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How to design an optimal biomedical flow device to minimise trapping of undesirable
biological solutes/debris and/or enhance their washout is a pertinent but complex question.
While biomedical devices often utilise externally driven flows to enhance washout,
the presence of vortices — arising as a result of fluid flows within cavities — hinder
washout by trapping debris. Motivated by this, we solve the steady, incompressible
Navier—Stokes equations for flow through channels into and out of a two-dimensional
cavity. In endourology, the presence of vortices — enhanced by flow symmetry breaking
— has been linked to long washout times of kidney stone dust in the renal pelvis cavity,
with dust transport modelled via advection and diffusion of a passive tracer (Williams
et al., J. Fluid Mech., vol. 902, 2020, A16). Here, we determine the inflow and outflow
channel geometries that minimise washout times. For a given flow field u, vortices are
characterised by regions where det Vu > 0 (Jeong & Hussain, J. Fluid Mech., vol. 285,
1995, pp. 69-94). Integrating a smooth form of max(0, det Vu) over the domain provides
an objective to minimise recirculation zones (Kasumba & Kunisch, Comput. Optim. Appl.,
vol. 52,2012, pp. 691-717). We employ adjoint-based shape optimisation to identify inflow
and outflow channel geometries that reduce this objective. We show that a reduction in
the vortex objective correlates with reduced washout times. We additionally show how
multiple solutions to the flow equations lead to solution branch switching during the
optimisation routine by characterising the change in solution bifurcation structure with
the change in inflow/outflow channel geometry.
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1. Introduction

Many biomedical devices are designed to minimise local flow recirculation to avoid the
trapping of undesirable biological solutes/agents and debris and/or enhance washout of
such solutes. For example, vortices resulting from blood flow through arterial stents can
serve as accumulation sites for inflammatory elements, leading to arterial thrombosis, and
a streamlined stent strut design is recommended to reduce regions of closed streamlines
(Jiménez & Davies 2009). Additionally, inducing three-dimensional (3-D) spiral flow
through the stented region of an artery has been shown to enhance washout through the
clearance of recirculation zones (Coppola & Caro 2009; Xhang et al. 2019). The trapping
of debris within regions of vortical flow is also undesirable in medical imaging procedures
such as endoscopy or optical coherence tomography. In these procedures, flushing with
saline or a contrast agent is used to remove biological debris and blood, respectively, and
consequently to enhance visualisation.

Recirculating vortices and the associated mass transport also have a number of
applications in cleaning and decontamination processes (see Min, Fischer & Pearlstein
(2020) and references therein). During the removal of the chemical agents used in these
processes, agents can be trapped in the neighbourhood of, or adsorbed onto, the rough
surface of the object being cleaned. To investigate the role of rough surface topography on
the boundary layer flow of contaminant, Min et al. (2020) considered the fluid flow over
a backward-facing step and the associated mass transport properties of a passive scalar.
Recirculation regions were found adjacent to the vertical face of the step, and the study
revealed a subtle interplay between the advective and diffusion transport mechanisms of a
passive scalar.

In many biomedical devices, recirculation regions of flow arise as a result of flow into
or out of cavities (Clavica et al. 2014; Williams et al. 2020). Here, we draw particular
motivation from urological examples. In ureteroscopy, a minimally invasive procedure for
kidney stone removal, a long thin ureteroscope, which contains a hollow tube called the
working channel, is inserted through the urinary tract and into the renal pelvis, the hollow
cavity within the kidney. Dust-like fragments of kidney stones — which are broken up using
thermal energy introduced via high-frequency laser pulses — are cleared from the kidney by
a continuous flow of irrigation fluid through the working channel tip and into the kidney.
The fluid exits the body in the opposite direction, along the outside of the scope shaft.
In ureteroscopy, visualisation is provided to the clinician via a small light and camera
embedded in the scope tip, and thus a rapid and thorough clearing of kidney stone dust is
important for maintaining a clear field of view. Another urological example of cavity flow
recirculation affecting debris clearance occurs when the kidney stone blocks the ureter,
which connects the bladder to the renal pelvis, and a urinary stent — a hollow tube with
sideholes in the wall to permit the transport of fluid between the intra- and extraluminal
spaces —is deployed to promote drainage. In the neighbourhood of a stone, the extraluminal
region takes the form of a closed cavity with flow entering via a stent sidehole and exiting
along the extraluminal outflow. The development of recirculating regions/vortices causes
particles (stone crystals and bacteria) to become trapped before they are washed away,
resulting in stent encrustation and potential stent failure (Clavica et al. 2014). Percutaneous
nephrolithotomy provides yet another urological example. In this procedure, kidney stones
too large to be removed using minimally invasive procedures such as ureteroscopy are
manually extracted with a nephroscope which is inserted into the patient’s kidney via
an abdominal incision. As with ureteroscopy, continuous irrigation is required to wash
residual stone particles from the kidney. A previous numerical and experimental study
examined the effects of irrigation flow speed and nephroscope angle (with respect to the
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bottom of the treated calyx) on particle clearance rate (Paster et al. 2019). It was found
that clearance was most efficient with the nephroscope positioned perpendicularly to the
bottom of the calyx using the fastest tested flow speed.

Consideration of such cavity flows motivates the question of how best to design the
device and/or the procedure to minimise the washout time of biological debris. We
recently considered cavity flow and washout in a 2-D cavity with inlet and outlet channels
modelling fluid flow with the steady incompressible Navier—Stokes equations (Williams
et al. 2020). We demonstrated the presence of symmetry breaking in the flow structure
with increasing Reynolds number, such that the asymmetric flow observed at higher
Reynolds numbers is dominated by a large central vortex. When incorporating washout
of a passive tracer via advection and diffusion, we found a strong link between washout
time and the presence, size and location of vortices. This result fits a general trend: the
time required for a passive tracer to exit regions of closed streamlines in a steady flow
scales both with the size of the vortex and with decreasing diffusion coefficient of the
tracer (Rhines & Young 1983). Thus, for fixed diffusive properties, decreasing the size of
vortices is paramount for reduction in washout time (Abergel & Temam 1990).

In this paper we reveal how alternative shapes for the inflow and outflow channels can be
used to enhance the clearance of a passive tracer, and we determine the inflow and outflow
channel geometries for which the washout time of an initial concentration of passive
tracer is minimised. We approach this question using shape optimisation techniques, which
rely on the identification of an appropriate objective to minimise. Ideally, the objective
would be the washout time for a given initial concentration of tracer. However, such an
objective depends upon features of both the flow and the concentration fields, and thus
optimisation presents a computationally prohibitive task: even if we consider a steady
flow field which is unaffected by the motion of the tracer, computing the washout for
any given shape requires solving the fluid equations and subsequently solving a transient
advection—diffusion problem for the motion of the tracer. Instead, to define a tractable
shape optimisation problem, we determine an objective that is purely based on properties
of the steady flow field, but which correlates with washout time.

As noted, we expect the size of vortices to serve as a useful proxy for washout time, and
thus base our objective on the size of vortical regions, though quantifying the presence of
vortices is in itself a non-trivial pursuit. A logical choice would be to consider vorticity
magnitude (Jeong & Hussain 1995). This has been previously used as an objective in
shape optimisation to reduce recirculation zones (Abergel & Temam 1990), although
more recently objectives which focus on properties of the determinant of the velocity
gradient have been shown to achieve superior results (Kasumba & Kunisch 2010, 2012).
For a given flow field u, vortices are characterised by regions where det Vu > 0 (Jeong
& Hussain 1995). Thus, integrating a smooth form of max(0, det Vu) over the desired
domain provides an objective that can be used with a shape optimisation algorithm to
determine the optimal inflow and outflow channel shapes to minimise recirculation zones
(Kasumba & Kunisch 2012). We employ such an objective and compute optimal shapes
over a range of fluid properties, characterised by Reynolds number. We then confirm that
this objective correlates well with washout time across the range of parameters tested,
including the diffusivity of tracer particles, and show that the optimised channel shapes
can provide a significant decrease in washout time.

2. Problem description

We consider a simplified, 2-D representation of inflow and outflow to/from a rectangular
cavity, though we also briefly explore channel optimisation for different cavity geometries
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Figure 1. Problem set-up. Fixed boundaries are I'},; . I'},, ;- 17, and I'7 ,: the red boundary I is the

out,l” wa
control boundary that we allow to vary in the shape optimisation.

in §4. This set-up is motivated by an idealisation of a ureteroscope tip within the renal
pelvis, but more generally provides a toy geometry for considering shape optimisation on
flows characterised by large vortical structures. We employ a Cartesian coordinate system
(x*, y*) (stars indicate dimensional variables throughout) with corresponding coordinate
directions 7 and j.

The flow domain is represented by the light pink and light orange regions in figure 1,
ie. 2} U 2. The £2} domain encompasses both inflow and outflow channels. The inflow
boundary to the working channel is I, the upper and lower outflow boundaries are I7;, ,
and I . respectively, Ff* is the solid boundary we will allow to vary in the shape
optimisation and I}, denotes all other (fixed) solid boundaries. Following on from our
previous experimental and numerical work in a similar geometry (Williams et al. 2020),
we use the parameter values /| = 1.2743 cm and /; = 1 cm for the channel and cavity
lengths, respectively, and set a = 0.06 cm, b = 0.25701 cm and /& = 0.11598 cm in the
initial geometry.

The dimensional velocity field is given by u#* = u*i + v*j and pressure p*. The flow is
governed by the steady, incompressible Navier—Stokes and continuity equations, subject
to the following boundary conditions. The flow is driven by an imposed fully developed
parabolic profile at the inlet boundary with maximum velocity U. As outflow conditions,
we impose zero normal stress and parallel velocity. On all other boundaries (solid black
and red lines in figure 1) we assume no-slip and no-normal-velocity conditions.

A passive tracer of concentration ¢*(x*, ) over time ¢* is advected by the flow and
also diffuses with constant diffusion coefficient D. We impose no total flux (which has
both advective and diffusive components) of the tracer through the inflow or solid walls
(I Tan» 1) and no diffusive flux of tracer through the outflows (17, .. I, ). We
assume that initially the passive tracer has constant concentration C that is uniform within
the cavity and zero elsewhere.

2.1. Dimensionless governing equations

We non-dimensionalise as follows:

x* Ur u* a(p* — c*
X = —, t:—’ u—=—, p:M’ c=—, (2.1(1—6)
a a U Un C
where pns is the pressure at the outflow boundaries I, , and I, , of the

truncated domain, p is the dynamic viscosity of the fluid and we note that time has
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been non-dimensionalised using the advective time scale. The steady, incompressible
Navier—Stokes equations are

Re(u -V u=—-Vp+V.-Ew), V-u=0 in .U, (2.2a,b)
where the Reynolds number Re = pUa/ i, with p the fluid density, £(u) = Vu + (Vu) "
and V = (9/0x, 3/0y). (The long formulation of (2.2a), rather than reducing V - £(u)

to V2u using (2.2b), ensures zero stress as the natural boundary condition in the weak
formulation of the equations.) The flow boundary conditions are

u=[1-"], v=0 onr, (2.3a.b)
ou
28_ —p=0 v=0 on IV louu, (2.3¢,d)
X
u=v=0 onlyVUIly. (2.3¢)
The advection—diffusion equation for tracer concentration is
ad
8—‘; = Re™'Sc™ V2 — uve, (2.4)

where the Schmidt number Sc¢ = /(o D) represents the ratio of momentum diffusivity to
tracer diffusivity and we recall that D is the tracer diffusion coefficient. Equation (2.4) is
solved subject to the boundary conditions

J-n=0 on iy, Dy, Iy, Vc-n=0 on Ly, Ioui, (2.5a,b)
where J = —Sc™'Re™!'V¢ + uc. Additionally, (2.4) is solved subject to the initial

condition

c(x,0) = 1 in 82, (2.6)
’ 0 in £, '

2.2. Washout time

Following Williams et al. (2020), to quantify the rate at which the passive tracer exits the
entire domain £2. U £2;, we define the percentage loss at time ¢ as

Ja.ua, [e(x,0) — c(x, 1] ds2
[la.uq,cx. 0)d$2 ’

and we define a metric for the washout time, T9g, corresponding to the time required for
90 % of the tracer to exit the domain, i.e.

ff-QcUQz [c(x,0) — c(x, Top)] dS§2 0.9 28)
ffgcugt c(x,0)ds2 S @

2.7)

% loss =

2.3. Optimisation objectives

As discussed in § 1, vortices within a flow field are associated with regions where
det Vu > 0 (Jeong & Hussain 1995). Therefore,

/ max (0, det Vu) d§2 2.9)
2

is a logical objective to associate with recirculation zones. However, to ensure
differentiability of the objective and enhance optimisation performance, we utilise the
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Figure 2. (a,c) Streamlines in the cavity for Re = 10, 20, respectively, and (b,d) corresponding contours of
g(det Vu; 0.01), where g(s; €) is given by (2.10): (a) Re = 10, streamlines; (b) Re = 10, g(det Vu; 0.01); (c)
Re = 20, streamlines; (d) Re = 20, g(det Vu; 0.01).

smoothing function

=1 =0 (2.10)
53 €) = .
8 s/ +€), s>0,
and consider minimising
ff g(detVu; €)ds2, (2.11)
2.

as introduced by Kasumba & Kunisch (2010, 2012). We choose € = 0.01 — as opposed to
€ = 1 used by Kasumba & Kunisch (2010, 2012) — to well capture vortices within the flow.
Contours of g(det Vu; 0.01) for Re = 10 and Re = 20 are plotted in figures 2(b) and 2(d),
respectively. Comparison with corresponding streamlines for Re = 10 and Re = 20 shown
in figures 2(a) and 2(c), respectively, demonstrates strong qualitative correlation between
g(det Vu; 0.01) and areas of closed streamlines.

2.4. Numerical details

2.4.1. State equation (Navier—Stokes) solver

Our implementation is based on the Firedrake finite element library (Rathgeber er al.
2016; Homolya, Kirby & Ham 2017; Luporini, Ham & Kelly 2017; Homolya et al. 2018),
which uses the unified form language (UFL) (Alnas et al. 2014). UFL is a domain
specific language embedded in Python that enables the expression of partial differential
equations in their weak form in close to mathematical notation. We discretise the equations
using continuous, piecewise-quadratic Lagrange finite elements for the velocity field and
discontinuous, piecewise-affine Lagrange finite elements for the pressure. This element
pair is also referred to as the quadratic Scott—Vogelius element, with the velocity space
denoted by V), and the pressure space by Q. While the Scott—Vogelius element pair is not
known to be inf-sup stable on arbitrary triangulations (see Guzmén & Scott (2018) for a
recent discussion), it has been shown to be inf-sup stable on meshes with a particular
structure. To obtain an apposite mesh structure, we perform a barycentric refinement
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of an unstructured mesh generated by the mesh generator software Gmsh (Geuzaine &
Remacle 2009); this guarantees inf-sup stability (Qin 1994). We choose the Scott—Vogelius
element as it enforces the incompressibility constraint exactly, a property that more
recently has been understood to be of importance for the accuracy of numerical solutions
to incompressible flow (John et al. 2017).

Since the Navier—Stokes equations are nonlinear, we employ a Newton scheme. The
Jacobian required for this is derived automatically and symbolically by the UFL library.
To assemble the linear systems arising in each step of the Newton iteration, Firedrake
generates highly optimised C code at runtime. The system is then solved using the
MUMPS (Amestoy et al. 2000) sparse direct solver. For higher accuracy, we perform a
few (usually two) iterations of PETSc’s (Balay et al. 1997, 2016, 2018; Dalcin et al. 2011)
GMRES implementation using the LU factorisation as a preconditioner, until the residual
is reduced to 10717,

Starting from a zero initial guess, the solver finds a symmetric solution. However, for
large enough Reynolds number, this solution is not stable. For these cases we perform a
first solve with a no-slip boundary condition applied to one of the outlets (we use I,
although identical, albeit mirrored, results would be obtained if we used I, ), and use
this solution as the initial guess, to guarantee that the stable, asymmetric solution branch
is found and subsequently used for the initial step of the optimisation routine (Williams
et al. 2020).

2.4.2. Optimisation

For the optimisation we rely on the Fireshape shape optimisation library (Paganini &
Wechsung 2020). Fireshape is an open source library that connects the Firedrake finite
element library with the Trilinos Rapid Optimisation Library (Ridzal & Kouri 2014).
Fireshape employs the perturbation-of-identity approach (Micheletti 1972; Murat & Simon
1976; Simon 1980; Delfour & Zolésio 2011), which is based on deforming an initial
domain £2; using deformations of the form 7 = Id + X, where Id(x) = x is the identity
mapping. The optimisation is then formulated as finding an optimal deformation X, and
at each iteration the shape is given by .Q,(k) = (Id + X®)(£2;). Denoting by X}, the space
of continuous, piecewise-affine vector fields that vanish on 92, \ I}, the vanilla shape
optimisation problem can then be expressed as

minimise Jo(82,) = // g(detVu, e)ds2
(u.p)eV x Q. X eX), 2.

subjectto  (u, p) satisty (2.2) in (Id + X)(§2;) U £2.

(2.12)

We remark that while the integration domain 2. in the objective stays fixed, it is the
velocity field in the integrand that changes as the channel domain £2; is deformed.

Both analysing and solving shape optimisation problems are known to be difficult for
several reasons. First, shape objectives are usually highly nonlinear and non-convex in the
control X, so a unique optimal shape often does not exist. Second, when deforming meshes
one needs to ensure that the mesh does not degenerate or overlap. Fireshape has several
capabilities that allow us to mitigate these problems.

To avoid the first issue, we add a Tikhonov-type term to the objective, that is, a term of
the form o || X ||§h (we choose & = 0.01 in our simulations). Such a term is commonly used

for ill-posed optimisation problems as it is strictly convex. The norm || - ||)2(h on the space
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Xj, is chosen to penalise non-smoothness of the deformations,

IX1%, = X, X)x,,

(2.13)
X, Y)x, ::f EX): £(Y)+0.00lAX: AY dS2.
2;

Since standard finite elements only admit a first (weak) derivative, we employ a standard
interior penalty method (Brenner & Sung 2005; Wells, Kuhl & Garikipati 2006).
To counteract the second issue, we add a term S| max(0, 0., (VX) — O.9)||i2 to the
objective, which penalises large values of the largest singular value of the gradient of
X (we choose B = 10°). This modification is motivated by a result that guarantees that for
a convex domain, the deformed mesh does not overlap if the largest singular value of VX
is smaller than 1 (Delfour & Zolésio (2011), § 3 and Theorem 2.15). Finally, we note that
any shape objective (such as J,) is invariant with respect to deformations of the interior
mesh nodes: deforming the interior of the mesh does not change the overall shape and
hence does not have an impact on the objective. To remove this invariance, we require that
the deformation satisfy

X,Y)x, =0 foralY € X;0 ={Y € X;,: Y|y, =0}. (2.14)

This is the weak formulation of requiring V « £(X) + y A2X = 0 inside the domain that is
free to move. We refer to Wechsung (2019, § 8.2) for more details on these modifications.
To summarise, the minimisation problem that we solve is given by

minimise Te(R2) + | X%, + Bll max(0, 0nax VX — 0.9)]7,
(u.p)eVpxQp,XeXy

subject to  (u, p) satisfy (2.2) in (Id + X)(£2;) U £2.,
X satisfies (2.14).

In order to solve the optimisation problem efficiently the shape derivative is required.
Fireshape relies on UFL to automatically derive the required adjoint equations and shape
derivatives (Alnes et al. 2014; Ham et al. 2019). Finally, the resulting optimisation
problem is solved using the L-BFGS implementation of the Rapid Optimization Library
(Nocedal & Wright 2006; Ridzal & Kouri 2014).

(2.15)

2.4.3. Tracer washout equations

We approximated the concentration function with piecewise-linear elements on the
same mesh as the velocity field. The velocity field was solved for and subsequently
restored to drive the advective term in (2.4). Equation (2.4) was discretised in time
using a Crank—Nicolson scheme, and we added a mesh-dependent streamline upwind
Petrov—Galerkin (SUPG) stabilisation term, as described in Franca, Frey & Hughes (1992),
as standard Galerkin discretisations of advection—diffusion equations are oscillatory
in the advection-dominated regime (Silvester, Elman & Wathen 2014). We validated
our advection—diffusion code using the method of manufactured solutions, with details
presented in Williams et al. (2020, § B.2).

2.5. Bifurcation diagrams

We computed the bifurcation diagram as a function of Re in figure 6(a) using an
implementation of numerical deflation techniques (Farrell, Birkisson & Funke 2015)
within Firedrake.
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3. Results
3.1. Washout time for initial shape

The streamlines associated with each Reynolds number are shown in figure 3(a—e). Based
on our previous study of the solution structure to the incompressible, steady Navier—Stokes
equations in this geometry we anticipate a pitchfork bifurcation near Re = 15 (Williams
et al. 2020). Indeed, we find that for Re = 10 a unique symmetric solution is found,
whereas for Re = 20, 30, 40 and 50 three solutions exist, with the mirror pair of stable,
asymmetric solutions constituting the flow patterns of physical relevance. The large central
vortex, which emerges as a consequence of flow symmetry breaking, grows in size as the
Reynolds number increases from 20 to 50 (see figure 3b—e). In figure 3(a—e) we observe
that the vortical flow region is surrounded by streamlines that trace a path from the inlet
to the outlet without recirculating. We refer to this surrounding region as the ‘racetrack’
region in the discussion below. As the Reynolds number increases, in addition to the size
of the vortical region increasing, the speed of the racetrack also increases.

In figure 3(f) we plot washout time as a function of the Schmidt number Sc for five
different vales of Re. The dimensionless washout time, Ty, is defined in (2.8). In many
biomedical applications, properties of the fluid such as its viscosity and density are fixed.
Additionally, the size of the device is likely constrained by physical anatomy, and hence we
consider the length scale a to be fixed. Thus, varying the Reynolds number corresponds
to changing the inflow rate characterised by U. In (2.1b), we non-dimensionalise time on
the advection time scale a/U, so that the dimensional washout time T;O = aTgoy/U. In
figure 3(f) we present T, normalised with respect to the fixed time scale for viscous

diffusion of momentum, a?/v; this corresponds to T,/ (pa?) = Too/Re.

For Sc = 1, corresponding to a balance between momentum and tracer diffusivities,
washout time decreases monotonically with Reynolds number, i.e. the faster the flow
(characterised by larger Re), the quicker the washout. This can be seen by looking at the
symbols on the far left of figure 3(f). In this regime, the tracer diffusivity is sufficiently
high that the tracer can diffuse out of the vortex region making its way onto the racetrack.
As the speed of the racetrack increases with Re, the washout time monotonically decreases
with increasing Re. As Sc increases — and tracer diffusivity decreases with respect to
momentum diffusivity — the vortex-trapping effect becomes more significant, and hence
the fastest flow (characterised by Re) no longer provides the quickest washout. Since the
proportion of the cavity domain occupied by a vortex also increases with Re, for S¢c =5
we in fact see a reversal in the ordering of washout times as Re increases from 20 to
50. This is indicated by the lines crossing in figure 3(f) between Sc = 1 and Sc = 5.
Nevertheless, all these washout times beat the washout time for Re = 10, as although
the vortex trapping effect at this Reynolds and Schmidt number is minimal due to small
vortex size, the speed of the racetrack for this Reynolds number is comparatively slow,
particularly near the rear wall of the cavity. The washout time ordering with Reynolds
number remains the same for Sc = 10 as for Sc = 5. As Sc increases further, however, and
the tracer diffusivity is smaller still compared to momentum diffusivity, tracer trapping
within the large central vortex — and even the smaller vortex near the exit of the inflow
channel — is now so pronounced that for Re = 40 and Re = 50, which have comparatively
faster racetrack speeds than the lower Reynolds numbers, washout is slower, as these flow
fields also contain the largest central vortices.

3.2. Washout time after vortex optimisation

In figure 4(a) we plot the objective (2.12) — normalised with respect to the objective value
at iteration zero — as a function of iteration number. At each value of Re considered,
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Figure 3. Washout time for initial shape. Different symbols represent different Reynolds numbers with
associated streamlines shown in (a—e): (a) Re = 10; (b) Re = 20; (¢) Re = 30; (d) Re = 40; (¢) Re = 50;
(f) washout time.

we observe a broadly monotonic decrease in the objective as a function of iteration
number. The optimisation for Re = 20 and Re = 30 terminates after only 21 and 50
iterations, respectively, caused by the flow problem switching solution branches, and we
explain this behaviour in more detail in §3.3. We see that for Re = 10, Re = 40 and
Re = 50 the iterative process continues until the objective curve flattens. In figure 4(b), we
consider the relative washout time for S¢c = 5, defined as the dimensionless washout time
(given by (2.8)) normalised with respect to the dimensionless washout time at iteration
zero. We plot this relative washout time as a function of iteration number. For Re = 20
and Re = 30 washout time decreases monotonically with iteration number, correlating
with the objective. For Re = 10, Re = 40 and Re = 50, although the behaviour is not
strictly monotonic, the washout time has reduced to approximately 90 % of the initial
value by iteration 200. Important to consider is that figure 4(b) only indicates relative
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Figure 4. (a,b) Objective value and washout time (Sc = 5) as a function of iteration number. (¢) Normalised
(to zero mean and unit standard deviation) objective value and washout and their correlation. The correlation
is 0.9245,0.9786, 0.8449, 0.925, 0.9291 for Re € {10, 20, 30, 40, 50}. (@) Objective function (relative).
(b) Washout time (relative). (¢) Correlation.

improvement of washout time for each value of Re, and not a comparison of washout
time for different Reynolds numbers. We also note that the washout time in figure 4(b) is
only for a single Schmidt number — Sc = 5 — and that correlation between objective and
washout may improve with increasing Sc, although the long washout times with increasing
Schmidt number render this comparison a computationally prohibitive task. We quantify
the correlation between objective function and washout time in figure 4(c) by plotting
these metrics against each other (normalised to zero mean and unit standard deviation for
each value of Re). We observe that the data follow a roughly linear trend with correlation
coefficients 0.9245, 0.9786, 0.8449, 0.925, 0.9291 for Re € {10, 20, 30, 40, 50}.

In figure 5(a—e) we show the channel shapes and associated streamlines after the
optimisation routine. We emphasise that the optimised channel shape is different for each
Re considered. For Reynolds numbers Re € [20, 50] the optimised inflow channel is now
curved, modifying the flow structure observed in the cavity region and decreasing the
size of the central vortex. For Re = 10 domain symmetry — and hence flow symmetry —
has been broken, resulting in slightly reduced vortices near the channel entrance and a
faster velocity near the back of the cavity compared to the initial shape (compare figure S5a
with figure 3a). It is also worth noting the appearance of a small triangular indent in
the bottom outflow of the optimised shapes for Re = 40 and Re = 50. This is purely an
artefact of the discretisation; although this feature plays a role in decreasing the objective
function, likely due to singularities in Vu at the outflow corners, its influence on Ty is
negligible. We confirmed that the difference between Toy for Re = 50 with and without
this sharp geometric feature is only of the order of 107>. To compare the washout times
for the optimised shapes to the washout times for the initial shapes, in figure 5(f) we plot
Too/Re as a function of Sc for the final channel geometries and flow patterns produced by
the optimisation routine for each value of Re. For each Re, the corresponding washout
times in figure 5(f) have been reduced compared to the washout times for the initial
shape at each value of Sc (the washout times for the initial shapes are reproduced from
figure 3 in grey). As with the initial shapes, crossings of the lines occur as tracer diffusion
decreases, corresponding to the increasing significance — and competing effects — of flow
structure and flow speed. Important to observe is that the difference between washout
times for the initial and final shapes for a given Reynolds number increases with increasing
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Figure 5. Washout times for final shapes after optimisation. Different symbols represent different Reynolds
numbers with associated streamlines shown in (a—e). Red filled symbols correspond to values for optimised
geometries, while pale grey symbols correspond to values for initial shapes: (a) Re = 10; (b) Re = 20; (c)
Re = 30; (d) Re = 40; (e) Re = 50; (f) washout time.

Schmidt number. This is to be expected: as Sc increases (diffusion decreases) vortex size
becomes increasingly significant.

3.3. The effect of multiple solutions
At each iteration of the shape optimisation algorithm described in §2.4.2 there is an

associated channel geometry .Qt(k) and velocity and pressure solution (u, p)®. For critical
Reynolds number Re,, if Re < Re., then (u, p)(k) is unique and stable, whereas if Re >
Re,, then (u, p)(k) is one of three possible solutions, two of which are stable, and therefore
physically relevant, and one of which is unstable.
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Figure 6. Bifurcation diagrams for Re = 20 at shape iterations 0, 11 and 21. Dashed lines indicate unstable
solutions and solid lines stable (physically attainable) ones. The coloured circles indicate the relevant solution
during optimisation. The three black symbols indicate the three possible solutions at Re = 20 and iteration 21,
with corresponding streamlines presented in (b—d): (a) Re = 20 optimisation; (b) Solution 1; (c¢) Solution 2;
(d) Solution 3.

For example, for .Q,(O) , there is a pitchfork bifurcation — displayed in blue in figure 6 —

and Re. ~ 12. For the initial solve with .Qt(o) when Re > Re., we select one of the mirror
asymmetric solution branches using the numerical method described at the end of § 2.4.1
and used in Williams et al. (2020). Without loss of generality, we select the solution on the
upper branch, as indicated for Re = 20 in figure 6 by the blue circle, where we have defined
the bifurcation functional as the flux difference between the lower and upper outflows, i.e.

AQ:/ u-nds—/ u-nds, (3.1
Faut,l rout,u

where n = (—1, 0)T is the outward unit normal vector to I, ; and Iy .

With each shape iteration, the bifurcation structure, and hence the value of Re., changes.
If the domain deforms asymmetrically the once perfect pitchfork solution structure
becomes a broken pitchfork, as demonstrated by the yellow and red lines in figure 6, where
Re. which characterises the transition point from one to three solutions is the location of
the detached limit point.

This insight allows us to understand the branch switching that causes the early
termination of the Re = 20 and Re = 30 optimisations (red and yellow lines in figure 4a,
respectively). In figure 6(a) we plot the broken pitchfork bifurcation diagrams associated

with .Qt(ll) and [2;21) in yellow and red, respectively, with corresponding coloured circles
denoting the solutions (z, p)!" and (u, p)*") at Re = 20 and with solid and dashed lines
indicating stable and unstable solution branches respectively. The black triangle, cross

and square on the red bifurcation diagram associated with .{2,(21) denote the three possible
solutions at Re = 20, and their corresponding streamlines are drawn in figure 6(b—d). As
iteration number increases from 0 to 21, Re, increases and approaches Re = 20. Iteration
22 then produces a candidate channel shape with Re. > 20, and hence only a single
solution (on the lower stable branch) exists at Re = 20. At this stage the Navier—Stokes

914 A37-13


https://doi.org/10.1017/jfm.2020.1119

https://doi.org/10.1017/jfm.2020.1119 Published online by Cambridge University Press

J.G. Williams and others

solver diverges, as the chosen initial guess — Solution 1 in figure 6 — is far away from the
solution associated with the lower asymmetric branch, and hence is a poor initial guess for
the Newton solver.

Of interest to note is that starting the optimisation routine with .Q,(ZI) and the solution
for (u, p)®V given by the lower stable branch (Solution 3 in figure 6) instead of the upper
stable branch (Solution 1) results in a channel shape similar to that in figure 6(b—d), but
flipped with respect to the x-axis of the domain. Notably, after several iterations of the
optimisation routine the broken and unbroken branches of the pitchfork collide and switch
stability — an example of a cusp catastrophe — so we are again on the stable, broken branch
of the bifurcation diagram. After several more iterations, a candidate shape with Re. > 20
is proposed by the optimisation algorithm, and the Navier—Stokes solver diverges again.

Of the five Reynolds numbers we explored, the branch-switching behaviour during
the initial optimisation run occurs in only Re = 20 and Re = 30 at iterations 21 and 50,
respectively (see figure 4). For higher Reynolds numbers — e.g. Re = 50 — the bifurcation
diagram never evolves to the stage where Re, > 50, as would be required to observe the
phenomenon described in this section.

Computing bifurcation diagrams for the optimised channel shape highlights an
important point: although the optimised flow solution is stable, for some Reynolds
numbers it is not the solution one would find by increasing the flow rate in physical practice
(or by numerical Reynolds number continuation in computation). To obtain the optimal
flow field associated with the optimal shape in reality, techniques such as blocking and
unblocking an outflow — previously used to obtain flow fields on a desired branch of a
pitchfork bifurcation in experiment (Williams et al. 2020) — may be required.

4. Summary and discussion

Many biomedical procedures require efficient clearance of debris, whether to improve
visualisation in endoscopic surgeries, or to reduce accumulation of undesirable biological
agents in a stented artery or ureter. Debris clearance typically relies on fluid flow — an
injected saline solution, contrast agent or blood circulation — and debris aggregation sites
can arise as a result of recirculation zones in the fluid. Modelling debris dynamics as
the advection and diffusion of a passive tracer, the time required for the tracer to escape
a region of closed streamlines depends nonlinearly on the velocity, diffusive properties
of the debris and vortex size (Rhines & Young 1983). This motivated the hypothesis
that underpins the work in this article: for fixed flow speed and debris characteristics, a
reduction in vortex size will promote more efficient debris clearance.

In this paper we considered flow in a 2-D Cartesian geometry, consisting of a rectangular
cavity and inlet and outlet channels, and used shape optimisation to determine channel
geometries that reduce the presence of vortices. We characterised recirculation zones via
det(Vu) > 0 —i.e. locally circular or spiral streamlines — thereby choosing the objective
for our optimisation to be a smoothed form of max(0, det Vu) integrated over the cavity
domain (Kasumba & Kunisch 2012). We determined the relationship between washout
time and the objective by solving an advection—diffusion equation for the motion of a
passive tracer in both the initial and the optimised flow fields and calculating the resulting
washout time. We used Ty as the metric characterising washout time, corresponding to the
time taken for 90 % of the tracer to exit the domain. We note here that alternatives to Toq
for the washout metric can be found in the literature: for example, Min et al. (2020) track
the location and magnitude of the peak of the remaining concentration. A comparison of
washout metrics in relation to our objective function would be an interesting future study,
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but here we chose to restrict attention to Tqg as this is a commonly used standard measure
of washout efficiency.

We first solved for washout time in the initial uniform channel geometry for Reynolds
numbers Re = 10, 20, 30, 40 and 50 and confirmed that washout time depends
non-trivially on Reynolds number, flow structure and the diffusion coefficient associated
with the passive tracer. When the Schmidt number Sc =1 — i.e. when tracer motion
is governed by a balance of momentum diffusivity of the fluid and diffusivity of the
concentration — washout time decreases monotonically with increasing Reynolds number.
However, for decreased tracer diffusivity, we found that the case of fastest flow (Re = 50)
in fact provided the slowest washout time. This seemingly counterintuitive result is easily
explained by the fact that the fastest flow also creates the largest vortex, and in an
advection-dominated regime vortex size has a dominant impact on washout time.

Running the optimisation algorithm for each of the five Reynolds numbers, we computed
the optimal shape and found that washout time is indeed lower in the optimised geometries
than in the initial geometries in each case. This partially confirmed the hypothesis
that our objective serves as a proxy for washout time. To explore the correlation
more thoroughly, we computed washout time for several geometries (and corresponding
flow fields) along the optimisation pathway. With Re = 20 and Re = 30, washout time
decreases monotonically with each shape iteration. For Re = 10, 40 and 50, washout
time is not monotonic with iteration number in the optimisation algorithm, although
after 200 iterations the washout time is reduced to approximately 90 % of its initial
value. This strong, if imperfect, correlation suggests that minimising washout may be well
accomplished via a proxy objective measuring the size of vortical structures, a choice
that creates significant computational advantage. This reflects the intuitive notion that if
tracer transport is not diffusion dominated, tracer can remain ‘stuck’ in vortices for long
periods of time, and thus reducing vortical structures can significantly reduce washout
time. By construction, Sc does not appear in the optimisation algorithm, but the connection
between vortex size and washout suggests that the optimal shape for a given Re will
not vary significantly with varying Sc, at least in the advection-dominated regime. The
connection between washout reduction and the size of vortical structures is less strong in
the high-diffusion regime; here maximising flow in the non-vortical ‘racetrack’ regions
may be more important than minimising the size of vortices, and a different proxy metric
may be more suitable. However, such a regime is less interesting from an optimisation
point of view, as it is characterised by very low washout times in any case.

Also of note on the computational side is the fact that, for two of the Reynolds numbers
(Re =20 and Re = 30), solution branch switching occurred during the optimisation
routine. This feature was shown to occur as an artefact of the evolving broken pitchfork
bifurcation structure for the flow problem during the evolution of the channel shape
following the optimisation pathway. Such a feature may naturally arise in an optimisation
scheme involving multi-solution flow fields, and highlights an important point, particularly
when translating to a clinical or industrial setting: the flow field associated with a
computed optimal shape may not be the only stable solution, so care may be needed in
physically realising the desired optimal flow.

We also explored the washout time corresponding to the optimised channel shapes as
a function of the diffusion of the passive tracer, captured by the Schmidt number Sc. As
was observed in the base geometry, when plotting washout time against Sc across the set of
Reynolds numbers, numerous crossings of the lines are observed. This further underscores
the complex relation between washout time, flow speed, vortices and diffusivity. Of course,
from a device design point of view, the key question is what shape should the inflow
and outflow channels be? Here, in lieu of a single answer, our analysis provides several
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Figure 7. Optimisation on different geometries: (a—c) the flow pattern and computed 79y before optimisation;
(d—f) the same after optimisation. All computations are for Re = 20 and Sc = 20: (a) Tog = 1449.3; (b) Tog =
1624.2; (c) Top = 2297.4; (d) Top = 896.0; (e) Tog = 1028.9; (f) Too = 1815.2.

points of insight: we have shown that the optimal shape is somewhat dependent on the
Reynolds number, and the optimal Reynolds number is dependent on the tracer (debris)
diffusivity. The diffusivity may not be well known, but we see the importance of a good
estimate. In terms of Reynolds number, in practice this can be controlled by changing the
upstream driving pressure or fluid properties, in which case figure 5 (or its equivalent in a
different geometry) enables us to determine the best combination of shape and Reynolds
number. A natural extension would be to optimise for both the Reynolds number and
the shape simultaneously. However, in addition to non-trivial extensions of the Fireshape
library being necessary for such a combined optimisation, we also expect more difficulties
navigating the multiple solution branches if the Reynolds number changes during the
optimisation. For these reasons, we do not explore this combined optimisation at this stage.

Even in the absence of a global optimal shape, figure 5 shows a clear qualitative trend
that curving the jet of fluid via bending the inlet channel leads to a decrease in the size
of vortical structures, and we anticipate that this qualitative finding could carry over to
more complex (and possibly 3-D) domain geometries. To test this idea, in figure 7 we have
run the optimisation algorithm on a set of three distinct geometries: in figure 7(a,d) we
replace the square domain with a smooth curved boundary; in figure 7(b,e) we replace
the back edge with an inwardly curved boundary; and in figure 7(c,e) we break the
symmetry of the domain through the addition of a circular bulge in the corner. Here,
figure 7(a—c) shows the flow pattern and computed 7o for the straight inlet/outlet channels,
while figure 7(d—f) shows the optimised shape and corresponding 7T9g. For each domain,
the total cavity area was preserved, allowing direct comparison of the washout times.
Unsurprisingly, the smooth domain in figure 7(a,d) exhibits a much faster washout than the
domain in figure 7(c, f), in which debris remains stuck in the small vortex in the additional
‘mini-cavity’. Nevertheless, in all cases we observe a significant reduction in washout time.
Perhaps more importantly, the optimised shape for each of the domains is qualitatively very
similar, following the same trend of curving the tip of the inlet channel as was found in
figure 5. While this is clearly not exhaustive in terms of possible geometric features, it does
demonstrate a robustness to the framework and reinforces a design principle that curving
the fluid can minimise the size of vortical structures and thus reduce the recirculation of
debris.

An obvious extension to the study reported in this manuscript is to consider 3-D —
rather than 2-D — geometries representative of real medical devices. However, a salient
factor to consider is computational cost: solving shape optimisation problems involves
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many (~200) state and adjoint equation solves. In two dimensions this is possible on a
standard workstation, but the computational cost is several orders of magnitude larger in
three dimensions. For this reason we focused on a 2-D case in this study, but are cognizant
of the significance of the extension to three dimensions. We note that the choice of vortex
metric is more open-ended in three dimensions, and a thorough comparison of results
using different available metrics remains necessary future work (Jeong & Hussain 1995;
Haller 2005).

Finally, we observe that in the optimisation scheme, the choice of which boundaries are
fixed and which are free is important. In our set-up, we fixed the walls at the front of the
scope, thereby preventing the inflow channel from flaring or tapering as it enters the cavity.
Relaxing this restriction potentially introduces competing effects: a flared tip geometry
may reduce the size of vortices, but it also reduces the flow speed of the open streamlines,
or ‘racetrack’, as described in § 3.1. For high Sc (tracer with low diffusivity), debris can get
stuck in areas of slow velocity, inducing longer washout times, even though the presence
of vortices has been reduced. In this instance, an alternative objective that promotes fast
velocity in non-vortex regions — the racetrack — might be suitable, e.g. one could subtract
a term from the objective of the form f Q. |u|H(— det Vu) dS2.. However, numerical
complexities arise with determining a smoothed version of the indicator function H, and
further work is required to implement such a modified metric in practice.

Code availability

For reproducibility we have archived the code and the exact software versions used to
produce the results in this paper on Zenodo (Zenodo 2020).

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2020.1119.
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