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Abstract

Background. Prediction of treatment outcomes is a key step in improving the treatment
of major depressive disorder (MDD). The Canadian Biomarker Integration Network in
Depression (CAN-BIND) aims to predict antidepressant treatment outcomes through ana-
lyses of clinical assessment, neuroimaging, and blood biomarkers.
Methods. In the CAN-BIND-1 dataset of 192 adults with MDD and outcomes of treatment
with escitalopram, we applied machine learning models in a nested cross-validation frame-
work. Across 210 analyses, we examined combinations of predictive variables from three
modalities, measured at baseline and after 2 weeks of treatment, and five machine learning
methods with and without feature selection. To optimize the predictors-to-observations
ratio, we followed a tiered approach with 134 and 1152 variables in tier 1 and tier 2
respectively.
Results. A combination of baseline tier 1 clinical, neuroimaging, and molecular variables pre-
dicted response with a mean balanced accuracy of 0.57 (best model mean 0.62) compared to
0.54 (best model mean 0.61) in single modality models. Adding week 2 predictors improved
the prediction of response to a mean balanced accuracy of 0.59 (best model mean 0.66).
Adding tier 2 features did not improve prediction.
Conclusions. A combination of clinical, neuroimaging, and molecular data improves the
prediction of treatment outcomes over single modality measurement. The addition of mea-
surements from the early stages of treatment adds precision. Present results are limited by
lack of external validation. To achieve clinically meaningful prediction, the multimodal meas-
urement should be scaled up to larger samples and the robustness of prediction tested in an
external validation dataset.

Introduction

Over 25 antidepressant drugs and other therapies are effective in the treatment of major
depressive disorder (MDD). While there are only small differences in the efficacy of the vari-
ous treatments averaged across large groups of individuals, the response to each treatment var-
ies substantially from individual to individual. Only a minority of individuals with MDD
experience an adequate benefit from the first treatment they receive, leading many to sequen-
tially try multiple treatments and combinations (Al-Harbi, 2012). Each unsuccessful treatment
trial lasts several months and is associated with the risk of side effects, frustration, and adverse
outcomes, including suicide. At present, the initial selection of treatment is usually based on
evidence for efficacy and tolerability averaged across groups of individuals. Improvement in the
selection of treatment requires tools that can predict whether a given individual will respond to
a specific treatment. If this approach can be applied before, or early in the course of a treat-
ment trial, those with a low likelihood of adequate therapeutic response can be redirected to
treatment options that are more likely to be beneficial (Simon & Perlis, 2010).

Our knowledge of factors that predict treatment outcomes in depression has increased over
the past decade. Known predictive factors include demographic characteristics (Fournier et al.,
2009), history of adverse experiences (Nanni, Uher, & Danese, 2012), comorbid anxiety (Fava
et al., 2008), symptom dimensions (Uher et al., 2012a), cognitive performance (Williams et al.,
2011), molecular biomarkers (Uher et al., 2014), as well as measures of brain structure (Colle
et al., 2018) and function (McGrath et al., 2013). While some of these predictive factors have
been replicated across datasets, none is sufficiently accurate, robust, or economical for routine
clinical use at an individual level.

MDD is a heterogeneous condition influenced by many factors that vary across individuals
and populations. Therefore, it is likely that a more accurate individualized prediction can be
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achieved by models that consider multiple factors. Multivariate
predictions can be constructed from models developed in existing
datasets, using machine learning tools (Vu et al., 2018). Several
groups of investigators have applied machine learning to depres-
sion treatment datasets to establish classifiers that could predict
treatment outcomes (Chekroud et al., 2016; Etkin et al., 2015;
Iniesta et al., 2018, 2016; Maciukiewicz et al., 2018; Nie,
Vairavan, Narayan, Ye, & Li, 2018; Perlis, 2013). These results
suggest that it is possible to construct parsimonious predictive
models that use combinations of selected features from a large
number of measurements to predict treatment effects for indivi-
duals who were not in the training dataset. A systematic review
of published models found that studies using adequate method-
ology reported predictions with modest accuracy (Sajjadian
et al., 2021). However, most published studies that used adequate
methodology were limited to predictors of single modality, pri-
marily those resulting from clinical questionnaires and interviews.
Two prior studies that combined clinical features and molecular
genetic markers reported improved accuracy of prediction com-
pared to clinical features alone (Iniesta et al., 2018; Taliaz et al.,
2021). The added benefit of multimodal measurement remains
to be replicated and extended to additional data modalities,
such as neuroimaging. It is also unknown whether the improved
prediction is a function of combining data across measurement
modalities, or is a result of including a larger number of
predictors.

The goal of the Canadian Biomarker Integration Network in
Depression (CAN-BIND) is to enhance treatment response
in MDD through the prediction of treatment outcomes and per-
sonalized treatment strategies (Kennedy et al., 2012; Lam et al.,
2016). In the present paper, we leverage the CAN-BIND-1 dataset
to test whether multimodal measurements, composed of clinical,
molecular, and brain imaging biomarkers improve the prediction
of depression treatment outcomes. By systematically examining
each domain of measurement and varying the number of predict-
ive features in a tiered approach, we aim to answer the question of
whether multimodal measurement or an increased number of
variables influence the accuracy of prediction.

Methods

The CAN-BIND-1 dataset

The CAN-BIND-1 study enrolled 211 adults with MDD, who
were extensively assessed, offered treatment with the serotonin-
reuptake inhibiting antidepressant escitalopram (10–20 mg), and
invited for follow-up assessments every two weeks for 16 weeks
(Kennedy et al., 2019; Lam et al., 2016). Of these, 192 (91%)
attended the assessment after 2 weeks, 180 (85%) attended the
assessment 8 weeks after treatment initiation, and 166 (79%)
attended the final planned assessment after 16 weeks of treatment.
At week 8, participants who did not respond to escitalopram were
offered additional treatment with aripiprazole (2–10 mg) as an
augmenting strategy. CAN-BIND-1 was approved by the
Research Ethics Boards at all recruiting sites. All participants
signed an informed consent after the study procedures had
been explained. The present study uses data from the first 8
weeks when all participants received escitalopram as a monother-
apy. We include 192 participants (74 men and 118 women, mean
age 35.4, S.D. = 12.8 years) who provided valid outcome data on
one or more follow-ups after initiating treatment (see online
Supplementary Table S1 for a comparison of participants who

did and who did not contribute to analyses). Analyses that
included predictors from week 2 used a subset of 188 participants
(71 men and 117 women, mean age 35.3, S.D. = 12.7 years) who
provided valid outcomes at week 4 or later. Further details of
the CAN-BIND-1 clinical dataset are available elsewhere
(Kennedy et al., 2019; Lam et al., 2016). The detailed flow diagram
of CAN-BIND-1 participants is depicted in online Supplementary
Fig. S1.

Outcomes of antidepressant treatment

In CAN-BIND-1, we measured the severity of depressive symp-
toms every 2 weeks for 16 weeks with the clinician-rated
Montgomery and Åsberg Depression Rating Scale (MADRS). At
baseline, the participants were moderately to severely depressed,
scoring on average 30 on MADRS (range 21–47). The improve-
ment in depressive symptoms with treatment can be indexed
with a continuous measure (absolute or proportional reduction)
or a dichotomized categorical outcome (remission, response).
Consistent with previous studies in the field, we chose to use a cat-
egorical outcome to provide a metric that is comparable with
prior literature (Sajjadian et al., 2021). Categorical outcome mea-
sures based on absolute numbers of the end-point score (remis-
sion) and proportion of change from baseline score (response)
have complementary advantages and disadvantages. The prob-
ability of remission is negatively related to baseline severity, but
the probability of response is independent of severity at baseline
(Coley et al., 2020). Since we aimed to index improvement in a
way that is independent of baseline severity (Kennedy et al.,
2012), we chose response, defined as a reduction in MADRS by
50% or more from baseline to week 8, as the primary outcome
measure. When MADRS at week 8 was missing, we used earlier
time points to estimate the outcome based on mixed-effects mod-
els for repeated measures, as previously described (Uher et al.,
2020). When no outcome data were available at any post-baseline
time point (or post-week-2 for analyses that used week-2 mea-
surements as predictors), we did not include the participant in
any analyses. The outcome response rates were 46.9% and
47.3% for baseline and week 2 samples respectively.

Predictors

At baseline (week 0), CAN-BIND-1 participants underwent
detailed assessments with interviews, questionnaires, cognitive
testing, magnetic resonance neuroimaging, and blood sampling.
The assessments were organized into three modalities: (1)
Clinical modality included interviews to establish diagnoses, med-
ical history, current severity of depression, and functioning, ques-
tionnaires covering depressive and anxiety symptoms, personality
traits, and functioning, cognitive testing, and measurement of
body weight and height to calculate body mass index (Kennedy
et al., 2019; Lam et al., 2016). (2) Molecular modality used
blood samples to extract DNA for genomic and epigenetic ana-
lyses, and measure a comprehensive panel of micro RNAs,
levels of common metabolites, and inflammatory markers. (3)
Neuroimaging modality used multimodal magnetic resonance
imaging to obtain whole-brain structural T1 and T2-weighted
images, diffusion tensor imaging of the white matter, and func-
tional magnetic resonance imaging during resting-state and
depression-relevant tasks (Macqueen et al., 2019). A subset of
measurements was repeated after 2 weeks (week 2). Further details
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of CAN-BIND-1 assessments are available elsewhere (Kennedy
et al., 2019; Lam et al., 2016).

Tiered selection of predictors for analysis

To optimize the use of the rich dataset with a limited sample size,
we adopted a two-tiered approach to the inclusion of potential
markers in the predictive model development with tiers 1 and 2
considering focused and comprehensive sets of potential predic-
tors, respectively. Tier 1 predictors were selected based on prior
published evidence of predictive value, measurement reliability,
data completeness, and conceptual value which were pre-
processed, derived, or engineered (e.g. total scale score was used
rather than individual questionnaire items, selected regional
brain volumes rather than voxel-level signal intensity, total
DNA methylation rather than methylation at specific genomic
loci). The exact number of tier 1 predictors was not determined
a priori; however, the aim was to retain several predictors that
are similar to or lower than the number of individuals in the
analytic sample. The selection process resulted in a set of 134 vari-
ables measured at baseline that represented all three measurement
modalities in tier 1 analyses (Table 1). For analyses including
baseline and week 2 predictors, an additional 80 variables from
week 2 assessments were added to the baseline tier 1 variables,
resulting in a total of 214 predictors (Table 1). Where prior evi-
dence was used in the selection of predictors, it was strictly lim-
ited to prior studies that did not use CAN-BIND-1 participants.
Tier 2 predictors were also mostly pre-processed, and adequately
measured, but were included without any requirement of prior
evidence of predictive value. The inclusion of a greater number
of predictors allowed considering more comprehensive and
granular information (e.g. sub scores or items from a question-
naire, volume measurements of all brain regions, all known
micro RNAs measured with adequate reliability). In tier 2 ana-
lysis, we included 1152 predictor variables measured at baseline
that comprehensively cover the key information from the three
assessment modalities (Table 1). The gradual inclusion of predic-
tors by tier and by modality allowed us to separate the contribu-
tion of multimodal measurement from the effect of a greater
number of predictors, examine the limits of machine learning
analyses in a moderately sized clinical sample and test the value
of prior evidence in variable selection. The list and number of pre-
dictors considered for inclusion in each tier are given in online
Supplementary Table S2. A description of all tier 1 variables is
given in online Supplementary Table S3.

Missing values

Missing values are inevitable in human datasets and the way miss-
ing values are handled can influence the results. One commonly
used approach is to only include individuals with valid values
for all variables, referred to as complete case analysis which intro-
duces a bias in all cases other than when all values are missing
completely at random. The preferred alternative to complete
case analysis is the imputation of missing values. For imputation
of missing values on predictor variables, we chose ‘missRanger’
due to its capability to handle non-normal distributed data with
various types of predictors (Stekhoven & Bühlmann, 2012).
‘MissRanger’ was introduced by Mayer et al. for the imputation
of multimodal datasets, similar to CAN-BIND-1 dataset
(Stekhoven & Bühlmann, 2012). It uses a fast implementation
of random forest package ‘ranger’ (Wright & Ziegler, 2017) and

includes predictive mean matching which prevents imputation
with values that do not exist in the original data such as a value
0.5 in a 0–1 binary variable. Importantly, missRanger was inte-
grated into the machine learning workflow so that imputation
was done independently in each training and each testing set, pre-
venting information leakage. Outcome measures were not
included in the imputation procedure (see section Outcomes of
Antidepressant Treatment, above, for missing values on out-
comes). For visualization of missing values patterns, please see
online Supplementary Fig. S2A–I.

Development and assessment of prediction models

When designing the development of the prediction model, we fol-
lowed the current recommendations to reduce the risk of bias
(ROB) and overfitting (Moons et al., 2019; Ranstam, Cook, &
Collins, 2016; Wolff et al., 2019). To ensure complete separation
of training and testing sets and minimize the ROB or over-
optimism, we applied a fully nested cross-validation framework,
with all procedures, including the imputation of missing values,
performed separately in training and testing sets within each
fold of the outer cross-validation loop (Fig. 1). For each combin-
ation of predictor modality (clinical, molecular, neuroimaging,
clinical + molecular, clinical + neuroimaging, molecular + neuroi-
maging, and all three modalities), predictor tier (tier 1, and tier
2), predictor measurement time (baseline only, the combination
of baseline and week 2), and machine learning method, we com-
pleted 100 repetitions of nested cross-validation (inner fivefold
cross-validation and outer threefold cross-validation). We applied
five machine learning methods with potentially complementary
advantages: a penalized multiple regression (hyperparameter
tuned elastic net) (Kuhn, 2020), two tree-based methods [random
forests and gradient boosting (GBM)], support vector machines
(SVM) with radial basis kernel (Kuhn, 2020; Meyer et al.,
2021), and Bayesian network analysis (Naïve Bayes) (Meyer
et al., 2021). We applied each machine learning method with
and without feature selection using CAT scores
(correlation-adjusted t-scores) in the sda package (Ahdesmäki,
Zuber, Gibb, & Strimmer, 2015) to select the top 25 features in
each training set. To prevent information leakage, feature selec-
tion was carried out in the training set only within each fold of
each repeat of the outer cross-validation. Elastic net, GBM, and
random forests have additional embedded feature selection,
which were also nested and restricted to the training set within
each fold and repeat. In total, we developed and evaluated 210
models representing combinations of the modality, predictor
tier, predictor measurement time, machine learning method,
and CAT feature selection. In each case, we predicted a categoric-
ally defined response. Since the outcome distribution was
balanced and there was no a priori assumption of differential pen-
alty for false-positive and false-negative predictions, we quantified
prediction as balanced accuracy in testing sets the nested cross-
validation. We report the mean balanced accuracy and the
range of balanced accuracy across the 100 repeats of nested cross-
validation. We examine variable importance to evaluate the con-
tribution of specific predictors in models with the highest predict-
ive accuracy (Fig. 2; online Supplementary Figs S3–S6). The
Prediction model Risk Of Bias Assessment Tool (PROBAST)
(Moons et al., 2019; Wolff et al., 2019) is reported in online
Supplementary Table S4. Since the model was developed without
external validation, the overall ROB was considered high even
though other domains showed low ROB.
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Table 1. Predictive models achieving the highest mean balanced accuracy in tier 1 and tier 2 dataset

Analysis Modality Predictive week
Machine learning

method Feature selection

# of variables
before feature

selection

# of variables
after feature
selection Sensitivity Specificity PPV NPV

Balanced
accuracy AUC

Tier 1 Clinical + neuroimaging
+ molecular

Week 0 SVM None 134 134 0.45 0.78 0.65 0.62 0.62 0.64

Tier 1 Clinical Week 0 Naïve Bayes CAT score 47 25 0.56 0.60 0.55 0.61 0.58 0.58

Tier 1 Molecular Week 0 SVM None 31 31 0.49 0.73 0.62 0.62 0.61 0.61

Tier 1 Neuroimaging Week 0 Naïve Bayes None 56 56 0.53 0.61 0.55 0.60 0.57 0.58

Tier 1 Clinical + neuroimaging Week 0 Naïve Bayes None 103 103 0.57 0.63 0.58 0.62 0.60 0.60

Tier 1 Neuroimaging +
molecular

Week 0 SVM CAT score 87 25 0.50 0.66 0.57 0.60 0.58 0.60

Tier 1 Clinical + molecular Week 0 SVM None 78 78 0.47 0.71 0.59 0.60 0.59 0.63

Tier 2 Clinical + neuroimaging
+ molecular

Week 0 SVM CAT score 1152 25 0.52 0.60 0.54 0.59 0.56 0.59

Tier 2 Clinical Week 0 Random forest Embedded + CAT
score

194 25 0.51 0.62 0.54 0.59 0.57 0.59

Tier 2 Molecular Week 0 Elastic net Embedded 733 733 0.28 0.77 0.51 0.55 0.52 0.54

Tier 2 Neuroimaging Week 0 GBM Embedded 225 225 0.49 0.60 0.52 0.57 0.55 0.55

Tier 2 Clinical + neuroimaging Week 0 Random forest CAT score 419 25 0.51 0.64 0.56 0.60 0.58 0.59

Tier 2 Neuroimaging +
molecular

Week 0 SVM CAT score 958 25 0.49 0.61 0.52 0.58 0.55 0.58

Tier 2 Clinical + molecular Week 0 Naïve Bayes CAT score 927 25 0.63 0.49 0.53 0.60 0.56 0.59

Tier 1 Clinical + neuroimaging
+ molecular

Week 0 + week 2 Random forest Embedded 214 214 0.59 0.73 0.67 0.67 0.66 0.71

Tier 1 Clinical Week 0 + week 2 Elastic net Embedded 55 55 0.52 0.80 0.71 0.65 0.66 0.71

Tier 1 Molecular Week 0 + week 2 SVM None 52 52 0.35 0.84 0.67 0.61 0.60 0.62

Tier 1 Neuroimaging Week 0 + week 2 Naïve Bayes None 107 107 0.57 0.59 0.55 0.60 0.58 0.58

Tier 1 Clinical + neuroimaging Week 0 + week 2 Random forest Embedded 162 162 0.59 0.73 0.67 0.67 0.66 0.70

Tier 1 Neuroimaging +
molecular

Week 0 + week 2 Naïve Bayes None 159 159 0.65 0.48 0.53 0.62 0.57 0.61

Tier 1 Clinical + molecular Week 0 + week 2 Elastic net Embedded 107 107 0.51 0.81 0.71 0.65 0.66 0.73
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Results

Prediction of response from tier 1 baseline predictors

Up to 134 predictors across the three modalities were included in
tier 1 analyses. Across 70 machine learning models using seven
combinations of predictor modality and five machine learning
methods, each with and without feature selection, we predicted
response with a mean balanced accuracy of 0.55 (median 0.55,
Fig. 3; Table 1; online Supplementary Table S5). There was a gra-
dient of increasing prediction accuracy with the inclusion of mul-
tiple predictor modalities. Using a single predictor modality led to
a mean accuracy of 0.542 (95% CI 0.541–0.543; S.E. = 0.000562),
the combination of two predictor modalities predicted a mean
accuracy of 0.553 (95% CI 0.552–0.554; S.E. = 0.000597), the com-
bination of features across all three modalities predicted response
with a mean balanced accuracy of 0.573 across methods (95% CI
0.571–0.575; S.E. = 0.000971). The proportion of individuals mis-
classified in terms of response to antidepressant treatment
decreased from 46.9% with change prediction to 44.8% with the
best performing set of models using baseline clinical predictors,
and 37.4% with the best set of models including all three data
modalities. The distributions of balanced accuracy estimates for
one, two, and three baseline data modalities are illustrated in
Fig 4A, C, E.

Of the machine learning methods, SVM reported the highest
mean accuracy (0.58). Feature selection did not affect reported
accuracy (mean 0.55 with and 0.55 without feature selection).
The highest balanced accuracy of 0.62 was seen with SVM without

feature selection using a combination of predictors from all three
modalities. Molecular (global DNA methylation, plasma choles-
terol, microRNA 26p), clinical (functional impairment, anhedo-
nia), and neuroimaging (fractional anisotropy in several white
matter regions) variables all contributed to the prediction (online
Supplementary Fig. S3). The most accurate predictive models for
each predictor combination are described in Table 1. Receiver
operating characteristic (ROC) curves for the most predictive
[highest area under the curve (AUC)] models are depicted in
online Supplementary Fig. S7A–G.

Prediction of response from tier 2 baseline predictors

Tier 2 analyses involved a more than eightfold increase in the
number of predictors across modalities compared to tier 1
(1152 v. 134 features, respectively). The 70 machine learning
models covering all combinations of predictor modality and
methods predicted response with a mean balanced accuracy of
0.54 (median 0.54, interquartile range 0.52–0.55; Fig. 3; Table 1;
online Supplementary Table S5). Using a single predictor modal-
ity led to a mean accuracy of 0.528 (95% CI 0.527–0.529; S.E. =
0.000538), the combination of two predictor modalities achieved
a mean accuracy of 0.541 (95% CI 0.540–0.542; S.E. = 0.000581),
and a combination of features across all three modalities
predicted response with a mean balanced accuracy of 0.543
(95% CI 0.541–0.545; S.E. = 0.000942).

The choice of the machine learning method was unrelated to
prediction accuracy (Fig. 3; online Supplementary Table S5).

Fig. 1. Analysis workflow of treatment outcome prediction model.
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Use of CAT score feature selection was associated with a modest
increase in accuracy among tier 2 analyses (mean balanced accur-
acy 0.54 with and 0.53 without feature selection). The highest
balanced accuracy of 0.58 was seen using random forest with
CAT score feature selection and the combination of clinical and
neuroimaging data. When all three modalities were included,
the most important contributors to response prediction were
polygenic scores for insomnia and educational achievement,
suicidal ideation, reduced appetite, plasma cholesterol, and
methylation at several loci (online Supplementary Fig. S3).
Across modalities and methods, tier 2 analyses consistently
achieved slightly lower prediction accuracy than tier 1 analyses
(Fig. 3; online Supplementary Table S5). ROC curves for the
most predictive (highest AUC) models are depicted in online
Supplementary Fig. S8A–G.

Prediction of response from baseline and week 2 predictors

In the next step, we examined how additional measurements early
in the course of treatment (at week 2) improved prediction. Since
the inclusion of tier 2 variables reduced prediction accuracy, we
focused this stage of analysis on tier 1 predictors. We tested
70 machine learning models with up to 80 variables measured
at week 2 added to baseline tier 1 predictors.

These models predicted response with a mean balanced accur-
acy of 0.59 (median 0.60, interquartile range 0.54–0.63; Fig. 3;
Table 1; online Supplementary Table S5). There was a gradient
of increasing prediction accuracy with the inclusion of multiple
predictor modalities. Using a single predictor modality led to a
mean accuracy of 0.570 (95% CI 0.568–0.571; S.E. = 0.000738),
the combination of two predictor modalities predicted a mean
accuracy of 0.595 (95% CI 0.593–0.596; S.E. = 0.000703), the inclu-
sion of baseline and week 2 features across all three modalities
predicted response with a mean balanced accuracy of 0.619

(95% CI 0.617–0.621; S.E. = 0.001070) across methods. The distri-
butions of balanced accuracy estimates for combinations of base-
line and week 2 measurements are illustrated in Fig. 4B, D, F.

The decisive factor was the inclusion of clinical modality vari-
ables measured at week 2. The most accurate predictive models
included an elastic net model using clinical predictors without
feature selection, and a random forest model using data from all
three modalities without additional feature selection, both achieving
a balanced accuracy of 0.66 (Fig. 3; Table 1). In the most accurate
models, clinical variables (clinical global impression, interest-activity
symptoms score, and total depression severity scores from clinician-
rated and self-report instruments) measured at week 2 contributed
most to the prediction of response (online Supplementary Fig. S6).
ROC curves for the most predictive (highest AUC) models are
depicted in online Supplementary Fig. S9A–G.

Discussion

In a medium-sized richly assessed sample of patients with MDD,
we show that multimodal assessment improves the prediction of
antidepressant treatment outcomes. The improvement in predic-
tion accuracy with the inclusion of molecular and neuroimaging
information is modest. The addition of week 2 measurements
leads to a more substantial improvement in prediction accuracy.

The strength of prediction should be interpreted in the context
of existing literature and the known relationship between study
quality and prediction accuracy. A recent meta-analysis found
that studies with adequate methodology (sample size over 100
and clear separation of training and testing sets) report prediction
with lower accuracy than studies with small samples or inad-
equate separation of training and testing sets (Sajjadian et al.,
2021). In addition, response is the hardest outcome to predict,
because it is uncorrelated with baseline severity (Coley et al.,
2020). Studies with adequate methodology reported mean

Fig. 2. Variable importance of the most predictive models with the highest mean balanced accuracy among all of the 210 models including (A) elastic net model
using tier 1 clinical variables in week 0 + week 2; (B) random forest model using tier 1 clinical + neuroimaging variables in week 0 + week 2; (C) elastic net model
using tier 1 clinical + molecular variables in week 0 + week 2; (D) random forest model using all tier 1 variables in week 0 + week 2.
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prediction accuracies of 0.69, 0.60, and 0.56 for the prediction of
treatment resistance, remission, and response respectively
(Sajjadian et al., 2021). The mean accuracy of prediction across
the range of models in the present study (0.56) is comparable
to reports in prior studies that used adequate quality methods
(Sajjadian et al., 2021). The use of baseline clinical measures
helped predict one additional response per 50 patients compared
to chance prediction. This level of accuracy is above chance but
does not meet the standards required for meaningful clinical
application (Dinga et al., 2018; Uher, Tansey, Malki, & Perlis,
2012b). The use of baseline clinical, molecular, and neuroimaging
measures helped predict one additional response per 10 patients
compared to chance prediction. This still falls short of clinical sig-
nificance, especially if blood and neuroimaging biomarkers are
not easily accessible, but it is a step toward clinically meaningful
multimodal prediction as measurements become more accessible
and algorithms improve. In a prior study, the addition of molecu-
lar genetic variables to clinical features increased prediction accur-
acy compared to using clinical features alone (Iniesta et al., 2018,
2016), while others reported highly accurate predictions of
depression treatment outcomes from neuroimaging variables
(Cash et al., 2019; Williams et al., 2015). However, these studies
had small samples and did not answer the question as to whether
the higher accuracy is due to the unique predictive value of neu-
roimaging or a result of overfitting (Sajjadian et al., 2021). The
present study is the first one to combine clinical, molecular,
and neuroimaging features in a single sample. In the present
study, we found a gradient of increasing accuracy with the inclu-
sion of additional modalities of measurement. Both mean accur-
acy and best predictive model accuracy were highest when clinical,
molecular, and neuroimaging predictors were combined. This
finding supports prior findings on the added benefits of

molecular (Iniesta et al., 2018) and neuroimaging (Williams
et al., 2015) and extends them to combinations of clinical,
molecular, and neuroimaging data. The lack of prediction increase
in accuracy with tier 2 variables suggests that the improvement is
due to multiple data modalities rather than just a greater number
of variables. However, the degree of prediction accuracy improve-
ment in our data was not as large as that previously reported for
molecular (Iniesta et al., 2018) or neuroimaging (Cash et al., 2019;
Williams et al., 2015). A key decision in designing a predictive
model is the number of predictors (features) to be included, rela-
tive to the number of participants (observations) that
are available. While common recommendations in predictive
modeling suggest limiting the number of predictors so that a
minimum number of observations per predictor is available, a
recent meta-analysis found no relationship between the
feature-to-observations ratio and reported prediction accuracy
(Sajjadian et al., 2021). The present study contributes to inform-
ing the optimal number of predictors in two ways. First, we
observed no improvement in predictive accuracy with tier 2 com-
pared to tier 1. Tier 1 models with 31-to-134 predictors achieved
more accurate predictions than tier 2 models with 194–1152 pre-
dictors. Second, the addition of predictor modalities or time
points within tier 1 did improve prediction accuracy. Third, fea-
ture selection was associated with improved accuracy in tier 2,
but not in tier 1. Together, the findings suggest that when predict-
ing treatment outcomes, a predictive model can make use of a
number of features smaller than or similar to the number of par-
ticipants. When the number of predictors exceeds the number of
participants, the predictive model development becomes less effi-
cient. The strength of correlations among predictors and the
degree of association between each predictor and the outcome
in different datasets may modify these conclusions.

Fig. 3. Balanced accuracy of 210 machine learning models for tier 1 data (week 0) without feature selection (A), and with feature selection (D ); tier 2 data (week 0)
without feature selection (B), and with feature selection (E); tier 1 data (week 0 + week 1) without feature selection (C), and with feature selection (F). Note that in
each box plot, the lower and upper whiskers indicate the smallest value within 1.5 times the interquartile range below the 25th percentile to the largest value within
1.5 times the interquartile range above the 75th percentile, the lower and upper hinges indicate the 25th percentile and 75th percentile respectively. The middle
line inside the box is 50th percentile (median), and the dots are outside values that are >1.5 times and <3 times the interquartile range beyond either of box.
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Response to antidepressants evolves over 6–8 weeks, but early
changes in symptoms within the first 2 weeks of treatment are pre-
dictive of longer-term outcomes (Szegedi et al., 2009). In the pre-
sent study, the addition of measures obtained 2 weeks after
treatment initiation led to a striking improvement in prediction
accuracy. This improvement in accuracy exceeded the benefits of
multimodal measurement at baseline. While multimodal models
retained a degree of advantage after the inclusion of week 2, clinical
measures obtained at 2 weeks made the most substantial contribu-
tion to the improved prediction. This marked improvement in pre-
diction is consistent with other reports. Machine learning studies

that included week 2 data (Chekroud et al., 2016; Nie et al.,
2018) reported more accurate predictions than those that used
baseline predictors only (Chekroud et al., 2016). A recent study
reported high accuracy when data obtained 4 weeks after the
onset of treatment were included as predictors (Athreya et al.,
2021). These results seem to point to a greater value of initial treat-
ment data compared to extensive baseline assessments. However,
the clinical value of prediction and its potential to change treatment
course is diminishing with time from baseline as the trajectory of
response is already becoming apparent and many clinicians decide
to adjust treatment accordingly (Browning et al., 2021).

Fig. 4. Distribution of balanced accuracy estimates across (A) tier 1 (week 0) for one modality at a time; (C) combinations of two modalities; (E) the combination of
three modalities, and (B) tier 1 (week 0 + week 2) for one modality at a time; (D ) combinations of two modalities; (F ) the combination of three modalities. The solid
vertical lines represent the mean balanced accuracy of each distribution.
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The present study benefits from rich multimodal assessment
and standardized protocols. However, the results should be
interpreted regarding limitations related to the sample size. The
present sample, although larger than previously reported multi-
modal studies, is not large enough to optimally support the
learning or validation of complex prediction models. Given the
size of the available data set, we opted for nested cross-validation
that uses all parts of the dataset as both training and testing sets in
different validation loops while retaining a strict separation of
the training and testing sets. The optimal validation strategy
includes an additional step of external validation (Chekroud
et al., 2021). Ideally, the external validation should occur in a
dataset that was not available at the time of model development.
CAN-BIND is presently collecting a new dataset with treatment
and assessment protocols closely matching those used in the pre-
sent study. This will present the first opportunity to replicate
results in a sample that is strictly external to the model develop-
ment and yet is fully comparable.

In conclusion, a range of machine learning analyses suggests
that a combination of clinical data with neuroimaging and
molecular biomarkers improves the prediction of antidepressant
treatment outcomes over single modality measurement. Larger
samples will be required to scale the present work up and use
the full potential of rich multimodal measurements to achieve
clinically meaningful response prediction.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0033291722002124
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