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Abstract 

We study two aspects of discrete-time birth-death processes, the common feature of which 
is the central role played by the decay parameter of the process. First, conditions for 
geometric ergodicity and bounds for the decay parameter are obtained. Then the existence 
and structure of quasi-stationary distributions are discussed. The analyses are based on 
the spectral representation for the «-step transition probabilities of a birth-death process 
developed by Karlin and McGregor. 

1. Introduction 

Throughout we use the term random walk for a discrete-time birth-death process 

X = (X(n),n = 0, 1, . . . ) , on the state space {0, 1 , . . . } and with stationary 1-step 

transition probabilities P^ = Pr{X(« 4- 1) = j\X(n) = / } . We write pj = Pjj+i, 

qj+] = PJ+IJ and rj = PJJ, so that 

P = (ñj) = 

r0 Po 0 0 

<7i rx pi 0 

0 q2 r2 p2 (1.1) 

and assume pt > 0, qj+\ > 0 and r, > 0. In addition, we require Pj + qj + rj = 1 

for j > 1, but we allow q0 = 1 — p0 — r0 > 0. If q0 = 0, then P is stochastic 

and the random walk X is said to have a reflecting barrier 0. If q0 > 0 then P is 

strictly substochastic and the random walk has an ignored absorbing state which can 

be reached through state 0 only. The absorbing state, if present, will be designated as 

- 1 . 
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122 Erik A. van Doom and Pauline Schrijner [2]

In what follows we discuss some aspects of random walks, the common feature
of which is the dominant role played by a quantity called the decay parameter. The
decay parameter y(X) of a random walk X is a number in the interval (0, 1] which
characterizes the speed with which the «-step transition probabilities of X go to their
limiting values as n —> oo. If y (X) < 1, then these probabilities go to their limits
geometrically fast and X is called geometrically ergodic. In Section 3, we obtain
bounds for the decay parameter and conditions for geometric ergodicity of a random
walk.

A quasi-stationary distribution of a random walk X with an absorbing state —1 is
an initial distribution such that the conditional probability of the random walk being
in state j at time n, given that no absorption has occurred by that time, is independent
of n for all j . We prove in Section 4 that quasi-stationary distributions for X exist if
and only if absorption at — 1 is certain and X is geometrically ergodic. In addition,
we obtain expressions for these quasi-stationary distributions. Our results generalize
and supplement the recent findings of Ferrari, Martinez and Picco [11].

Our method of analysis is linked with the spectral representation of the n-step
transition probabilities of a random walk, developed by Karlin and McGregor [15]. In
Section 2, we introduce this spectral representation and establish some ramifications
which are pertinent to our purposes, but also of independent interest. In particular, we
present some properties of the sequence of orthogonal polynomials which is associated
with a random walk, and of the orthogonalizing measure, and show how properties of
a random walk such as transience and recurrence are reflected by this measure. We
conclude in Section 5 with some examples.

The present paper constitutes to some extent the discrete-time counterpart of
van Doom [5] and van Doom [7], which discuss exponential ergodicity and quasi-
stationarity, respectively, in continuous-time birth-death processes. However, a study
of limiting conditional (or quasi-limiting) distributions as in [7], which turned out to
be considerably more complicated in discrete time, has been relegated to a separate
paper, see van Doom and Schrijner [9].

Quasi-stationary distributions for continuous-time Markov chains have recently
attracted much attention because of their theoretical and practical interest, see for
example, Ferrari, Kesten, Martinez and Picco [10], Kijima [20], Nair and Pollett [22],
Pollett [24], and the references in these papers. In retrospect, one can say that in
this continuous-time setting several results for birth-death processes were indicative
of results that hold more generally. One of the motives for the present study is the
expectation that the same will be true in discrete time.
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2. Preliminaries

2.1. Basic properties Let X = (X(n), n = 0, 1,...) be a random walk as defined
in Section 1. It is clear that the state space {0, 1,...} of X constitutes an irreducible
class which is aperiodic if r,- > 0 for some j , and periodic with period 2 if r, = 0 for
all j . Accordingly, X will be called aperiodic if ry > 0 for some j and periodic if
rj = 0 for all j .

We define
PoPx -.-Pj-x

n0 = 1; itj = '—, j > 1, (2.1)
<7<7 <&and, noting that J^j (nj+(Pjnj)~l) = °°> quote the following result from, for example,

Karlin and McGregor [15].

THEOREM 2.1. Ifq0 = 0, then the random walk X is

recurrent <$• ^^(PjKjY1 = oo
j=0

and

positive recurrent <$• T J JTJ < OO.

When q0 > 0, there is a positive probability of absorption at — 1, so that the random
walk is transient. Absorption at — 1 is called certain if the probability of eventual
absorption equals 1, and is called ergodic if it is certain and the expected time to
absorption is finite. Absorption is called transient if it is not certain. These properties
are independent of the initial state, and using the previous theorem we readily obtain
the following criteria (see Harris [12]).

THEOREM 2.2. Ifq0 > 0, then absorption at — I is
00

certain -«• ^ ( p y 7 r , ) ~ ' = oo
;=0

and

ergodic 4

We write Pij(n) = Pr {X(n) = j\X(O) = i] for the rc-step transition probabilities,
and note that they tend to zero as n —> oo unless X is positive recurrent (and hence
q0 = 0). In the latter case,
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and so

X is aperiodic => lim p,. («) = n-.
U=o

*

but interpreting (£k nk) ' as zero if $^t nk = oo, (2.2) and (2.3) are valid whether X
is positive recurrent or not.

2.2. The spectral representation Karlin and McGregor [15] have shown that the
transition probabilities p,;(«) can be represented as

PiJ (n) = 3tj J x" Qi (x) Qj (x)dir(x). (2.4)

Here itj, j > 0, are the constants denned in (2.1) and {G;(JC)}^Q is a sequence of
polynomials denned by the recurrence relations

Qo(x) = l, PoQi(x) = x r o

x Qj (JC) = q} Qj-i (x) + rj Qj (jc) + Pj Qj+l (x), j > 1. l '

Finally, i/ is the (unique) measure of total mass 1 and infinite support in the inter-
val [—1, 1] with respect to which the polynomials {Qj(x)}j are orthogonal; indeed,
substituting n = 0 in (2.4) yields

(2.6)

In what follows any sequence of polynomials denned by a recurrence relation of
the type (2.5), where Pj > 0, qj+i > 0 and r,- > 0 for j > 0, q0 = 1 — p0 — r0 > 0 and
P; + <7; + r, = 1 for y > 1, will be called a sequence of random walk polynomials;
the corresponding measure will be called a random walk measure. Because of the
crucial role random walk polynomials play in our analysis, we shall collect a number
of pertinent properties of polynomials of this type, and of the measures that go with
them.

2.3. Random walk polynomials Let {Qj (x) }j be a sequence of random walk poly-
nomials and q0 = 1 — po — '"o- Reference to the literature on orthogonal polynomials
is sometimes facilitated by normalizing random walk polynomials such that they are
monic. Thus we define Po(x) == Qo(x) = 1, and

.. pj-i Qj(x), j > 1, (2.7)

and note that the sequence [Pj(x)}j satisfies the recurrence relations

PQ(x) = 1, P^x) = x - r0,
P}+i(x) = (x- rj)Pj(x) - pj.tfjPj^ix), j > 1. <• '
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From, for example, Chihara's [1] book on orthogonal polynomials we now see that
Pj(x), and hence Qj(x), has j real distinct zeros xjX < xj2 < ... < XJJ. These zeros
have the separation property

Xj+u < Xjj < xj+u+u i = 1, 2 , . . . , j , j > 1, (2.9)

whence
£, = lim xki and r)j = lim xk<k-j+u i, j > 1, (2.10)

exist in the extended real number system; also

- OO < £• < £,+, < T)j+1 < T)j < OO, /, j > 1. (2.11)

Actually, the £,'s and fy's are bounded, as appears from the following lemma. In this
lemma, as well as in what follows, we shall consistently write § and rj instead of £i
and rji, respectively.

LEMMA 2.1. - 1 < inf{2/-, - 1} < £ < rj < 1.
j

PROOF. Applying Theorem 2 in van Doom [6] to the polynomials Pj(x) of (2.8), and
choosing Xj = Pj-2, j > 2, one obtains f > inf{2ry — 1} > —1. Similarly, the
analogue for rj of the above theorem leads to r] < sup{pj + q,+ r;} = 1.

We remark that any sequence of polynomials which is orthogonal with respect to a
measure on [—1, 1] can be normalized to satisfy a recurrence relation of the type (2.5)
(or (2.8)), where Pj > 0, qj+\ > 0. It is the fact r, > 0 for all j which distinguishes
random walk polynomial sequences from the others (see van Doom and Schrijner [8]).
Some further properties of random walk polynomials are given in Appendix 1.

2.4. Random walk measures As noted in Subsection 2.2, a sequence of random
walk polynomials [Qj(x))j is a n orthogonal polynomial sequence with respect to a
unique measure r/s with infinite support

supp (V0 = {x\i}r{{x - e, x + e)) > 0 for all e > 0}

in the interval [—1, 1] and total mass 1. There is a close relation between supp (V0
and the quantities £, and JJ, defined in (2.10). Indeed, from (2.11) and Lemma 2.1 we
conclude that both

CT = lim£, and x = lim m (2.12)
i->oo y

exist and — 1 < <r < r < 1. Furthermore, Chihara [1, Theorem II.4.6] tells us

(2.13)
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and
1j =» x = r)j, j > 1. (2.14)

Now defining the (possibly finite) sets

3 s= {£ = £ , £2, • • •} and / / = {»? = ?7,, jj2, • • •},

we obtain from Chihara [1, pages 61-63] the following lemma.

LEMMA 2.2. One has supp (i/r) = S U S« U H (a bar denoting closure), where Se is
a subset of (a, r); also, a is the smallest and x is the largest limit point o/supp (ifr).

It follows in particular that

f =infsupp(VO and rj = sup supp (is). (2.15)

Thus, in view of Lemma 2.1, we now have verified that supp (VO C [— 1, 1]. We also
note that if 3 and H are finite, or, equivalently, if the phenomena described in (2.13)
and (2.14) occur, then the set Se must contain infinitely many points, since supp (if)
is always infinite. If 3 or H are infinite, then Se may be finite or even empty.

More precise information on supp (\fr) may be obtained by looking at bounds for
£ + x] and a + r. In particular, Theorem 13 in van Doom [4] gives us

2inf{r,} < § + »?< 2 supfr,},
J j

but we can do slightly better as follows.

LEMMA 2.3. inffr, + rj+x\ < £ + tj < sup{r, + r,+1}.
;' j

PROOF. The proof parallels that of Theorem 13 in [4], except that, instead of (29) in that
paper, we must now use (32) and choose fij = (l-gj-i)gj withg, =

In the same manner, Theorem 14 in [4] can be improved to yield the next lemma.

LEMMA 2.4. lim inf{A-. + rj+l] < a + r < lim sup{r, + r,+1}.

It follows in particular that

+ r > 0 , (2.16)

that is, the smallest (limit) point of supp (i/r) is at least as close to 0 as the largest (limit)
point of supp (\jf). This result can also be conceived as a consequence of Lemma 2
in Kent and Longford [17]. The following sufficient condition for strict inequality to
hold in (2.16), partly noted earlier by Karlin and McGregor [15], can also be obtained
from the Lemmas 2.3 and 2.4.
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COROLLARY 2.1. ///-, > 8 > 0 for all j , then f + n > 28 > Oanda + x > 28 > 0.

On the other hand, the Lemmas 2.3 and 2.4 imply that ^ + r] = a + x = 0 if every
rj is zero, that is, if the associated random walk is periodic. Actually, a much stronger
result is valid, for it is easy to show (see [15]) that the random walk measure xfr is
symmetric about x = 0 if and only if r,- = 0 for all j . For this reason Karlin and
McGregor [15] use the adjectives symmetric and asymmetric instead of periodic and
aperiodic, respectively, to characterize a random walk.

Whitehurst [29, Theorem 5.2] has proved the interesting result

X is aperiodic =$• I (r) + x)~xd\j/{x) < oo. (2.17)

As a corollary, we note

X is aperiodic =>• f([-r)}) = 0, (2.18)

that is, xj/ has no point mass at — rj if r; > 0 for some j . (In view of (2.15) and
(2.16) this result is of course trivial if £ + r) > 0.) Statement (2.18) generalizes a
result of Karlin and McGregor's [15], which showed that the measure of an aperiodic
random walk has no atom at — 1, but is a special case of a result of Kersting [18]. The
result may seem surprising in view of the fact that when X is periodic, that is, xj/ is
symmetric, then an atom at x = r\ is matched by an equal atom at x = —rj.

Another consequence of (2.17), or rather (2.18), is

X is aperiodic and £ = — rj => cr = £ = — r) = —x. (2.19)

Indeed, if £ = — rj and X is aperiodic, then, by (2.18), xfr ({£}) = 0, so that by
Lemma 2.2, a = f. Hence, by (2.16), x > — a = rj, so that x — r\.

Further information on the random walk measure x\r can be obtained by transforming
the sequence of random walk polynomials into a sequence of birth-death polynomials,
as suggested by Karlin and McGregor [15]. In this way many results from the theory
of birth-death processes in continuous time (see Karlin and McGregor [13], [14] and
van Doom [5], [7]) can be translated in terms of random walks. Pursuing this approach
we define

Rj(x) = Qj(l - x ) , j>0, (2.20)

and
&([0,x]) = xlr([\ -x, 1 ] ) , 0 < x < 2 . (2.21)

It is easy to see that

R0(x) = 1, p0Rx (x) = p0 + <7o - x

-xRj(x) = qjRj-iix) - (pj + qj)Rj{x) + PjRJ+i(x), j > 1,
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where q0 = 1 — p0 — rQ, and

n} [ Ri(x)Rj(x)dHx) = 8ij, i, j > 0. (2.23)
Jo

So {Rj(x)}j is a sequence of birth-death polynomials with birth rates pj and death
rates qj, and # is the unique measure with respect to which the sequence [RJ(X)}J is
orthogonal. Using the transformation (2.20), Lemma 6 (on page 527) of Karlin and
McGregor [13] is readily seen to imply

'1 00

qo = 0 =• J (1 - xyldf(x) = ^(Pj7Tj)~l (2.24)

and

q0 > 0 => q0 f (\-xyld^(x) = 1 - lim(GyO))-1. (2.25)
J-i J-*00

Also, (9.19) of Karlin and McGregor [14] translates into

oo »1 oo

q0 > 0 a n d / ( P / J r / ) " 1 = <x> => <]n I (1 — x)~2dx!s(x) = / J r . - . ( 2 . 2 6 )
j=o J-> j=o

With this information the classification in the Theorems 2.1 and 2.2 can now be
expressed in terms of q0 and the random walk measure \j/ as follows.

THEOREM 2.3. (i) Ifq0 = 0, then the random walk is

recurrent & I (1 — x)~ldyfr(x) = cc
J — 1

and
positive recurrent o \J/([1}) > 0.

(ii)If q0 > 0, then the random walk is transient and absorption at —I is

certain & q0 j (1 — x)~xdf (x) = 1

and

ergodic O qo I (1 — x)~ld\/r(x) = 1 and / (1 — x)~2d\jf (x) < oo.
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PROOF. From Karlin and McGregor [15] (or from Corollary 2.6 of Shohat and Tamar-
kin [27]) we know

oo

(2.27)

which should be interpreted as zero if the series diverges. Also, the recurrence relation
(2.5) yields

j-i

Qj{\) = 1 + <7o ^ O v r * ) " 1 , j > 0. (2.28)
*=o

The first part of the theorem now follows from Theorem 2.1 and (2.24), while the
second part is implied by Theorem 2.2, (2.25) and (2.26).

Theorem 2.3 allows us to formulate sufficient conditions for r)(= sup supp (xfr)) to
be equal to one as follows. (The reverses of these statements do not necessarily hold
true.)

COROLLARY 2.2. (i) Ifqo = O and the random walk is recurrent, then r] = 1. (ii) If
qQ > 0 and absorption at — 1 is certain but not ergodic, then r\ = 1.

3. Geometric ergodicity

3.1. Introduction In this section (with the exception of Subsection 3.5) we shall
assume that the random walk X is aperiodic. As a consequence, the limits

pu = lim pu(n), i, j > 0, (3.1)
n-KX>

exist and are independent of i.
It is of interest to characterize the speed with which the transition probabilities

Pijin) tend to their limiting values /?,;. To this end we define

Yij = inf{p > 0\pu(n) - pu = O(p") as « -^ oo} (3.2)

and
y = sup{y,7}, (3.3)

and call y the decay parameter of X. When y < 1 the random walk is said to be
geometrically ergodic.

Several authors (Kendall [16], Vere-Jones [28], Kingman [21]) have studied geo-
metric ergodicity in the framework of denumerable discrete-time Markov chains.
Their main results, formulated in terms of the random walk X, may be summarized
as follows.
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1. If X is null-recurrent, then y,; = 1 for all i,j, so that y = 1 and X is not
geometrically ergodic.

2. If X is positive recurrent, then y < 1 if )/,-,- < 1 for some i. It may happen that
Yij < y for some pairs (/, j).

3. If X is transient, then

lim(py(n))1 /"=y, i, y > 0, (3.4)

so that y,7 = y < 1 for all / , ; . Moreover, R = y~x is the common radius of
convergence of the generating functions

i . y > o . (3.5)
«=0

In the transient case it is customary to make a further classification of random
walks (and irreducible Markov chains in general) according to the limiting behaviour
of R"Pij{n) as n —> oo. Indeed, the series Pij(R) either converge or diverge together.
In the first case the random walk is called R-transient and in the latter R-recurrent. If
X is R-recurrent then either lim R"pij(n) = 0 for all i, j or lim R"Pu(n) > 0 for all

n—>oo n-+oo

i, j . In the first case X is said to be R-null and in the latter R-positive. Evidently, a
transient random walk is R-transient if R = 1.

Our aim in the next subsections is to relate y to the support of the measure \j/ which
goes with X, to obtain bounds for y and conditions for geometric ergodicity in terms
of the 1-step transition probabilities of X, and to find criteria for deciding whether a
transient random walk is /?-transient, /^-positive or R-nu\\.

3.2. The aperiodic, transient random walk From (2.15) and Theorem (6.1) of
Papangelou [23] (see also Kersting [18]) we know the following.

THEOREM 3.1. If the aperiodic random walk X is transient, then its decay parameter
y satisfies y = ?j(= supsupp(VO).

Indeed, with (2.15) and (2.16) it is not difficult to verify directly from the rep-
resentation formula (2.4) that y(J = r] for all /, y. Thus, finding representations and
bounds for y in terms of the 1-step transition probabilities of X amounts to finding
representations and bounds for the largest limit point of the zeros of the random walk
polynomials {Qj{x)}j in terms of the parameters in the recurrence relation (2.5). Much
is known about the latter problem. In particular, from van Doom [6] we collect the
following representations for r), which are in fact valid under milder conditions than
we have assumed so far.
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LEMMA 3.1. Let Piqi+y > Ofor all i > 0. Then the largest limit point i] of the
(real) zeros of the polynomials [Qj(x)]j satisfying the recurrence relation (2.5) can
be represented as

(i) r) = inf sup{r, + X^Pj-iij + Xy+ih where P-\ = 0andx = (Xo, Xi. • • •) ««

any sequence of positive numbers;

(ii) t) = inf supi{ry -f rJ+l + J(rj+i - rj)2 + 4/3^!,/^+,}, where 0 is any chain
P j>0 v

sequence (that is, ft = (ft, ft,...) and each ft can be written as ft =
(1 - gj-i)gj with 0 < g0 < 1 andO < gj < I for j > 0);

0 0

(iii) t) = supf̂ o^o + Yl^"1"* + 2V&t-iPk-i^kqk)}, where i? = (J?o, # i , . . . ) is

any sequence of nonnegative numbers such that ]T\. #y = 1.

Combining Theorem 3.1 and Lemma 3.1 yields the following bounds for y.

COROLLARY 3.1. If the aperiodic random walk X is transient, then its decay para-
meter y satisfies the inequalities

(i) y < sup{r,

(ii) y <

(iii) y > sup sup I rj + Y] (/-, + 2Jp^q~) \,
j>0 n>\ [ , . ^ , j

(iv) y > supi {/-; + rj+l + >/(r>+1 - r;)

PROOF. Choosing xo arbitrary and Xy = ^/Pj-rfj, j > 1, the upper bound (i) follows
from the first representation in Lemma 3.1. The upper bound (ii) is obtained from the
second representation by taking ft = | (gj•. = | ) for all j . Choosing -dk = 1/n for
k = 0, j + 1 , . . . , j' + n — 1 and dk = 0 otherwise, the third representation gives the
lower bound (iii), while the lower bound (iv) is obtained from this representation by
choosing

&j+1 = l-&j and &k = 0 for kj^jj + l.

Concluding this subsection we give criteria for the transient random walk X to be
R-recurrent and ^-positive (and hence ^-transient and ft-null).

THEOREM 3.2. Let the aperiodic random walk X be transient with decay parameter
y and let R = y~x. Then the following are equivalent:

(i) X is R-recurrent,
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oo

(ii) £(G,(y)e;+i(y)£,»,)-' = oo,

(iii) f
and the following are equivalent:

(iii) f (y-xyl

(i) X is R-positive,
oo

(ii) YLjtjQfr < oo,

(iii) W
PROOF. By Theorem 3.1, we have y = r], so that/? = r?"1. Applying the Derman-Vere-
Jones transformation of Appendix 2 to X, it follows that R" Pij(n)=(Qi(r))/Qj(j]))pij(n),
where [pij(n)} are the transition probabilities of the random walk X defined in (A2.1)
which has q0 = 1 — p0 — r0 = 0. Consequently, X is R-recurrent (R-positive) if and
only if X is recurrent (positive recurrent). The criteria given in the Theorems 2.1 and
2.3 (i), together with (A2.1), (A2.3) and (A2.4) now yield the required results.

3.3. The aperiodic, positive recurrent random walk When the aperiodic random
walk X is positive recurrent then VKUD > 0 by Theorem 2.3 (i). As a consequence,
r) = 1, and hence V({-1)} = 0 by (2.18). By virtue of (2.3) and the representation
formula (2.4), we can now write

pu(n) - Pij = Ttj j xnQi(x)Qj(x)d^(x). (3.6)

By Lemma 2.2, we have £ = inf supp (f) and r?2 = sup{supp (VOVUH, and so, for
all i, j ,

Pu(n) - pu = O(/0") as n -+ oo, with p = max{|£|, t)2}.

By looking at the case i = j = 0, it becomes clear that the factor p above cannot be
improved, (that is, decreased) for all i, j simultaneously, so the next result emerges.

THEOREM 3.3. If the aperiodic random walk X is positive recurrent, then its decay
parameter y satisfies y = max{|£|, JJ2}.

REMARK. Examples can be constructed of positive recurrent random walks for which
Qi(y) = 0 for some / > 0, while xf/ has an isolated point mass at y. Evidently, yu

(and Yjt) < y for all j in such a case, which explains the phenomena described in
Subsection 3.1.

In order to find representations and bounds for y, we must now find representations
and bounds for £ and r}2. As far as £ is concerned we can obtain results analogous to
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those for rj by a simple transformation of the results in Lemma 3.1 and its corollary.
Indeed, it is readily seen that the polynomials {(—1)-' Qj(—x)}j satisfy the recurrence
(2.5) with rj replaced by —r7. Hence, replacing rj by —£ and r, by —r, in Lemma 3.1
and its corollary gives us representations and bounds for £, see van Doom [6]. As
for ?j2 the situation is more complicated, for we have at our disposal representations
for the largest (or smallest) point in the support of a measure, given the parameters in
the recurrence relation for the corresponding orthogonal polynomials, but not for the
largest point but one. However, this problem can be circumvented by transforming
the random walk polynomials {Qj(x)}j into a set of polynomials [Q*(x)}j, such that
the latter sequence is orthogonal with respect to a measure xfr* with the property
r)* = sup supp (if/*) = r]2. We can subsequently use techniques analogous to those of
Lemma 3.1 and its corollary to obtain representations and bounds for rf , and hence
for r)2.

Concretely, we define

Q*(x) = PjJtj{Qj+1 (x) - Qj(x))/(x - 1), j > 0, (3.7)

and

r([-hx]) = p~l f (l-y)dt(y), x > -1, (3.8)
v — 1

so that £* = inf supp(t/f*) = infsupp(^r) = £ and rf = sup supp (xfr*) = r)2. Then
the sequence {Q*(x)]j satisfies the recurrence relations

Q*0(x) = l, qlQ*(x)=x-l+p0 + qi

xQ)(x) = pjg;_,(x) + (1 - pj - qJ+l)Q)(x) + qJ+i Q*+1 (x), j > 1, (3.9)

and is orthogonal with respect to \jr*, namely,

J Q*(x)Q*{x)df\x) = 8U. (3.10)

This transformation is similar to the duality transformation used, for example, in
van Doom [5], [7] in the context of continuous-time birth-death processes, and a
proof of the above results may be given on the basis of the corresponding results for
continuous-time birth-death processes and the transformation described in (2.20); we
shall not give the details. It should be noted that the polynomials {QJ(x) }y of (3.9) need
not be random walk polynomials, so that the measure ijr* need not be a random walk
measure. In particular, it can happen that £* + /?*< 0. In fact, {QJ(.x)}j constitutes
a sequence of random walk polynomials if and only if r* = 1 — pj — qJ+i > 0 for
all j > 0. Of course, r* < 0 for some j need not prevent us from applying the
representation formulas for rj* that can be obtained from Lemma 3.1 by replacing pj,
qj and r, by pj = qj+x, qf = pj and r* = 1 — Pj — qj+l, respectively. Again, we shall
not write them down explicitly.

J
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3.4. Conditions for geometric ergodicity From the preceding sections we know
that the aperiodic random walk X is geometrically ergodic if r\ < 1 (when X is
transient) or if max{|£|, 2̂} < 1 (when X is positive recurrent). It is easy to see from
Theorem 2.3 (i) that if X is null-recurrent, then r\ = r?2 = 1 and, as a consequence,
y = 1, so that the random walk is not geometrically ergodic, as we had noticed
already in Subsection 3.1. It follows that necessary and/or sufficient conditions for
geometric ergodicity can be formulated on the basis of the representations and bounds
for r) given in Lemma 3.1 and its corollary, and analogous results for § and r}2. We
shall not pursue this approach here, but rather give a criterion for geometric ergodicity
in terms of the quantity x that is defined in (2.12).

THEOREM 3.4. The aperiodic random walk X is geometrically ergodic if and only if
x < 1.

PROOF. First suppose that the random walk is geometrically ergodic with decay para-
meter y < 1. Theorems 3.1 and 3.3 tell us that either y = rj or y = max{|£|, Hi}-
Since x < r)s for all j (see (2.11) and (2.12)) it follows that x < y < 1.

Next suppose x < 1. Then o > — 1 by (2.16), and Lemma 2.2 implies that the
random walk measure x/r can only have isolated atoms outside the interval [a, r] . Now
if t] < 1, then the random walk is transient by Corollary 2.2, and hence y = r] < 1
by Theorem 3.1. If, on the other hand, rj = 1, then \jr has an isolated atom at 1,
and hence r)2 < 1- Also, ^r cannot have an atom at —1 by (2.18), so |£| < 1 as
well. Finally, the random walk is positive recurrent by Theorem 2.3 (i), and hence
y = max{|£|, r)2} < 1 by Theorem 3.3.

It is well known (see Chihara [1, Theorem III.4.2]) that the value of x depends only
on the limiting behaviour as j —> oo of the parameters in the recurrence relation (2.5).
This means that representations and bounds for x usually lead to simpler and more
powerful criteria for geometric ergodicity than representations and bounds for rj, r)2

or £. We refer to the literature on orthogonal polynomials for various representations
and bounds for x (see for example, Chihara [1], [2] and van Doom [4], [6]) and shall
only mention the following powerful result (see [4]) and a corollary.

THEOREM 3.5. For any random walk, the parameter x satisfies the inequalities

x < lim sup [^ + ^Pj-rfj +

and
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The corollary pertains to the important case in which pj and qj tend to limits as
j -*• oo, and may also be obtained from Blumenthal's Theorem (see Chihara [1]).

COROLLARY 3.6. If the aperiodic random walk X has parameters satisfying pj —»• p,
qj -» q and hence rj^-r = \ — p-qasj^-oo, then x = 1 — (,//? - ^/q)2, so
that X is geometrically ergodic if and only if p ^ q.

3.5. Geometric ergodicity for periodic random walks It is clear that a periodic
random walk X has Pij{n) = 0 if i + j and n are of different parity. Indeed, since the
random walk polynomials for X satisfy Qj(x) = (—l)jQj(—x), the representation
formula (2.4) readily implies

f
Jo

-iy+j+n((-iy+j+n + l)x"Qi(x)Qj(x)dir(x), n > 0.

However, provided we let n go to infinity in (3.1) and (3.2) through the even (odd)
positive integers if / + j is even (odd), we can maintain the definitions of y,7 and y in
(3.2) and (3.3), and obtain the following result without difficulty.

THEOREM 3.7. If the periodic random walk X is transient then y = rj; ifX is positive
recurrent then y = r)2.

Representations and bounds for the decay parameter of a periodic random walk

may be obtained in the manner indicated in the Subsections 3.2 and 3.3. For example,

the analogue of Corollary 3.1 for a periodic, transient random walk is very simple,

namely,

- ^ s/Pi-iq, \ < y < sup \jpj-\gj + y/Pjqj+\}, (3.11)
n itjti J Jz°

where p_j = 0, since the bounds (i) and (iii) in Corollary 3.1 are sharper than the
bounds (ii) and (iv), respectively, when rj = 0.

Evidently, Theorem 3.4 retains its validity in the present context; so, as before,
bounds for r give us necessary or sufficient conditions for geometric ergodicity of
a periodic random walk. In particular, the upper bound in Theorem 3.5 leads to the
conclusion that

lim sup pj-rfj < \ (3.12)

is sufficient for a periodic random walk to be geometrically ergodic.
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4. Quasi-stationarity

In this section we consider a random walk X with the property q0 = 1 — p0 — r0 > 0,
so that —1 is an absorbing state. Also, we assume throughout that ^ ( P ; 7 1 ; ) ' = °°>
so that eventual absorption at — 1 is certain (see Theorem 2.2).

DEFINITION4.1. An (honest) probability distribution {a;}^0 on the nonnegative in-
tegers is a quasi-stationary distribution for X if the state probabilities Pj(n) =
Pr{X(n) = j} of the random walk with initial distribution p;(0) = a,, j > 0,
satisfy

- /»_,(#»)) = ctj, j > 0 , n > 0 . (4.1)

In other words, a quasi-stationary distribution is an initial distribution such that
the conditional probability of the process being in state j at time n, given that no
absorption has occurred by that time, is independent of n for all j .

As a first step towards our goal of identifying all quasi-stationary distributions for
X we observe the following.

THEOREM 4.1. Let X be a random walk with q0 > 0 and ^jiPjJtj^1 = oo, and {aj}
a probability distribution on the nonnegative integers. Then the following statements
are equivalent:

(i) {aj} constitutes a quasi-stationary distribution for X;
(ii) {aj} solves the system

(1 - <7o<xo)a, = Pj-i<Xj-i + rjctj + qj+iaj+u j > 1,
(1 - qoa0)a0 = roao + ^ a ;

(iii) {aj} solves the system

n, j > 0, (4.3a)

,•/>,,_,(/!) = 1 - (1 ~ qoao)". (4.3b)
i = 0

PROOF. First suppose {a;} is a quasi-stationary distribution. The state probabilities
Pj(n) = £^, aipjj(n) of the process with initial distribution {aj} then satisfy Pj(n) =
aj(l — p-\ («)). But these state probabilities also satisfy the forward equations

Pj{n + 1) = pj-ipj^in) + rjPj(n) + qj+lpj+i(n), j > 0, (4.4a)

P-\{n + 1) = p_i(/j) + qop0(n), (4.4b)
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where p_, = 0. It follows that pj(n + 1) = a,-(l — P-i(n + 1)) = a,(l - p~\{n) —
<ioPo(n)) = a,(l — <?oao)(l - P-\(n)). Substitution of these results in (4.4a) yields
(4.2).

Next, let {otj} be a solution of (4.2). Defining p-\(n) = 1 — (1 — qoaQ)n and
Pj(n) = ay(l-^o«o)n»it is easily seen that {pj(ji)}JL_v n > 0, constitutes a sequence
of probability distributions satisfying (4.4). Since p_] (0) = 0 and pj(0) — a,, j > 0,
we must have Pj(n) = £ , <XiPij(n), that is, {a,} solves the system (4.3).

Finally, suppose {or,} solves the system (4.3). Then, clearly, the state probabilities
Pj(n) = J^i UiPij(n), j > 0, of the random walk with initial distribution {or,} satisfy
(4.1). That is, {a,} constitutes a quasi-stationary distribution.

For notational convenience, we now introduce the functions

aj (x) = q^nj (1 - x) Qj (x), j > 0, (4.5)

where {Qj(x)}j are the random walk polynomials of (2.5) associated with X and {nj}
the constants defined in (2.1). The next theorem, for the proof of which we use the
results of Appendix 1, identifies all quasistationary distributions.

THEOREM 4.2. Let X be a random walk with q0 > 0 and ^-(P;7 1;)"1 = °°- If*) = 1>
then there exists no quasi-stationary distribution for X.Ifr)<\, then there is a one-
parameter family of quasi-stationary distributions, namely [[aj(x)}°Z0, x] < x < 1}.

PROOF. From (4.2) and the recurrence relations (2.5) it is readily seen that any quasi-
stationary distribution {«;} must satisfy a; = aO7TjQj(l — q0oto), that is, a, = aj(x)
for some x and all j > 0. In order that aj(x) > 0, we must have rj < x < 1, as a
consequence of (A 1.1). But if* = l,thena;(x) = 0 for all j and hence J2jaj(V = 0-
So we must have r) < x < 1. Hence there is no quasi-stationary distribution if rj = 1.
In the case r\ < 1 it remains to be determined for which values of x, rj < x < 1, one
has £ ; aj(x) = 1. To this end we observe from (4.5), (A1.3) and Lemma Al.l that,
for x in the interval [77, 1),

y=o j=o

Since, by (Al.l), Qj(x) > 0 for x > r), it follows that nsQj{x) -> 0 as j -> 00 for
t) < x < 1. Hence,

x) -+ 0

as j -> 00 as well. Using (A 1.3) again we conclude that ^ aj(x) = 1 for all x in
the interval [n,l).
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The theorem above and Theorems 3.1 and 3.7 give us the following interesting
result.

COROLLARY 4.1. Quasi-stationary distributions for X exist if and only if X is geo-
metrically ergodic.

A few comments on Theorem 4.2 and its corollary are in order. First, let rj <
1, and suppose one chooses the quasi-stationary distribution {aj(x)}j as the initial
distribution for the random walk. Then, by Theorem 4.1, the state probabilities
Pjin) = Y.i aMpijin) will satisfy

p_,(n) = 1 - x" and Pj{n) = ay(*)*", j > 0. (4.6)

Secondly, we note that Theorem 4.2 and its corollary together with some of our
findings in Section 3 concretize, generalize and supplement the recent results of
Ferrari, Martinez and Picco [11].

Finally, solving (4.2) for a probability distribution is equivalent to finding a non-
negative, nonzero, summable solution y = (y0, yt,...) to the eigenvector problem

xy = yP, (4.7)

where P is the matrix of 1-step transition probabilities given in (1.1). Indeed, for any
nonnegative, nonzero, summable solution y of (4.7), normalized such that £ . v7 =
1, one must have y0 = q^il — x), as can be seen by post-multiplying (4.7) by
the vector consisting of l's. It subsequently follows that a solution to (4.7) must
satisfy y;- = aj(x). From Theorem 4.2, we therefore conclude that there exists a
nonnegative, nonzero, summable solution to (4.7) if and only if r\ < x < 1. In the
more general context of infinite Markov chains, the problem of finding all quasi-
stationary distributions again amounts to solving the eigenvector problem (4.7) with
t] < x < 1, where rj is the decay parameter of the chain. Then, however, it is not
known whether suitable eigenvectors exist, unless x = r) and the chain is R-positive,
see Vere-Jones [28], Seneta and Vere-Jones [26], Kijima [19]. Recent advances for
continuous time Markov chains (Ferrari, Kesten, Martinez and Picco [10]) suggest,
however, that Corollary 4.1 is valid in much greater generality.

Concluding this subsection, the next theorem gives an interesting relationship
between the members of the family of quasi-stationary distributions, to the effect
that if r] < y < x < 1, then the quasi-stationary distribution {aj(x)}j is strictly
stochastically larger than the quasi-stationary distribution {aj(y)}j in the sense of
monotone likelihood-ratio ordering (see, for example, Whitt [30]).

THEOREM 4.3. Let X be a random walk with q0 > 0 and J2j(PjXj)~l = oo and
suppose t) < y < x < 1. Then ao(x) < aQ(y) and

(y)/aj 00 < aj+l (x)/aj (x), j > 0. (4.8)
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PROOF. Ifr) <y < x < l,thenao(*) = qol(l-x) < ^ ' ( l - v ) = ao(y). Moreover,
exploiting the recurrence relations (2.5) and noting that qn+inn+i = pnnn we easily
obtain

(JC - v) £ nk Qk (x) Qk( v) = pjitj (Qj (y) Qj+i (x) - Qj (x) Qj+l (y)), (4.9)

which is the Christoffel-Darboux identity (see Chihara [1]). Hence, for rj < y < x <
1,

since Qk(x)Qk(y) > 0 by (Al.l). The validity of (4.8) follows with (4.5).

5. Examples

We first consider the random walk with parameters

Pi = P. <Ij=q = l-p, n = 0 , j > 0. (5.1)

Karlin and McGregor [15] have shown that the associated random walk polynomials
can be expressed as

QM) = (q/py/2Uj(x/y/4p~q~),

where [/,(•) is a Tchebichef polynomial of the second kind (see, for example, Chi-
hara [1]) while the corresponding measure consists of the density

over the interval —y/4pq < x < ^/4pq. It follows immediately that for p ^ j , the
random walk is geometrically ergodic with decay parameter -J4pq.

Assuming p < \, absorption at — 1 is easily seen to be ergodic. So, by Theorem 4.2,
there exists a family of quasi-stationary distributions {{tf/OO}/, y/4pq < x < 1},
where

aj{x) = q-\P/qyl2{\ -x)Uj(x/yfcq'), ; = 0, 1 , . . . .

In particular, since £7,(1) = j + 1, the extremal quasi-stationary distribution corres-
ponding to x = r] = s/^pq is given by

= (1 -yfp/qfU + mp/q)i/2, j= 0, 1, . . . . (5.2)

Not surprisingly, this quasi-stationary distribution is identical to that of the birth-death
process with constant birth rates X and death rates /A such that k/fx = p/q (see for
example, van Doom [7]).

https://doi.org/10.1017/S0334270000007621 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000007621


140 Erik A. van Doom and Pauline Schrijner [20]

We next look at the generalization of (5.1) where ps = p, qj = q = 1 — p and
r, = 0 for j > 1, but p0 and r0 are arbitrary (and q0 = 1 — r0 — p0 > 0). Writing the
associated random walk polynomials Qj(x) as

the polynomials {Pj(x))j are readily seen to satisfy the recurrence relations

P0(x) = 1, A W = 2(p/po)x - (ro/po)y/JJq

2xPj(X) = />,_,(*) + PJ+1(x), j > 1.

Chihara [1, page 204], referring to earlier work of Geronimus, subsequently gives us
the representation

Pj(x) = aTj(x) + (a- 1)C/,-_2(JC) - «/;_,(*),

where [Tj(x)}j and {(//(*)}_,• are the Tchebichef polynomials of the first and second
kind, respectively, and

a = 2p/p0 and b = (ro/po)y/p/q.

For the special cases ft = 0 (that is, r0 = 0), a = 1 (that is, p0 = 2p) and a = 2, (that
is, p0 = p), Chihara [1, pages 204-205] gives us the corresponding measures, which
generalizes the results of Karlin and McGregor [15]. On the other hand, Karlin and
McGregor [15] describe at procedure to calculate the measure in the general case, see
also Sansigre and Valent [25].

Looking more closely into the case p0 = p (a = 2), Chihara's [1] results readily
reveal that t) = sup supp (i/r) is given by

•I
if ro

if ro

That is, T) as a function of r0 is constant as long as r0 < y/pq, but increases to 1 as r0

increases from ^/pq to its maximum value q. Of course, q0 > 0 as long as r0 < q. If
p <\ and r0 < q, then absorption at — 1 is easily seen to be ergodic, so that an infinite
family of quasi-stationary distributions exists. Exploiting the facts that 7}(1) = 1 and
Uj(l) = j + 1 , the preceding results readily reveal that, when r0 < *fp~q, the extremal
quasi-stationary distribution corresponding to x = r) = 2^fpq is given by

aj(n) = Wo-'a - X/P7?) 2 (1 + (1 - ro/y/pDjKp/q}"2, j= 0, 1 , . . . . (5.3)
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Appendix 1: A lemma involving random walk polynomials

Let [Qj(x)} be a sequence of random walk polynomials as defined in Section 2.2.
Since the coefficient of xj in Qj (x) is positive, it is clear from the definition of r] = rj,
in (2.10) that

x>rjO Qj(x) > 0 for all j > 0. (Al.l)

We can obtain more detailed information about the sequence [Qj(x)}j when it corres-
ponds with a random walk with q0 = 1 — Po — >o > 0 for which absorption is certain
(see Theorem 2.2). To this end we first note that the recurrence relations (2.5) can be
written in the form

(x - l)n0Q0(x) = pono(Q\(x) - QoW) - <7o
(X - l)7tjQj(x) = Pj7tj(Qj+l(x) - QJ(X))-PJ^7TJ^(QJ(X) - Qj-dx)), j > 1,

(A1.2)
since pjjij = qj+i7tj+l. Consequently,

»*G*(*). j > 0-
k=0

We can now establish the announced generalization of (A 1.1), which is of importance
in the analysis of Section 4.

LEMMA Al.l. Let qQ > 0 and ^ ( p ; ^ ; ) " 1 = oo. If x > r\ then QJ+i(x) > Qj(x)
for all j > 0.

PROOF. By virtue of (A1.3), the conclusion of the lemma is obviously true for x > 1,
since then, by (Al.l) and Lemma 2.1, Qj(x) > 0 for all j . (So in this case [Qj(x)}j
is monotonically increasing also if ^2j(PjJij)~l < oo.) Therefore, let us assume
r) < x < 1. From (Al.l) and (A1.3) it then follows that the sequence [aj]^, where
aj = pjUj(Qj+\(x) — Qj(x)), is strictly decreasing. Considering that

QJ+i(x) = 1 + £ 0 v r * r V j > 0,
k=O

the assumption a, < 0 for some j leads to a contradiction, since Qj+] (x) > 0 while
Jli^iPkXk)'1 tends to +oo as j -> oo. Consequently, a, > 0 for all j , and hence
aj > 0, that is, QJ+l (x) > Qj(x), for all j .
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Appendix 2: The Derman-Vere-Jones transformation

Let X denote an arbitrary but fixed random walk, [Qj(x)}j the corresponding se-
quence of random walk polynomials, and ̂  the corresponding random walk measure.
As usual, we let q0 = 1 — Po — ro and allow 0 < q0 < 1. We recall that

— 1 < £ = inf supp(VO < supsupp(VO = r\ < 1

and £+r\ > 0. We will describe a mapping by which the random walk X is transformed
into a random walk X with q0 = 0 and rj = 1. The transformation was introduced,
in a more general context, by Derman [3] and generalized by Vere-Jones [28], and
therefore we will refer to it as the Derman-Vere-Jones transformation.

Concretely, the Derman-Vere-Jones transformation maps the set of random walk
parameters {pj, qj+\, rj}JL0 into the set of random walk parameters {pj, qj+\,fj]^t0

defined by
pj = r}-\Qj+l(rj)/Qj(n))Pj 1

fj = r,-lrj \ (A2.1)

qj+x = n-](Qj(ri)/Qj+l(r1))qJ+i. J

Indeed, by (Al.l) we have pj > 0, qi+\ > 0, and by the recurrence relation (2.5) it
follows that q0 = 1 — p0 — r0 = 0 and Pj + q, + r, = 1 for j > 1. The corresponding
sequence of random walk polynomials {Qj(x)}j is readily verified to satisfy

r)), (A2.2)

and it follows that
.1

Qi(x)Qj(x)dir(x) = Sij, i,j>0,
/_:

where
Xj = XjQfa), (A2.3)

and t/r, defined by

- 1 < ^ < 1 , (A2.4)

is the corresponding random walk measure. It is evident that fj = sup supp {\jj) = 1,
while | = inf supp (ij/) = i-r)~] > —1. The n-step transition probabilities Pij{n),
i, j > 0, associated with X can now be expressed as

Pu(n) = Zj j xnQi(x)Qj(x)djr(x)
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so that the transition probabilities of X satisfy

PtM) = r)"(Qi(n)/Qj(r)))pu(n), i, j > 0. (A2.5)

Thus the Derman-Vere-Jones transformation enables us to analyse a general random
walk through a random walk with q0 = 0 and t] = 1, a feature which is employed in
the proof of Theorem 3.2.
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