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1. Introduction. Recently the Lδ-property has been introduced by Chatterji [2].
In [3], spaces with the Lδ-property are shown to have applications to group C∗-algebras.
This property is used to define Lδ-groups, which are a generalization of hyperbolic
groups. The precise definitions are given in Section 2.

Hyperbolic groups are characterized as the groups with a linear Dehn function [5].
Elder showed that if a Cayley graph �(G, A) enjoys the Lδ-property, then G has a sub-
cubic Dehn function [4]. This suggests the following question asked by I. Chatterji and
K. Ruane (Albany conference talk, 2004): If a group G acts properly, cocompactly, and
by isometries on an Lδ-space, then what is a bound for the Dehn function of G?

In this paper we give an answer to this question by showing that Elder’s result
generalizes to groups that are quasi-isometric to an Lδ-metric space (Theorem 3.2). It
should be noted that it is unknown whether or not such a group always admits a finite
generating set for which the Cayley graph is an Lδ-metric space.

2. Preliminary results. Let G be a group with finite presentation 〈A | R〉 and let �

be a connected graph in �2 whose edges are oriented and labeled by elements in A. The
graph � is said to be a van Kampen Diagram for w ∈ A∗ if reading the labels around
the boundary of � gives w, and reading the labels on the boundary of each region
gives a relator in R±. A word w has a van Kampen diagram if and only if w = 1, and
the area A(w) is equal to the minimum number of regions in a van Kampen diagram
for w.

The function D(n) = max {A(w) : |w|A ≤ n, w = 1} is called the Dehn function
for the group presentation 〈A | R〉. An isoperimetric function for this presentation is
any function satisfying D(n) ≤ f (n). To make the Dehn function independent of the
presentation, we define an equivalence relation on functions. The notation f � g means
that there are positive constants A, B, C, D, E such that f (n) ≤ Ag(Bn + C) + Dn + E.
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Two functions f and g are said to be equivalent, denoted f ∼ g, if f � g � f . If two
finitely presented groups G and H are quasi-isometric, then their Dehn functions are
equivalent; see for example [7]. In particular, the Dehn function of G is independent
of its presentations up to this equivalence.

Let (X, d) be a metric space and let δ ≥ 0 be a constant. A finite sequence
(x1, x2, . . . , xn) of points x1, x2, . . . , xn in X is said to be a δ-path, if d(x1, x2) +
d(x2, x3) + . . . + d(xn−1, xn) ≤ d(x1, xn) + δ. Choose x, y, z ∈ X . If there exists a point
t ∈ X so that the paths (x, t, y), (y, t, z), and (z, t, x) are all δ-paths, t is called a δ-center
for a triple x, y, z. We say that a geodesic metric space (X, d) has the Lδ-property and
call it an Lδ-metric space, or an Lδ-space for short, if every triple x, y, z ∈ X has a
δ-center in X . Of course the Lδ-property makes sense for metric spaces in general, but
here we are only interested in geodesic metric spaces.

DEFINITION 2.1 (Lδ-group). An Lδ-group is a finitely generated group G that acts
properly, cocompactly, and by isometries on an Lδ-space for a constant δ ≥ 0.

Next we introduce the Rips graph of a geodesic metric space (X, d). Let s > 0
be a constant. Construct a metric graph �s(X) by requiring that V(�s(X)) = X and
[x, y] ∈ E(�s(X)) if and only if 0 < d(x, y) ≤ s. By ds denote the path metric obtained by
making each edge isometric to the unit interval [0, 1]. If γ is an edge path in �s(X), then
�(γ ) is the number of edges in γ . That is, �s(X) is the 1-skeleton of the Rips complex for
(X, d) with parameter s. It is easy to see that (�s(X), ds) is a geodesic space. Moreover,
the Rips graph is a generalization of the Cayley graph: Taking (X, d) = (G, dA), where
G is a group generated by a finite set A and dA is the corresponding word metric, �s(X)
is the Cayley graph �(G, A).

LEMMA 2.2. Let (X, d) be a geodesic space and �s(X) be its associated Rips graph.
Then for all s ≥ 1,

(1) 1
s d(x, y) ≤ ds(x, y) < 1

s d(x, y) + 1 for all x, y ∈ X,
(2) (X, d) and (�s(X), ds) are quasi-isometric.

Proof. (1) For the first inequality, let ds(x, y) = n. Then there is a geodesic path
γ = [x0, x1][x1, x2] . . . [xn−1, xn] where γ (0) = x0 = x, γ (1) = xn = y. Note that each
[xi, xi+1] is an edge in �s(X), i.e., ds(xi, xi+1) = 1 and d(xi, xi+1) ≤ s. Thus

d(x, y) ≤ d(x0, x1) + d(x1, x2) + . . . + d(xn−1, xn) ≤ s · n = s · ds(x, y).

For the second inequality, let γ be a geodesic path from x to y. Choose a partition
P : t0 < t1 < · · · < tn on [0, 1] where t0 = 0, tn = 1, d(γ (ti−1), γ (ti)) = s for all 1 ≤ i ≤
n − 1, and 0 < d(γ (tn−1), γ (tn)) ≤ s. Let xi = γ (ti), x = x0, and y = xn. Then there is
an edge path [x0, x1][x1, x2] · · · [xn−1, xn] in �s(X) from x to y. Thus,

ds(x, y) ≤ 1
s

n−1∑
i=1

d(xi−1, xi) + 1 ≤ 1
s
�(γ ) + 1 = 1

s
d(x, y) + 1.

(2) By the above fact (1), the identity ι : (X, d) → (�s(X), ds) is a quasi-isometric
embedding. And every point in �s(X) is less than one edge apart from some vertex in
X ⊂ �s(X). �
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It is an open question whether or not the Lδ-property is invariant under quasi-
isometries. Nevertheless, in the next section we reduce to the case of a metric graph by
way of the following lemma.

LEMMA 2.3. If (X, d) is an Lδ-space, then (�s(X), ds) is an Lδ′′ -space where δ′′ = δ
s + 6

and s ≥ 1.

Proof. First choose x, y, z ∈ X ⊂ �s(X) and let t ∈ X be a δ-center of the triple
x, y, z in (X, d). By Lemma 2.2.(1),

ds(x, t) + ds(t, y) ≤ ds(x, y) + δ

s
+ 2.

Also, ds(y, t) + ds(t, z) ≤ ds(y, z) + δ
s + 2 and ds(x, t) + ds(t, z) ≤ ds(x, z) + δ

s + 2. So
t ∈ X is a δ′-center of the triple x, y, z in (X, ds), and hence (X, ds) is an Lδ′-space for
δ′ = δ

s + 2.
Now let x, y, z be in �s(X). Choose x′, y′, z′ ∈ X = V (�s(X)) such that ds(x, x′) <

1, ds(y, y′) < 1, and ds(z, z′) < 1. Let t ∈ X ⊂ �s(X) be a δ′-center for x′, y′, z′ in (X, ds).
A simple calculation shows that

ds(x, t) + ds(t, y) ≤ ds(x, x′) + ds(x′, t) + ds(t, y′) + ds(y′, y)

≤ ds(x′, y′) + δ′ + 2

≤ ds(x′, x) + ds(x, y) + ds(y, y′) + δ′ + 2

≤ ds(x, y) + δ′ + 4.

Similarly, ds(y, t) + ds(t, z) ≤ ds(y, z) + δ′ + 4 and ds(z, t) + ds(t, x) ≤ ds(z, x) + δ′ + 4.
Take δ′′ = δ′ + 4 = δ

s + 6. Then t ∈ �s(X) is a δ′′-center for the triple x, y, z ∈ �s(X),
and hence (�s(X), ds) is an Lδ′′ -space for δ′′ = δ

s + 6. �

3. Main result. We first observe a fact about polygons in �2. By a polygon in �2,
we mean a simple closed curve consisting of a finite number of line segments, called
edges. For each edge e of a polygon P, let He be the open half-plane on the side of
the line through e determined by a P-inward pointing normal vector to e. Define the
convex core of P by C(P) = ⋂

e∈E(P) He. Being an intersection of half-planes, C(P) is
convex, and in some bad cases it is empty.

Assume that C(P) is non-empty, and choose c ∈ C(P). Then for all x ∈ P, [x, c] ∩
P = {x}, where [x, c] is a straight line segment. Note, in particular, that if P is a convex
polygon, then C(P) is the inside of P. The following lemma is obvious and easy to
prove.

LEMMA 3.1. Suppose that P is a polygon in �2 with non-empty convex core and let
x, y, z be distinct vertices of P. If c ∈ C(P), then the three line segments [x, c], [y, c], and
[z, c] subdivide P into three polygons, each with non-empty convex core.

Let (X, d) be an Lδ-space and �s(X) be the associated Rips graph with parameter
s ≥ 1. We now give a procedure for constructing a sequence of planar combinatorial
graphs and combinatorial maps to �s(X) which we use in the proof of the main theorem.
This is similar to the procedure used by Elder [4] in a Cayley graph. By Lemma 3.1,
these combinatorial graphs can be constructed by vertices and straight edges.
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Let a convex n-gon �0 in �2 with vertices v0, v1, . . . , vn−1 in this order and a
combinatorial map ϕ0 : �0 → �s(X) be given. Put xi = ϕ0(vi). Note that d(xi, xi+1) ≤ s
since [xi, xi+1] is an edge in �s(X).

Construct �1. If n > 3δ′′ + 8, then we subdivide �0 as follows: Let p = � n
3� and

q = � 2n
3 �, where � � is the greatest integer function. Then the three vertices v0, vp, vq

subdivide �0 into three sub-paths, each of edge length less than or equal to � n
3� + 1.

Let t be a δ-center for x0, xp, xq in (X, d). Then by Lemma 2.3 and its proof, t is
also a δ′′-center for x0, xp, xq in (�s(X), ds), where δ′′ = δ

s + 6. Since �0 is convex, its
convex core is non-empty. Choose a point c ∈ C(�0) so that the three line segments
[v0, c], [vp, c] and [vq, c] intersect only at c. Then �1 has 3 regions.

Define a map ϕ1 : �1 → �s(X) by requiring that ϕ1|�0 = ϕ0, ϕ1(c) = t, and ϕ1[c, vi]
is a geodesic path in �s(X) from t = ϕ1(c) to xi = ϕ1(vi) where i = 0, p, q. Subdivide
each of [v0, c], [vp, c], and [vq, c] so that ϕ1 maps them combinatorially onto their images
in �s(X). Define the combinatorial length �(γ ) of a path γ in �1 to be the number of
edges in γ . Then

�([vp, c]) + �([c, vq]) = ds(xp, t) + ds(t, xq) ≤ ds(xp, xq) + δ′′ ≤ n
3

+ 1 + δ′′.

Similarly, �([v0, c]) + �([c, vp]) ≤ n
3 + 1 + δ′′ and �([v0, c]) + �([c, vq]) ≤ n

3 + 1 + δ′′. So
the combinatorial perimeter of each region of �1 is bounded by

n
3

+ 1 + n
3

+ 1 + δ′′ = 2n
3

+ 2 + δ′′.

Recall that n > 3δ′′ + 8 or δ′′ < n−8
3 . Thus it is shorter than 2n

3 + 2 + n−8
3 = n − 2

3 < n.
That is, the combinatorial perimeter of each new region in �1 is strictly shorter than
the combinatorial perimeter of �0.

Repeat this trisection process on each region in �1 whose perimeter is greater than
3δ′′ + 8 to construct �2 and ϕ2 : �2 → �s(X). Thus, the number of regions in �2 is
less than or equal to 32 and the combinatorial perimeter of each new region in �2 is
bounded by

2
3

(
2n
3

+ 2 + δ′′
)

+ 2 + δ′′ =
(

2
3

)2

n + 2
3

(2 + δ′′) + (2 + δ′′).

Choose k so that ( 3
2 )k ≤ n < ( 3

2 )k+1. After k iterations, we have �k and ϕk : �k →
�s(X). Thus �k has at most 3k regions, and the combinatorial perimeter of each region
in �k is at most

(
2
3

)k

n +
(

2
3

)k−1

(δ′′ + 2) + · · · + 2
3

(2 + δ′′) + (2 + δ′′)

which is bounded by ( 2
3 )k( 3

2 )k+1 + δ′′+2
1− 2

3
< 3δ′′ + 8. In particular, our procedure

terminates after at most k steps.

THEOREM 3.2. If a finitely generated group G is quasi-isometric to an Lδ-space for
some δ ≥ 0, then G is finitely presented and has a sub-cubic Dehn function.

Proof. Let A be a finite generating set for G which is inverse closed and use the
word metric dA for G. Suppose (G, dA) is quasi-isometric to an Lδ-space (X, d). Choose
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quasi-isometries α : G → X and β : X → G such that for all g ∈ G and x ∈ X ,
dA(g, (β ◦ α)(g)) ≤ C and d(x, (α ◦ β)(x)) ≤ C, where C is a constant. We may assume
that α and β are both (λ, ε)-quasi-isometries with the same constants λ ≥ 1 and ε ≥ 0.

Choose w in A∗ so that w = a1a2 . . . an where ai ∈ A and w = 1. Let gi = a1 . . . ai ∈ G.
We want to construct a van Kampen diagram for w. Start with a convex n-gon �0 in
�2 with vertices v0, . . . , vn−1 in this order.

Put s = λ + ε and define ϕ0 : �0 → �s(X) by ϕ0(vi) = α(gi) = xi, say. Note that
[xi, xi+1] is an edge in �s(X), since

d(xi, xi+1) = d(α(gi), α(gi+1)) ≤ λdA(gi, gi+1) + ε = λ + ε = s.

So the map ϕ0 is a closed path in �s(X) with combinatorial length n.
If n = |w|A is greater than 3δ′′ + 8, then trisect �0 to construct �1 and ϕ1 : �1 →

�s(X). Iterate the trisection process for each region whose combinatorial perimeter is
greater than 3δ′′ + 8 until all regions have perimeter shorter than 3δ′′ + 8. Suppose this
is achieved after k-iteration. Thus we have �k and ϕk : �k → �s(X), where �k has at
most 3k regions and ( 3

2 )k ≤ n < ( 3
2 )k+1.

In order to get an n-gon which is mapped to a closed path of A-length n in �(G, A),
we inflate �k a bit to form the graph �. We put n vertices on the outside of �k labeled
by y0, . . . , yn−1 and put 2n edges [vi, yi] and [yi, yi+1] where i = 0, 1, . . . , n − 1mod n.
Thus � has n regions outside of �k.

Define a map ϕ : � → �(G, A) as follows: (1) ϕ is the composition V(�k)
ϕk−→

X
β−→ G ↪→ �(G, A); (2) ϕ(yi) = gi; and (3) ϕ([u, v]) is a geodesic path from ϕ(u) to

ϕ(v) in �(G, A), for [u, v] ∈ E(�). Then ϕ maps ∂� to a closed path labeled by w in
�(G, A) of A-length n.

We now show that each region in �(G, A) has a perimeter bounded by a constant.
If [u, v] ∈ E(�k), then

|ϕ([u, v])|A = dA((β ◦ ϕk)(u), (β ◦ ϕk)(v)) ≤ λd(ϕk(u), ϕk(v)) + ε ≤ λs + ε.

Recall that the combinatorial perimeter of each region of �k is bounded by
3δ′′ + 8. So, for each region D in �k, ϕ(∂D) is a closed path in �(G, A) of
length at most (3δ′′ + 8)(λs + ε). And for each outer region M in � \ �k, ϕ(∂M) =
ϕ[vi, vi+1]ϕ[vi+1, yi+1]ϕ[yi+1, yi]ϕ[yi, vi] in �(G, A), and

dA(ϕ(yi), ϕ(yi+1)) = 1; dA(ϕ(vi), ϕ(yi)) ≤ C; dA(ϕ(vi), ϕ(vi+1)) ≤ λs + ε.

So, ϕ(∂M) is the closed path in �(G, A) of length at most λs + ε + 2C + 1.
Let K = max

{
(λs + ε)(3δ′′ + 8), λs + ε + 2C + 1

}
. Then the perimeter of every

region in �(G, A) is bounded by K , whence {w ∈ A∗ | w = 1 and |w|A ≤ K} is a finite
set of defining relators for G, and so G is finitely presented.

The area A(w) is at most 3k + n. Remember
( 3

2

)k ≤ n or k ≤ log1.5 n. Hence

A(w) ≤ 3k + n ≤ 3log1.5 n + n = nlog1.5 3 + n ∼ nlog1.5 3.

If |w|A = n ≤ 3δ′′ + 8, then w is a relator so again A(w) = 1 ≤ nlog1.5 3. �

We obtain the following statement which is an answer to the question posed in the
introduction.
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COROLLARY 3.3. If a group G acts properly, cocompactly, and by isometries on an
Lδ-space for some δ ≥ 0, then G is finitely presented and has a sub-cubic Dehn function.

Proof. Suppose G acts properly, cocompactly, and by isometries on an Lδ-space
X . By the Švarc-Milnor Theorem [1, Proposition 8.19], G is finitely generated and
quasi-isometric to X . The result follows from Theorem 3.2. �
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