combinatorial length $\ell(\gamma)$ of a path γ in Δ_{1} to be the number of edges in γ. Then

$$
\ell\left(\left[v_{p}, c\right]\right)+\ell\left(\left[c, v_{q}\right]\right)=d_{s}\left(x_{p}, t\right)+d_{s}\left(t, x_{q}\right) \leq d_{s}\left(x_{p}, x_{q}\right)+\delta^{\prime \prime} \leq \frac{n}{3}+1+\delta^{\prime \prime}
$$

Similarly, $\ell\left(\left[v_{0}, c\right]\right)+\ell\left(\left[c, v_{p}\right]\right) \leq \frac{n}{3}+1+\delta^{\prime \prime}$ and $\ell\left(\left[v_{0}, c\right]\right)+\ell\left(\left[c, v_{q}\right]\right) \leq \frac{n}{3}+1+\delta^{\prime \prime}$. So the combinatorial perimeter of each region of Δ_{1} is bounded by

$$
\frac{n}{3}+1+\frac{n}{3}+1+\delta^{\prime \prime}=\frac{2 n}{3}+2+\delta^{\prime \prime}
$$

Recall that $n>3 \delta^{\prime \prime}+8$ or $\delta^{\prime \prime}<\frac{n-8}{3}$. Thus it is shorter than $\frac{2 n}{3}+2+\frac{n-8}{3}=n-\frac{2}{3}<n$. That is, the combinatorial perimeter of each new region in Δ_{1} is strictly shorter than the combinatorial perimeter of Δ_{0}.

Repeat this trisection process on each region in Δ_{1} whose perimeter is greater than $3 \delta^{\prime \prime}+8$ to construct Δ_{2} and $\varphi_{2}: \Delta_{2} \rightarrow \Gamma_{s}(X)$. Thus, the number of regions in Δ_{2} is less than or equal to 3^{2} and the combinatorial perimeter of each new region in Δ_{2} is bounded by

$$
\frac{2}{3}\left(\frac{2 n}{3}+2+\delta^{\prime \prime}\right)+2+\delta^{\prime \prime}=\left(\frac{2}{3}\right)^{2} n+\frac{2}{3}\left(2+\delta^{\prime \prime}\right)+\left(2+\delta^{\prime \prime}\right)
$$

Choose k so that $\left(\frac{3}{2}\right)^{k} \leq n<\left(\frac{3}{2}\right)^{k+1}$. After k iterations, we have Δ_{k} and $\varphi_{k}: \Delta_{k} \rightarrow$ $\Gamma_{s}(X)$. Thus Δ_{k} has at most 3^{k} regions, and the combinatorial perimeter of each region in Δ_{k} is at most

$$
\left(\frac{2}{3}\right)^{k} n+\left(\frac{2}{3}\right)^{k-1}\left(\delta^{\prime \prime}+2\right)+\cdots+\frac{2}{3}\left(2+\delta^{\prime \prime}\right)+\left(2+\delta^{\prime \prime}\right)
$$

which is bounded by $\left(\frac{2}{3}\right)^{k}\left(\frac{3}{2}\right)^{k+1}+\frac{\delta^{\prime \prime}+2}{1-\frac{2}{3}}<3 \delta^{\prime \prime}+8$. In particular, our procedure terminates after at most k steps.

Theorem 3.2. If a finitely generated group G is quasi-isometric to an L_{δ}-space for some $\delta \geq 0$, then G is finitely presented and has a sub-cubic Dehn function.

Proof. Let A be a finite generating set for G which is inverse closed and use the word metric d_{A} for G. Suppose (G, d_{A}) is quasi-isometric to an L_{δ}-space (X, d). Choose
quasi-isometries $\alpha: G \rightarrow X$ and $\beta: X \rightarrow G$ such that for all $g \in G$ and $x \in X$, $d_{A}(g,(\beta \circ \alpha)(g)) \leq C$ and $d(x,(\alpha \circ \beta)(x)) \leq C$, where C is a constant. We may assume that α and β are both (λ, ε)-quasi-isometries with the same constants $\lambda \geq 1$ and $\varepsilon \geq 0$.

Choose w in A^{*} so that $w=a_{1} a_{2} \ldots a_{n}$ where $a_{i} \in A$ and $\bar{w}=1$. Let $g_{i}=\overline{a_{1} \ldots a_{i}} \in G$. We want to construct a van Kampen diagram for w. Start with a convex n-gon Δ_{0} in \mathbb{R}^{2} with vertices v_{0}, \ldots, v_{n-1} in this order.

Put $s=\lambda+\varepsilon$ and define $\varphi_{0}: \Delta_{0} \rightarrow \Gamma_{s}(X)$ by $\varphi_{0}\left(v_{i}\right)=\alpha\left(g_{i}\right)=x_{i}$, say. Note that [$\left.x_{i}, x_{i+1}\right]$ is an edge in $\Gamma_{s}(X)$, since

$$
d\left(x_{i}, x_{i+1}\right)=d\left(\alpha\left(g_{i}\right), \alpha\left(g_{i+1}\right)\right) \leq \lambda d_{A}\left(g_{i}, g_{i+1}\right)+\varepsilon=\lambda+\varepsilon=s
$$

So the map φ_{0} is a closed path in $\Gamma_{s}(X)$ with combinatorial length n.
If $n=|w|_{A}$ is greater than $3 \delta^{\prime \prime}+8$, then trisect Δ_{0} to construct Δ_{1} and $\varphi_{1}: \Delta_{1} \rightarrow$ $\Gamma_{s}(X)$. Iterate the trisection process for each region whose combinatorial perimeter is greater than $3 \delta^{\prime \prime}+8$ until all regions have perimeter shorter than $3 \delta^{\prime \prime}+8$. Suppose this is achieved after k-iteration. Thus we have Δ_{k} and $\varphi_{k}: \Delta_{k} \rightarrow \Gamma_{s}(X)$, where Δ_{k} has at most 3^{k} regions and $\left(\frac{3}{2}\right)^{k} \leq n<\left(\frac{3}{2}\right)^{k+1}$.

In order to get an n-gon which is mapped to a closed path of A-length n in $\Gamma(G, A)$, we inflate Δ_{k} a bit to form the graph Δ. We put n vertices on the outside of Δ_{k} labeled by y_{0}, \ldots, y_{n-1} and put $2 n$ edges $\left[v_{i}, y_{i}\right]$ and $\left[y_{i}, y_{i+1}\right]$ where $i=0,1, \ldots, n-1 \bmod n$. Thus Δ has n regions outside of Δ_{k}.

Define a map $\varphi: \Delta \rightarrow \Gamma(G, A)$ as follows: (1) φ is the composition $\mathcal{V}\left(\Delta_{k}\right) \xrightarrow{\varphi_{k}}$ $X \xrightarrow{\beta} G \hookrightarrow \Gamma(G, A) ;(2) \varphi\left(y_{i}\right)=g_{i}$; and (3) $\varphi([u, v])$ is a geodesic path from $\varphi(u)$ to $\varphi(v)$ in $\Gamma(G, A)$, for $[u, v] \in \mathcal{E}(\Delta)$. Then φ maps $\partial \Delta$ to a closed path labeled by w in $\Gamma(G, A)$ of A-length n.

We now show that each region in $\Gamma(G, A)$ has a perimeter bounded by a constant. If $[u, v] \in \mathcal{E}\left(\Delta_{k}\right)$, then

$$
|\varphi([u, v])|_{A}=d_{A}\left(\left(\beta \circ \varphi_{k}\right)(u),\left(\beta \circ \varphi_{k}\right)(v)\right) \leq \lambda d\left(\varphi_{k}(u), \varphi_{k}(v)\right)+\varepsilon \leq \lambda s+\varepsilon .
$$

Recall that the combinatorial perimeter of each region of Δ_{k} is bounded by $3 \delta^{\prime \prime}+8$. So, for each region D in $\Delta_{k}, \varphi(\partial D)$ is a closed path in $\Gamma(G, A)$ of length at most $\left(3 \delta^{\prime \prime}+8\right)(\lambda s+\varepsilon)$. And for each outer region M in $\Delta \backslash \Delta_{k}, \varphi(\partial M)=$ $\varphi\left[v_{i}, v_{i+1}\right] \varphi\left[v_{i+1}, y_{i+1}\right] \varphi\left[y_{i+1}, y_{i}\right] \varphi\left[y_{i}, v_{i}\right]$ in $\Gamma(G, A)$, and

$$
d_{A}\left(\varphi\left(y_{i}\right), \varphi\left(y_{i+1}\right)\right)=1 ; d_{A}\left(\varphi\left(v_{i}\right), \varphi\left(y_{i}\right)\right) \leq C ; d_{A}\left(\varphi\left(v_{i}\right), \varphi\left(v_{i+1}\right)\right) \leq \lambda s+\varepsilon
$$

So, $\varphi(\partial M)$ is the closed path in $\Gamma(G, A)$ of length at most $\lambda s+\varepsilon+2 C+1$.
Let $K=\max \left\{(\lambda s+\varepsilon)\left(3 \delta^{\prime \prime}+8\right), \lambda s+\varepsilon+2 C+1\right\}$. Then the perimeter of every region in $\Gamma(G, A)$ is bounded by K, whence $\left\{w \in A^{*} \mid \bar{w}=1\right.$ and $\left.|w|_{A} \leq K\right\}$ is a finite set of defining relators for G, and so G is finitely presented.

The area $\mathcal{A}(w)$ is at most $3^{k}+n$. Remember $\left(\frac{3}{2}\right)^{k} \leq n$ or $k \leq \log _{1.5} n$. Hence

$$
\mathcal{A}(w) \leq 3^{k}+n \leq 3^{\log _{1.5} n}+n=n^{\log _{1.5} 3}+n \sim n^{\log _{1.5} 3} .
$$

If $|w|_{A}=n \leq 3 \delta^{\prime \prime}+8$, then w is a relator so again $\mathcal{A}(w)=1 \leq n^{\log _{1.5} 3}$.
We obtain the following statement which is an answer to the question posed in the introduction.

Corollary 3.3. If a group G acts properly, cocompactly, and by isometries on an L_{δ}-space for some $\delta \geq 0$, then G is finitely presented and has a sub-cubic Dehn function.

Proof. Suppose G acts properly, cocompactly, and by isometries on an L_{δ}-space X. By the Švarc-Milnor Theorem [1, Proposition 8.19], G is finitely generated and quasi-isometric to X. The result follows from Theorem 3.2.

REFERENCES

1. M. Bridson and A. Haefliger, Metric spaces of non-positive curvature (Springer-Verlag, 1999).
2. I. Chatterji, On property RD for certain discrete groups, Ph.D. Thesis, 2001. available at www.math.ohio-state.edu/~indira.
3. I. Chatterji and K. Ruane, Some geometric groups with rapid decay, Geometric and Functional Analysis 15 (2005), 311-339.
4. M. Elder, L_{δ} groups are almost convex and have a sub-cubic Dehn function, Algebraic and Geometric Topology 4 (2004), 23-29.
5. M. Gromov, Hyperbolic groups, in Essays in Group Theory (S. M. Gersten, editor), (Springer-Verlag, 1987), 75-263.
6. P. de la Harpe, Topics in geometric group theory (The University of Chicago Press, 2000).
7. M. Neumann and M. Shapiro, A short course in geometric group theory (Notes for the ANU Workshop, 1996).
