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When does an impacting drop stop bouncing?
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Non-wetting substrates allow impacting liquid drops to spread, recoil and take-off,
provided they are not too heavy (Biance et al., J. Fluid Mech., vol. 554, 2006, pp. 47-66)
or too viscous (Jha et al., Soft Matt., vol. 16, no. 31, 2020, pp. 7270-7273). In this
article, using direct numerical simulations with the volume of fluid method, we investigate
how viscous stresses and gravity oppose capillarity to inhibit drop rebound. Close to the
bouncing to non-bouncing transition, we evidence that the initial spreading stage can be
decoupled from the later retraction and take-off, allowing us to understand the rebound as a
process converting the surface energy of the spread liquid into kinetic energy. Drawing an
analogy with coalescence-induced jumping, we propose a criterion for the transition from
the bouncing to the non-bouncing regime, namely by the condition Oh. + Bo, ~ 1, where
Oh, and Bo. are the Ohnesorge number and Bond number at the transition, respectively.
This criterion is in excellent agreement with the numerical results. We also elucidate the
mechanisms of bouncing inhibition in the heavy and viscous drop limiting regimes by
calculating the energy budgets and relating them to the drop’s shape and internal flow.

Key words: drops

1. Introduction

Evidence of scientists’ fascination for drop impacts can be traced back to the sketch of a
water drop splashing onto a sheet of paper by Leonardo da Vinci in the margin of folio
33r in Codex Hammer/Leicester (1506—1510) (da Vinci 1508). In particular, the striking
patterns created by drop fragmentation, at high impact velocity, have attracted attention
(Rein 1993; Xu, Zhang & Nagel 2005; Yarin 2006; Villermaux & Bossa 2011; Josserand
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& Thoroddsen 2016; Kim et al. 2020). Lower velocity impacts, although they do not cause
drops to shatter, also give rise to a rich variety of phenomena (Worthington 1877a,b;
Chandra & Avedisian 1991; Yarin 2006; Thoroddsen, Etoh & Takehara 2008; Josserand
& Thoroddsen 2016). The rebound of drops on non-wetting substrates may be one of the
most fascinating of such interactions (Richard & Quéré 2000; Richard, Clanet & Quéré
2002; Tsai et al. 2009; Nair et al. 2014).

Upon impact, the liquid first spreads (Philippi, Lagrée & Antkowiak 2016; Gordillo, Sun
& Cheng 2018) until it reaches its maximal extent (Clanet et al. 2004; Laan et al. 2014;
Wildeman et al. 2016; Gordillo, Riboux & Quintero 2019). It then recoils, following a
Taylor—Culick-type retraction parallel to the substrate (Taylor 1959; Culick 1960; Bartolo,
Josserand & Bonn 2005; Deka & Pierson 2020; Pierson et al. 2020; Sanjay et al. 2022),
and ultimately bounces off in an elongated shape perpendicular to the substrate (Richard
& Quéré 2000; Yarin 2006; Josserand & Thoroddsen 2016).

Such rebounds abound in nature, as non-wetting surfaces provide plants and animals
a natural way to keep dry (Neinhuis & Barthlott 1997; Quéré 2008), and are relevant in
many industrial processes such as inkjet printing (Lohse 2022). In some applications, it
is pertinent that drops ricochet off the surface, such as in self-cleaning (Blossey 2003),
keeping clothes dry (Liu, Chen & Xin 2008) and anti-fogging surfaces (Mouterde et al.
2017a). However, in most cases, bouncing must be suppressed. For example, in cooling
applications (Kim 2007; Shiri & Bird 2017; Jowkar & Morad 2019) and pesticide spraying
in agriculture (Bergeron et al. 2000; He et al. 2021; Gorin et al. 2022). It is therefore
natural to wonder when a drop stops bouncing.

Thus, when does the bouncing stop? On the one hand, Biance ef al. (2006) found that
heavy drops, i.e. drops larger than their gravito-capillary length [. = /Y /pag, Where y
is the drop—air surface tension coefficient, p; is the density of the drop and g is the
acceleration due to gravity, cannot bounce. On the other hand, Jha et al. (2020) showed
that there exists a critical viscosity, two orders of magnitude higher than that of water,
beyond which aqueous drops do not bounce either, irrespective of their impact velocity.
Therefore, gravity and viscosity counteract the bouncing.

In this paper, we investigate and quantify how exactly gravity and viscous stresses
compete against capillarity to prevent drops from bouncing off non-wetting substrates,
using direct numerical simulations. We focus on evidencing the mechanisms of bouncing
inhibition, and exhibit a simple criterion delineating the bouncing to non-bouncing
transition through an analogy with coalescence-induced drop jumping (Boreyko & Chen
2009; Liu et al. 2014; Farokhirad, Morris & Lee 2015; Mouterde et al. 2017b; Lecointre
et al. 2019).

The paper is organised as follows: § 2 discusses the governing equations employed in
this work. Section 3 explores the bouncing to non-bouncing transition and formulates a
criterion for the inhibition of bouncing based on first principles, followed by § 4, which
delves into the limiting cases of this criterion. The paper ends with conclusions and an
outlook on future work in § 5.

2. Governing equations

We employ direct numerical simulations to study the drop impact process in an
axisymmetric setting (figure 1), using the free software program Basilisk C (Popinet
2013-2022a) that employs the geometric volume of fluid (VoF) method for interface
reconstruction (Popinet 2009). For an incompressible flow, the mass conservation requires
the velocity field to be divergence free (tildes denote dimensionless quantities throughout
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Figure 1. Axisymmetric computational domain used to study the impact of a drop with radius R and velocity
V on an ideal non-wetting substrate. The subscripts d and a denote the drop and air, respectively, to distinguish
their material properties, the density p and viscosity 1. The drop—air surface tension coefficient is y and g
denotes the acceleration due to gravity. The grey dashed-dotted line represents the axis of symmetry, r = 0.
Boundary outflow is applied at the top and side boundaries (tangential stresses, normal velocity gradient and
ambient pressure are set to zero). The domain boundaries are far enough not to influence the drop impact
process (Lmax > R, Lyax = 8R in the worst case).

this manuscript):
V.9=0, 2.1)

where we non-dimensionalise the velocity field with the inertio-capillary velocity
V, = /vy /(paR). We further non-dimensionalise all lengths with the drop radius R
(figure 1), time with the inertio-capillary time scale, T = v/ pgR?/y = R/V,,, and pressure
with the capillary pressure, p, = y /R, to write the momentum equation as

v . 1 -, = - ~

5+ V-0 = B(—Vp/ + V- 20hD) +f), (2.2)
where the deformation tensor D is the symmetric part of the velocity gradient tensor
(= (Vv + (Vv)T)/2). The Ohnesorge number Oh (the ratio of inertio-capillary to
inertio-viscous time scales) and the dimensionless density p are written using the one-fluid
approximation (Prosperetti & Tryggvason 2009; Tryggvason, Scardovelli & Zaleski 2011)
as

Oh = WOhy + (1 — W)Oh,, 2.3)
F=w 41—l 2.4)
Pd

where ¥ is the VoF tracer (= 1 for the drop and O otherwise), and p,/p4 is the air—drop
density ratio. Here,

Nd Na
——— and Oh, = ——

payR “ VpayR
are the Ohnesorge numbers based on the viscosities of the drop liquid and of air,
respectively. To minimise the influence of the surrounding medium, we keep p,/pqs and
Oh, fixed at 1073 and 1079, respectively. For a lean notation, we will use O#h instead of
Ohy in the remainder of the text.

Lastly, p' denotes the reduced pressure field, p’ = p + Bopz, where p and BopZ
represent the mechanical and the hydrostatic pressures, respectively. Here, Z is the distance
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away from the non-wetting substrate (see figure 1) and the Bond number Bo compares
gravity with the surface tension force

R2
Bo = P48 (2.6)

14

Using this reduced pressure approach ensures an exact hydrostatic balance as described in
Popinet (2018) and Popinet et al. (2013-2022b). This formulation requires an additional

singular body force at the interface such that f* takes the form (Brackbill, Kothe & Zemach

1992)
P (;z + Bo (1 _ &> z) v, 2.7)

where the first and second terms on the right-hand side are the local capillary and
hydrostatic pressure jumps across the interface, respectively, with x the interfacial
curvature calculated using the height-function approach (Popinet 2009).

Figure 1 shows the axisymmetric computational domain where we solve the equations
discussed above. A no-slip and no-penetration boundary condition is applied on the
substrate along with a zero normal pressure gradient. Here, we also impose ¥ = 0 to
maintain a thin air layer between the drop and the substrate to model an ideal non-wetting
substrate (for a detailed discussion about this method, readers are referred to Sanjay
2022b). Physically, this implies that the minimum thickness of this air layer is A /2, where
A is the minimum grid size, throughout the simulation duration. We use Basilisk C’s
(Popinet 2013-2022a) adaptive mesh refinement capabilities to finely resolve regions of
high velocity gradients and at the drop—air interface. We undertook a mesh independence
study to ensure that the results are independent of this mesh resolution and use a minimum
grid size A = R/1024 for this study. Initially, we assume that the drop is spherical and that
it impacts with a dimensionless velocity, V= V)V, = m, where the impact Weber
number

RV?
We = PI=7_ 2.8)
v
is the ratio of the inertial pressure during impact to the capillary pressure. We refer the
readers to Popinet (2009, 2015, 2013-2022a), Zhang et al. (2022) and Sanjay (2022a,b)
for details of the computational method employed in this work.

3. Bouncing inhibition

We investigate the behaviour of drops impacting on non-wetting substrates by
exploring the influence of the following dimensionless parameters: the Weber number
We = pRV?/y, the Bond number Bo = pygR>/y and the drop Ohnesorge number
Oh = ng/~/payR. We restrict ourselves to impacts with We > 1 and do not discuss the
bouncing to non-bouncing transition observed for We < 1 (gentle deposition) (Richard &
Quéré 2000; Molacek & Bush 2012; Planchette, Biance & Lorenceau 2012). In figure 2,
we evidence the bouncing to non-bouncing transition in the parameter space spanned by
the Ohnesorge and Bond numbers for several fixed Weber numbers. We extract three key
pieces of information from this regime map:

(i) The Weber number has a small influence on the transition between the bouncing
and non-bouncing regime in the range probed in this study, We = 1-50, the same as
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Figure 2. Regime map in terms of the Bond number Bo = pygR?/y and the drop Ohnesorge number
Oh = ng/~/pay R, distinguishing the bouncing and non-bouncing regimes. The data points represent the
transition between the bouncing and non-bouncing regimes at different Weber numbers We. The three series of
insets illustrate typical cases in these regimes, namely (We, Oh, Bo) = (16, 0.05, 3) for the upper, (16, 1, 0.001)
for the right and (16, 0.75, 0.05) for the bottom series of images, respectively. The solid black line delineates
the prediction of this transition ((3.6)). Lastly, the black dashed vertical and horizontal lines mark the two
asymptotes, i.e. the viscous limiting case, Oh, = 1 and the weight limiting case, Bo. = 1, respectively. See
also the supplementary movie SM1 available at https://doi.org/10.1017/jtm.2023.55.

(i)

(iii)

what was reported by Jha et al. (2020) and Antonini et al. (2016) for the bouncing
inhibition of viscous drops (see also Appendix B).

We recover the two limiting cases of non-bouncing (see insets of figure 2): drops
smaller than their visco-capillary length, (i.e. R < nﬁ/ pdy, giving Oh > 1) stop
bouncing due to viscous dissipation (Jha et al. 2020), while those larger than their
gravito-capillary length, (i.e. R > /y/pag, giving Bo > 1) cannot bounce due to
their weight (Biance er al. 2006). We will elaborate on the mechanisms of rebound
inhibition in these two non-bouncing regimes in § 4.

Experiments performed with millimetre-sized drops of water or silicone oil do not
lie on either asymptote (Jha ef al. 2020; Sanjay et al. 2023), suggesting that both the
effects of viscosity and gravity need to be taken into account to predict the bouncing
to non-bouncing transition.

In this section, we focus on situations where bouncing is prevented by both viscous
and gravitational effects (i.e. Bo < 1 and Oh < 1). Figure 3 shows snapshots illustrating
three representative cases lying in this region of the parameter space for We = 20. Each
snapshot displays three pieces of information: the position of the liquid—air interface, the
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Figure 3. Direct numerical simulations snapshots illustrating the drop impact dynamics for (a) (Oh, Bo) =
(0.2,0.4), (b) (Oh,Bo) = (0.6,0.4) and (c) (Oh, Bo) = (0.2,0.8). The left-hand side of each numerical

snapshot shows the dimensionless viscous dissipation function %,7 =20n(D :D)ona log scale to identify
regions of maximum dissipation (black). The right-hand side shows the magnitude of the velocity field
normalised by the initial impact velocity, V. The black velocity vectors are plotted in the drop’s centre of
mass reference frame to evidence the internal flow. The numbers inside the bracket at right-top corner of each
snapshot represent the dimensionless time, /7. For all cases, the impact Weber number is We = 20. See also
the supplementary movie SM2.

dimensionless rate of viscous dissipation per unit volume (i.e. the dimensionless viscous
dissipation function, left panel) and the magnitude of the velocity field normalised with
the initial impact velocity (right panel). For Oh = 0.2 and Bo = 0.4 (figure 3a), the drop
undergoes typical rebound dynamics. The liquid first spreads radially up to ¢ = ¢,,, when
the maximum extent is reached (Clanet et al. 2004; Eggers et al. 2010; Laan et al. 2014;
Wildeman et al. 2016). This stage is followed by liquid retraction (Bartolo et al. 2005),
parallel to the substrate, until the drop contracts (f = 2t,,) and the motion becomes vertical
(Chantelot 2018; Zhang et al. 2022). Finally, the drop leaves the substrate at t = 2.25t
(Richard & Quéré 2000; Richard et al. 2002).

Surprisingly, increasing Oh to 0.6, below the critical value reported by Jha et al. (2020),
while keeping Bo = 0.4 (figure 3b), prevents the rebound. The motion is damped before
the drop can bounce off the substrate. Similarly, increasing Bo to 0.8, below the critical
value reported by Biance et al. (2006), while fixing Oh = 0.2 (figure 3c¢), also inhibits
bouncing. Yet, the deposited liquid undergoes multiple oscillation cycles on the substrate
before coming to rest (see the last snapshot t = 37).

In all three cases, the impact dynamics and flow in the drop are qualitatively similar
until the maximum extent is reached at ¢t = 1,,,. At this instant, the absence of internal flow
suggests that the initial kinetic energy has either been converted into surface energy or lost
to viscous dissipation, which occurs throughout the drop volume owing to Oh ~ O(0.1)
(Eggers et al. 2010). Close to the bouncing to non-bouncing transition, the rebound can
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thus be understood as a process which converts an initial surface energy into kinetic energy,
disentangling the later stages of the rebound from the initial impact dynamics.

This observation prompts us to introduce an analogy with coalescence-induced jumping,
in which an excess surface energy, gained during coalescence, is converted into upward
motion of the liquid (Boreyko & Chen 2009; Liu et al. 2014; Farokhirad et al. 2015).
The spread drop, at rest at ¢ = 1,,, reduces its surface area through a Taylor—Culick-type
retraction, converting excess surface energy into kinetic energy. The capillary force driving
this radially inwards flow is

F, ~ yR. (3.1

The velocity v associated with this Taylor—Culick-type retraction scales as
v~ /v /(pae), where e is the typical thickness of the spread liquid, which can be
rearranged as v ~ V), +/R/e upon introducing the inertio-capillary velocity (Bartolo ez al.
2005; Chantelot 2018). At the bouncing to non-bouncing transition, in the presence of
both viscous and gravitational effects (see figure 2), we make the hypothesis that e ~ R, as
no pronounced central film forms during spreading (see figure 3 at t = 1,,), implying that
the inertio-capillary velocity is the relevant velocity scale, i.e. v ~ V,,. Similarly to the
coalescence-induced jumping of two identical drops, a dissipative force F; ~ 214V,
where £2 is the volume of the drop and v is a typical radial flow velocity, opposes the
capillarity driven flow (Mouterde et al. 2017b; Lecointre et al. 2019). Taking v ~ V), as
explained above, the resistive viscous force then scales as

Fy ~n4VyR, (3.2)

and the effective momentum converging in the radial direction is

P, ~ / (F, — Fy)dr. (3.3)

The asymmetry originating from the presence of the substrate enables the conversion of
the radially inward momentum to the upwards direction (figure 3, t = 2¢,,). Following
Mouterde et al. (2017b) and Lecointre et al. (2019), we assume that the vertical momentum
scales with the radial one, i.e. P, ~ P,, allowing us to determine a criterion for the
bouncing transition by balancing the rate of change of vertical momentum with the drop’s
weight F:

dp
dt” =F, ~ paR%g. (3.4)

Using (3.1)—(3.3), we obtain
YR —11aVyR ~ paR’g. (3.5)

Lastly, substituting V,, = /¥ /p4R, and rearranging, we arrive at a criterion to determine
the bouncing to non-bouncing transition as

Oh; + Bo. ~ 1, (3.6)

where the subscript ¢ stands for ‘critical’. Equation (3.6), which is independent of the
impact Weber number We, is the main result of the manuscript.

We test the criterion (3.6) for the bouncing to floating transition against data extracted
from our direct numerical simulations and experiments from Biance et al. (2006), Jha
et al. (2020) and Sanjay ef al. (2023). In figure 2, the solid black line, representing (3.6)
with prefactor 1, is in excellent quantitative agreement with the data when viscous and
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gravitational effects inhibit bouncing, as well as in the two limiting regimes, Oh, ~ 1 for
Bo « 1 (Jha et al. 2020), and Bo. ~ 1 for Oh <« 1 (Biance et al. 2006) (black dotted
lines).

In the next section, we focus on evidencing the physical mechanisms leading to bouncing
suppression in each of the two limiting cases. But before this, we note that the data for
different Weber numbers do not exactly collapse on the prediction of (3.6), suggesting that
the critical Ohnesorge and Bond numbers vary weakly with the Weber number, and hinting
at the limitations of our hypothesis in choosing V), as the velocity scale, and neglecting
the influence of We on the retraction velocity.

4. Limiting cases
4.1. How does a viscous drop stop bouncing?

We first investigate how viscous drops, much smaller than their gravito-capillary length,
i.e. with Bo < 1, stop bouncing. We study this regime, in which the transition criterion
(3.6) reduces to Oh, ~ 1, by setting Bo to 0 (i.e. by assuming that capillarity dominates
over gravity) and by systematically varying the drop Ohnesorge number, Oh. We
characterise the rebound behaviour by measuring the apparent contact time 7. between the
drop and the substrate and the coefficient of restitution &, that we define as € = v, (2.)/V,
where v, (2.) is the centre of mass velocity at take-off. The procedure used to extract ¢,
and ¢ from the direct numerical simulations is detailed in Appendix A.

In figure 4, we plot the coefficient of restitution ¢ and the normalised contact time 7./t
as a function of Oh for Weber numbers ranging from 1 to 50. The effect of Oh on ¢ and 7, is
markedly different. On the one hand, the coefficient of restitution monotonically decreases
from its low Oh, Weber-dependent value

eo(We) = e(We, Oh — 0, Bo = 0), 4.1)

with increasing Oh, until a critical Ohnesorge number of order one, Oh., marking the end
of the bouncing regime. On the other hand, increasing Oh by over two orders of magnitude
hardly affects #.. It keeps its Weber-independent value 7y = 2.257, expected from the
inertio-capillary scaling in the low Oh limit (Wachters & Westerling 1966; Richard et al.
2002), until ¢, diverges as Oh tends towards Oh,.

Figure 4 also highlights that Oh. varies weakly with We (Oh, = 1.75,1.5,1,1 at
We = 1, 4, 20, 50, respectively, see inset of figure 4b) as evidenced by the narrow grey
shaded region, and in agreement with the limit predicted from (3.6). Varying We mainly
affects the low Oh restitution limit gy(We), which we elaborate on in Appendix B. We
stress that the weak variation of the coefficient of restitution in the shaded region, where
& < 0.1, could go unnoticed in typical side view experiments. Indeed, ¢ = 0.1 corresponds
to a centre of mass rebound height of 0.01 times the initial impact height, that is 10 pm
for We = 1.

We now seek to understand the evolution of the restitution coefficient ¢ with Oh by
quantifying the overall energy budget during an impact event. In the Bo = 0 limit, the
energy balance reads

Eo = Ex() + AE, (D) + E, (D), (4.2)

where each energy component is normalised using the capillary energy scale yR?, E

denotes the drop’s initial kinetic energy, (Ey = E /(yR?) = (21/3)We), Ex(r) and E, (1)
are the drop’s time-dependent kinetic and surface energies, with AE) (1) = E, (1) —
E, (t = 0), and E) (7) is the viscous dissipation until time ¢. Readers are referred to Landau
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Figure 4. Variation of (a) the restitution coefficient &, and (b) the contact time 7., normalised by the

inertio-capillary time scale T = /pgR?/y, with the drop Ohnesorge number O for Bo = 0 at different Weber
numbers We. In both panels, the solid lines represent the predictions of the spring—mass—damper system of
Jha et al. (2020) (contact time, (4.3) and restitution coefficient, (4.4)). The horizontal dashed lines represent
the contact time and restitution coefficient values in the Oh < 1 limit, in which tp = 2.257, independent of
We, while g (We) = ¢(We, Oh — 0, Bo = 0) (4.1) depends on We. Lastly, the black vertical lines and the grey
shaded regions mark the critical Ohnesorge number Oh. ~ O(1) beyond which drops do not bounce.

& Lifshitz (1987), Wildeman et al. (2016), Ramirez-Soto et al. (2020), Sanjay et al. (2022)
and Sanjay (2022b) for details of energy budget calculations.

Figure 5(a) evidences the time evolution of the energy balance contributions for an
impact with We = 1 and Oh = 0.001. The drop’s initial kinetic energy Ey is transferred
into surface energy until the liquid reaches its maximal extent at # = #,, (note that for
We =1, t,, & t, see Zhang et al. 2022). At this instant, the energy available to the drop
is almost exclusively stored in the form of excess surface energy, as hypothesised in
our analogy with coalescence-induced jumping. As the drop retracts, surface energy is
converted back into kinetic energy and, at take-off, the drop recovers a large proportion
of its initial kinetic energy, Ex(t.) ~ 0.75Ey. Energy dissipation throughout the rebound,
E,(t;), and the non-spherical drop shape at take-off, storing excess surface energy
AE, (t.), hamper the recovery of the initial kinetic energy. Even in the low We and low Oh
case at hand, where dissipation is restricted to the boundary layer at the drop—air interface
and happens due to the propagation of capillary waves (see the insets of figure 5(a) and
Renardy et al. 2003; Zhang et al. 2022), viscous stresses dissipate 20% of the initial energy
during the rebound.

Increasing the drop Ohnesorge number to Oh = 2 does not affect the energy transfer
dynamics (figure 5b), but it enhances viscous dissipation, which now takes place in the
whole liquid volume (see the insets of figure 5(b) and Eggers ef al. 2010). Beyond the
critical Ohnesorge number O#h,, the initial kinetic energy is dissipated before the drop can
rebound off the substrate. The drop impact process becomes over-damped and, in this small
Bond number limit, the drop slowly relaxes back to its sessile spherical shape (figure 5b).

Figures 5(c) and (d) summarise the distribution of energy at take-off as a function of
Oh for We =1 and We = 20, respectively. For Oh < 0.01, the overall energy budget is
not affected by a change in drop Ohnesorge number, extending the validity domain of
the so-called inviscid drop limit (Richard & Quéré 2000). Strikingly, the independence
of E,(t.), and thus of &, with Oh in this limit does not imply that viscous dissipation
is negligible. Indeed, (i) the dissipated energy accounts for more than two thirds of the
total kinetic energy loss during impact at We = 1, where the restitution is maximal, and
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Figure 5. Energy budgets for drop impacts with Bo = 0 and We =1 for (a) Oh = 0.001 and (b) Oh = 2.
Here, E} and E;, represent the kinetic energy and viscous dissipation, respectively, AE, denotes the change in
surface energy with its zero set at = 0. The numerical snapshots in the insets illustrate the drop morphologies
and the anatomy of the flow with a colour code identical to that of figure 3. The black dotted lines in panels
(a) and (b) mark the instant 7. when the drop takes off and when the normal contact force between the drop
and the substrate is minimum, respectively. (c¢,d) Energy distributions at t = ¢, for We = 1 (¢) and We = 20 (d)
as function of Oh. The black vertical lines and the grey shaded regions mark the critical Ohnesorge number
Oh, ~ O(1) beyond which drops do not bounce. See also supplementary movie SM3.

(ii) the increase of viscous dissipation is mainly responsible for the decrease of ¢ with We.
The dissipated energy E;(t.) accounts for 20 % and 70 % of Ey for We = 1 and We = 20,
respectively, contradicting the inviscid nature of this regime. The transfer of the initial
kinetic energy into surface energy AE,, (t.) at take-off, that is the rebound of the liquid in
a non-spherical shape, while accounting for one third the total energy loss during impact
at We = 1, cannot alone explain the significantly lower than one value of the coefficient of
restitution.

The presence of a finite energy dissipation in the limit Oh — 0 is reminiscent of the
dissipative anomaly in fully developed turbulence, expressing that, even in the limit of
vanishing viscosity (i.e. diverging Reynolds number Re — 00), the energy dissipation
rate remains finite (Kolmogorov 1941; Onsager 1949; Eyink 1994; Eggers 2018; Dubrulle
2019). The dissipative anomaly reflects in the finite drag experienced by solid bodies at
diverging Reynolds numbers, through the creation of boundary layers (Prandtl 1904),
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somewhat similar to the localisation of viscous dissipation at the liquid—air interface
during drop impact (see the inset of figure 5(a) and Philippi et al. 2016).

For larger Ohnesorge numbers, the dissipated energy E; () increases with Oh,
reflecting that viscous dissipation is responsible for the loss of the rebound elasticity.
Interestingly, increasing Oh also reduces the drop deformation at take-off, decreasing the
fraction of energy stored as surface energy AE, (7). Consequently, energy which is not
lost to viscous dissipation is mainly converted back into the kinetic energy of the drop,
leading to a more efficient recovery of the initial kinetic energy (figure Sc¢,d).

We further rationalise our observations by comparing our simulation results with the
predictions of Jha et al. (2020) that extend the liquid spring analogy to viscous drops. This
minimal model, that has been shown to successfully capture the variation of 7. and ¢ with
Oh, gives the time of apparent contact as

t.(We, Oh, Bo = 0) = 19 ! , 4.3)
V1= (Oh/Ohc(We))?

which is in quantitative agreement with our simulation data (figure 4b) when the critical
Ohnesorge number Oh.(We) at which bouncing stops is taken from the simulations (see
the inset of figure 4b). Jha et al. (2020) also predict the coefficient of restitution, written
in our notations as

(4.4)

&(We, Oh, Bo = 0) = go(We) exp ( —BOh/Oh.(We) ) ’

V1 — (Oh/Oh.(We))?

where § is an adjustable We-independent parameter. The simulation data and the model
are in excellent agreement for § = 4.00 &= 0.25 (figure 4a). Note that Jha et al. (2020)
further reduced (4.4) to e(We, Oh, Bo = 0) ~ g9(We) exp(—aOh) for Oh < Oh,, where
o = B/0Oh, = 2.5 £ 0.5 best fits the experimental data, independent of the impact Weber
number. The equivalent fitting parameter for our case is o’ = 8//Oh. = 3 + 1, in very
good agreement with the value reported by Jha ef al. (2020), despite the different Bond
number (Bo = 0 here vs. Bo = 0.167 for Jha et al. (2020), also see § 4.2 and Appendix B).
Finally, we discuss the failure of the model of Jha er al. (2020) to predict the low Oh
behaviour of the coefficient of restitution that is contained in the prefactor &o. The analysis
of the overall energy budget shows that two ingredients are responsible for the loss of the
initial drop kinetic energy in the Oh < 0.01 limit: (i) the presence of excess surface energy
at take-off AE), (z.) and (ii) the viscous dissipation in thin boundary layers at the liquid—air
interface. Both these contributions are not accounted for in the model of Jha er al. (2020)
which takes no deformation, i.e. AE, (t.) =0 as a take-off condition, and n4VR as the
scaling form of the viscous damping term, added to the liquid spring, which supposes that
dissipation occurs at the drop length scale. However, as Oh increases, bulk dissipation
becomes dominant, explaining the ability of the model to capture bouncing inhibition.

4.2. How does a heavy drop stop bouncing?

We now discuss the rebound inhibition of heavy drops, much larger than than their
visco-capillary lengths, i.e. with Oh < 1. We study this limit, in which (3.6) reduces to
Bo, ~ 1, by fixing Oh = 0.01, in the so-called inviscid bouncing regime (figures 4 and 5),
and by varying the Bond number Bo.

In figure 6, we show the evolution of the coefficient of restitution ¢ and of the
normalised contact time 7./t as a function of the Bond number Bo for four values of

958 A26-11


https://doi.org/10.1017/jfm.2023.55

https://doi.org/10.1017/jfm.2023.55 Published online by Cambridge University Press

V. Sanjay, P. Chantelot and D. Lohse

() 3 .
To 599'%
_________ g\ag&ﬁ
L, I3 nl o ewe=1
~° A | ome=4
Bo A 0l oWe=20
¢ AL Bo, i1 eme=50
L0 |
1 We 50 ]
0 ( 1 ]
103 102 107! 100 1073 102 107! 10°
Bo Bo

Figure 6. Variation of (a) the restitution coefficient &, and (b) the contact time 7., normalised by the

inertio-capillary time scale T = /pgR3/y, with the Bond number Bo at different Weber numbers We in the
so-called inviscid regime (Oh = 0.01). In panel (), the solid lines represent the predictions of the model of
Biance er al. (2006), see (4.6). The horizontal dashed lines represent the contact time and restitution coefficient
values in the limit of zero Bond number (¢(We, Oh = 0.01, Bo = 0)), while the black vertical lines and the
grey shaded regions mark the critical Bond number Bo. ~ O(1) beyond which drops do not bounce. Note that
the model of Biance et al. (2006) predicts a constant 7. (horizontal dashed line in panel a), in contradiction to
our numerical simulations.

the Weber number. The variation of ¢ with Bo is qualitatively similar to that observed
when sweeping across the viscous drop asymptote. The coefficient of restitution &
slowly decreases from its Weber-dependent value &, (We) = ¢(We, Oh = 0.01, Bo = 0)
with increasing Bond number, until it approaches a critical Bond number Bo., of order
one, at which it sharply decreases to zero. Here, in the so-called inviscid regime, &, (We) ~
g0(We). However, the influences of Bo and Oh on ¢, are different. The contact time value
hardly deviates from its inertio-capillary value, 9 = 2.257, when varying Bo over two
orders of magnitude. Yet, we only observe a moderate increase of ¢, as Bo, is approached,
contrasting with the divergence of 7. close to Oh,.

Figure 6 also evidences that varying the Weber number We from 1 to 50 hardly affects
the critical Bond number Bo. (see the inset of figure 6b), marking the transition from
bouncing to floating, as underlined by the grey shaded regions and in agreement with the
transition criterion (3.6). Similarly as for viscous drops, increasing We does not influence
the contact time but markedly decreases ¢, an effect we quantify in Appendix B.

To further investigate the variation of ¢ with Bo, we compute the overall energy budget
during an impact event. In the presence of gravity, the energy balance (4.2) incorporates
an additional contribution from the drop’s gravitational potential energy, AE,, whose zero
is set at the instant of maximum drop deformation. The modified energy balance reads

Ey = Ex(t) + AE,() + AE, (D) + Ey (D), (4.5)

where the initial energy also includes gravity, Eo = (47/3)(We/2 + Bo(1 — 'H)), with H
denoting the centre of mass height of the drop at maximum deformation.

Figure 7(a) illustrates the energy budget for (We, Oh, Bo) = (1, 0.01, 0). The energy
transfer follows a similar dynamics as that described in figure 5(a), where (We, Oh, Bo) =
(1, 0.001, 0). The fraction of the initial kinetic energy recovered at take-off is the same,
Ei(t.) =~ 0.75E(. We also note that, although Oh has increased by an order of magnitude
compared with the case shown in figure 5(a), the energy lost to viscous dissipation still
accounts for a similar fraction of the initial energy, E;(t.) ~ 0.2E, as expected in the
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Figure 7. Energy budgets for drop impacts with Oh = 0.01 and We = 1 for Bo = 0 (a) and Bo = 2 (b). Here,
Ey and E;; represent the kinetic energy and viscous dissipation, respectively, AE; and AE, denote the the
change in gravitational potential energy and surface energy with their zeros set at the instant of maximum
spreading of the impacting drop, and at t = 0, respectively. The numerical snapshots in the insets illustrate the
drop morphologies and the anatomy of the internal flow with a colour code identical to that of figure 3. The
vertical dotted line in panel (@) marks the instant when the drop takes off. In panel (b), the black vertical lines
and the grey shaded regions bounds the time interval when the normal contact force between the drop and the
substrate is zero. (¢,d) Energy distributions at r = f. for We = 1 (¢) and We = 20 (d) as a function of Bo. For
non-bouncing cases, . represents the end of first drop oscillation cycle. The black vertical lines and the grey
shaded regions in panels (c¢) and (d) mark the critical Bond number Bo. ~ O(1) beyond which drops do not
bounce. See also supplementary movie SM4.

so-called inviscid drop limit. The snapshots of the drop’s internal flow (see the insets
of figures 5a and 7a) give insight into the independence of E,(f.) with Oh. As the
drop Ohnesorge number is increased, two antagonistic effects take place: (i) the viscous
boundary layer grows larger, increasing dissipation, and (ii) capillary waves are attenuated,
decreasing local dissipation. This competition qualitatively explains the independence of
E,(t;) and ¢ on the drop Ohnesorge number for Oh < 0.01.

Increasing the Bond number to Bo = 2, beyond Bo,, sheds light on the mechanism of
bouncing inhibition of heavy drops. At t = 0, the drop has a higher initial energy owing
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to the contribution from the gravitational potential energy. As a result, the kinetic energy
E} increases until the inertial shock is propagated throughout the drop (see figure 7b-i
and Gordillo et al. 2018; Cheng, Sun & Gordillo 2021), before decreasing and reaching a
minimum as the drop then attains maximum deformation (figure 7b-ii). In spite of these
differences, the maximal spreading time is the same as that observed at low Bo, t,, ~ 1
(for We = 1, see Zhang et al. 2022), and viscous dissipation enervates a similar proportion
of the initial energy as in the low Bo case during spreading. During the retraction stage,
E} increases (figures 7h-ii to 7b-iii), until the motion goes from being dominantly in the
radial direction to being dominantly in the axial direction (figure 7h-iii, ¢ & 1.57, see
Chantelot 2018; Zhang et al. 2022). Beyond this instant, gravity opposes the upward
motion of the drop, Ey decreases and is mainly transferred to E, until, eventually, at
t & 2.5t (figure 7b-iv) the drop’s centre of mass starts moving in the downward direction.
At this instant, only 20 % of the drop’s initial energy goes to viscous dissipation, identical
to the case of Bo = 0, but bouncing is inhibited. In contrast to the viscous asymptote,
energy is still available to the drop even though the rebound is suppressed. Subsequently,
the drop undergoes several capillary oscillations at the substrate with a time period of
approximately 2.5t (figures 7b-v to 7b-ix).

Figures 7(c) and 7(d) show the distribution of energy at take-off as a function of
Bo for We =1 and We = 20, respectively. For both Weber numbers, as Bo increases,
the fraction of initial energy that goes into viscous dissipation, Ej(z.), is constant.
However, the gravitational potential energy AEg (%), initially negligible for Bo = 0.001,
increases with increasing Bo, leading to a decrease of the drop’s kinetic energy at take-off
Ey(t.), which eventually drops to zero as bouncing stops at Bo.. Noticing that energy is
still available to the drop in the form of gravitational potential energy at t = 7. allows
us to rationalise the different behaviour of 7. with Bo and Oh. Indeed, the viscous
rebound suppression corresponds to a transition from an underdamped to an overdamped
system, associated with a divergence of the oscillation period, while heavy drops undergo
successive energy transfers between gravitational potential, kinetic and surface energy on
the inertio-capillary time scale.

Finally, we compare the variation of ¢ and 7. with Bo extracted from our simulations to
the spring—mass model of Biance et al. (2006) which takes into account the role of gravity
but neglects viscous dissipation. In our notation, the dependence of ¢ on Bo in the model
of Biance et al. (2006) is written as

e(We, Oh = 0.01, Bo) = 8*(W€)\/(1 — Bo/Bo.(We))(1 + Bo/(3Bo.(We))). (4.6)

Equation (4.6) is in excellent quantitative agreement with the values of e,(We) and
Bo.(We) extracted from the simulations (figure 6a). However, this model predicts a
constant ¢, which is in disagreement with our simulations as we approach Bo, (figure 6b).
We further stress that the model of Biance er al. (2006), similarly to that of Jha et al.
(2020), does not capture the evolution of the prefactor ¢, or g9 with We. It indeed does
not take into account viscous dissipation, which we have shown to be the main ingredient
responsible for the loss of rebound elasticity as We is increased. We address the relevance
of this model in predicting the variation of the coefficient of restitution with We in
Appendix B.

5. Conclusion and outlook

Drops smaller than their visco-capillary length, i.e. with Oh > 1, stop bouncing due to
viscous dissipation, while those larger than their gravito-capillary length, i.e. with Bo > 1,
cannot bounce due to their weight. In this paper, we investigate how viscous stresses
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and gravity oppose capillarity to prevent drops of intermediate sizes, with 775 /pdy <R <
Vv /pag, corresponding to Bo < 1 and Oh < 1, from bouncing off non-wetting substrates.
We emphasise the relevance of this regime, which describes the bouncing inhibition of
millimetre-sized aqueous or silicone oil drops, commonly used in experiments. Drawing
an analogy with coalescence-induced jumping of two identical drops, we propose the
criterion Oh, + Bo. ~ 1 for the bouncing to non-bouncing transition. Through a series
of direct numerical simulations, we show the validity of this criterion over a wide range of
Weber numbers in the Bo—Oh phase space.

We also study the details of the mechanism of rebound suppression in the two limiting
cases of low drop Ohnesorge number and Bond number, by relating the overall energy
budget to the drop morphology and flow anatomy. For drops much smaller than their
gravito-capillary lengths (Bo < 1), simulations confirm that the increase of viscous
dissipation in the bulk of the liquid is responsible for rebound suppression. The restitution
coefficient decays exponentially with increasing Oh until a critical Ohnesorge number Oh,
of order one, is reached and the contact time diverges as the rebound process becomes
over-damped. This behaviour is well captured by the model of Jha et al. (2020) which
extends the spring—mass analogy to viscous drops by including bulk viscous dissipation in
the liquid. Moreover, the energy budgets reveal that the rebound elasticity in the so-called
inviscid regime Oh < 0.01, in which the restitution coefficient is independent of Oh, is
controlled by viscous dissipation occurring in thin boundary layers, shedding light on the
failure of simple scaling models to capture this regime. We also evidence that the decrease
of rebound elasticity with increasing We in the so-called inviscid regime is a consequence
of enhanced viscous dissipation, as the surface energy stored at take-off plays a negligible
role in setting €.

For drops much larger than their visco-capillary lengths (Oh < 1), the excess
gravitational potential energy at take-off stops the drop from rebounding when the Bond
number reaches a critical value Bo., of order one. Indeed, an increase in Bo does not
change the fraction of the drop initial energy that goes into viscous dissipation during the
impact process. The restitution coefficient deviates slowly from its We-dependent value at
zero Bond number, until it decreases sharply to zero as Bo, is reached. This decrease is
quantitatively captured by the spring—mass model of Biance et al. (2006), which takes into
account the effect of gravity. We stress that, as the rebound is suppressed, energy is still
available to the drop which subsequently oscillates on the substrate on the inertio-capillary
time scale. Contrary to viscous bouncing inhibition, the rebound suppression of heavy
drops is not associated with a divergence of the contact time.

Finally, we emphasise that this work describes the upper bound of the bouncing to
non-bouncing transition on ideal non-wetting substrates. Indeed, water drops can cease
bouncing due to substrate pinning on superhydrophobic substrates (Sarma, Dalal & Basu
2022). We also idealised the role of the surrounding medium by keeping a small value for

the Ohnesorge number, Oh, = 107. We anticipate that dissipation in the surrounding
medium might play a role in the impact of microdrops as Oh, increases (Kolinski,
Mahadevan & Rubinstein 2014; Tai et al. 2021). Lastly, the influence of the Weber
number on the elasticity of the impact process deserves further investigation. Here, we
only focus on impacts with We > 1, where the bouncing inhibition and drop contact time
are reasonably insensitive to an increase in Weber number. Yet, modelling the full Weber
number dependence of the restitution coefficient at both low Oh and low Bo still demands
further work. It will be particularly interesting to study the regime We < 1, where drops
only deform weakly, and the internal flow is still significant at the instant of maximum
spreading.
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Supplementary material. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.55. The
codes used in the present article are permanently available on GitHub (Sanjay 2022a).
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Appendix A. Measuring the restitution coefficient

Throughout this manuscript, we have used the time of contact and restitution coefficient
to study the drop impact dynamics. In this appendix, we describe the procedure used to
determine the restitution coefficient which is the ratio of take-off velocity v, (f.) to the
impact velocity V:

e — Ucm(tc)’ (A1)

Vv

where f. denotes the contact time when the drop leaves the substrate. We assume an
ideal non-wetting substrate by ensuring that a thin air layer (with a minimum thickness of
A = R/1024, where A is the minimum grid size employed in the simulations) is always
present between the drop and the substrate (also see Ramirez-Soto et al. 2020). Hence,
we need to define a criterion for the end of contact. We do so at the instant when the
normal reaction force F' between the substrate and the drop is zero (for calculation details,
see Zhang et al. 2022), as shown in figure 8(a). Subsequently, we read out the centre
of mass velocity (figure 8b) at this instant. If this centre of mass velocity is not in the
upward direction (i.e. it is zero or negative), we categorise the case as non-bouncing. For
the representative case in figure 8, ¢ = 0.47.

Appendix B. Influence of Weber number

We report that the bouncing inhibition and drop contact time are fairly insensitive to
an increase in the impact Weber number (We) while the restitution coefficient decreases
monotonically with We. Figure 9 illustrates the variation of the restitution coefficient with
We at different Oh and fixed Bo = 0.167, enabling comparison with the experimental data
of Jha et al. (2020). In the so-called inviscid drop limit (Oh < 0.01), the coefficient of
restitution is approximately equal to the prefactors go(We) and ¢, (We) used in § 4, (4.4)
and (4.6), respectively.

For Oh < 0.01, & does not follow the 1/+/We scaling relation derived by Biance ef al.
(2006) using a spring—mass model that neglects the influence of the drop viscosity. Indeed,
the energy budgets reported in figures 5(c¢,d) and 7(c,d) evidence that the transfer to surface
energy at take-off AE) (z.), proposed by Biance et al. (2006) to account for the loss of
rebound elasticity, negligibly contributes to the decrease of ¢ with We. Instead, we find that
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Figure 8. A representative temporal variation of (a) the normal reaction force F on the drop and (b) its centre
of mass velocity v.,. Time is normalised using the inertio-capillary time scale 7. Insets illustrate the different
stages of the drop impact process. The background shows the magnitude of the rate of viscous dissipation
per unit volume (5,7 = 20h(D : D)) on the left and the magnitude of velocity field normalised by the impact
velocity on the right. The vertical dashed black line represents the contact time calculated using the criterion
F = 0, marking the end of contact between the drop and the substrate. Here, (We, Oh, Bo) = (4, 0.034,0.5),
the contact time 7. = 2.257 and the coefficient of restitution ¢ = 0.47.
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Figure 9. Variation of the restitution coefficient with the impact Weber number (We) at different drop
Ohnesorge numbers (Oh). The simulations (circle data points) match perfectly with the experimental results
(diamond data points) of Jha et al. (2020) without any fitting parameters. Here, the Bond number (Bo) is 0.167.

the increase of viscous dissipation with We drives the decrease of ¢, even in the so-called
inviscid limit.

Interestingly, the restitution coefficient for viscous drop impacts (Oh 2 0.1) seems
to follow the 1/+/We scaling relation, implying that the take-off velocity scales with
the Taylor—Culick-type velocity (ven,(¢:) ~ +/¥/paR), and is independent of the impact
velocity V, consistent with our assumption that the retraction and take-off stages
are independent of the impact Weber number. We caution here that the range of
We (1 < We < 50) is too small to claim this scaling relation convincingly.
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Lastly, notice the remarkable agreement between our simulations and the experimental
data points from Jha et al. (2020) for two different drop Ohnesorge numbers, which differ
by over two orders of magnitude (see figure 9).
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