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ON AN F-ALGEBRA OF HOLOMORPHIC 
FUNCTIONS 

HONG OH KIM 

0. Introduction. The complex maximal theorem of Hardy and Little-
wood states: 

(M ). For 0 < p < oo, there exists a positive constant Cp such that i f / 
is holomorphic in the unit disc U of the complex plane then 

A „ * f2* de f2,r
 0 

where 

Mf(6) = sup | / ( r e ^ |. 
0^r<l 

The corresponding statement to the limiting case p = 0 can be stated as 
follows: 

(M0) There exists a positive constant C0 such that if / is holomorphic 
in U 

0 log+ M / ( 0 ) - â Q sup J 0 l o g + | / ( r ^ ) 

where log t = max(log /, 0). 
The statement (M0) is false as the following example shows. 

Example. Consider 

By a routine calculation we see that 

\og+\f(rei6)\ = 

and 

1 -r2 

1 - 2r cos 6 + rv 

log+ Mf{8) 

I 1 m 
, \9\ ^ - , 

|sin 6\ 2 
1, - ë |0| ^ m. 

2 
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HOLOMORPHIC FUNCTIONS 719 

Therefore we have 

/

2TT n AÛ 

0 l o g + | / ( r e * ) | - = l, 
but 

/

2T7 JÛ /V/2 1 de 
= oo. 2TT ^ ° sin 0 2m 

In this connection, we consider the following three successively stronger 
conditions on the functions / holomorphic in U: 

(a) log+\fr\, (0 ^ r < 1), are bounded in LX{T\ where 

/,(**) = f(reW) 

and Tis the boundary of U. 
(b) l o g + | / | , ( O ^ K 1), are uniformly integrable, that is, 
(i) log + | ^ | , (0 ^ r < 1), are bounded in LX(T), and 

(ii) given € > 0, there exists a 8 > 0 so that 

^ I o g + | / ^ ) | £ < 6 , ( 0 ^ / - < 1 ) , 

whenever E c Twith its Lebesgue measure \E\ < 8. 
(c) log \fr\, (0 = r < 1), have an L (r)-majorant, or equivalently, 

J ( 

2TT ^ 

log4" Mf(0)— < oo. 
27T 

The Nevanlinna class N is the class of all functions / holomorphic in U 
satisfying the condition (a), The Smirnov class 7V+ is that of all functions/ 
holomorphic in U satisfying (b). We denote by M the class of all functions 
/ holomorphic in U satisfying the condition (c). The study on the classes N 
and Af+ has been well established (see [3], [4], [8], [9] etc). 

The study of the class M was suggested to the author by Professor P. R. 
Ahern, to whom the author wishes to express his sincere gratitude. 

In Section 2, the containment relations with other classes and some 
relations with the class Re Hl are given. In Sections 3, 4 and 5, we have 
some properties of M as an jp-space. Our results are similar to those on 7V+ 

by N. Yanagihara [10, 11] and by C. S. Davis [1]. In Section 6, we prove 
that M becomes an F-algebra and obtain some properties of M as an 
F-algebra which are also similar to those of iV+ obtained by J. W. Roberts 
and M. Stoll [7]. For example, the multiplicative linear functionals are 
determined and the invertible elements are characterized. 

1. Preliminaries. We summarize some facts which will be needed in the 
sequel. The standard references are the books [3, 4, 6]. 
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720 HONG OH KIM 

1.1. Radial limits. For / e N, the radial limit 

f*(e>°) = lim f(reW) 

exists for almost every eie and log|/*| e Z.'(r) u n l e s s / ^ 0. 

1.2. Canonical factorization. A function f ^ N can be factored as 

/ ( z ) = B(zXSl(z)/S2(z) )F{z), 

where #(z) is the Blaschke product with respect to zeros o f / (z ) , Sk(z), 
k = 1, 2, are the singular inner functions with no common factor and 
F(z) is an outer function for the class N, i.e., 

/ ri* jt _|_ z 

S*(z) = exp^-J0 _ %(0 

with positive singular measures d/x ,̂ A: = 1,2, and 

/ 1 tilt Jt _L . \ 
F(z) = co e x p ( - J 0 J-— l o g l / V 1 ) \ dtj 

\2T7 

with co a constant of unit modulus. It is known that a function f Œ N 
belongs to 7V+ if and only if S2 = 0-

1.3. Hp. The Hardy space Hp (0 < p ^ oo) consists of all functions, / , 
holomorphic in U, for which | | / | | < oo, where 

sup / \f(re'e)\»-\ ,0<p<cX>, 

l l / l l f = ° S f < , y 2 J 

sup \f(z) \9 p = oo. 

It is known that 

U Hp c # + . 

Identifying / with its radial limit / * we can consider Hp as a closed 
subspace of LP(T) as 

HP = {g e Z / ( r ) : g ( - « ) s / * " g(e'V"'£ = 0, n = 1, 2,. . .). 

1.4. Re / / . Re if is defined to be the class of all real parts of the 
functions of the class H . For the class Re H , we have the well-known 
theorem of Burkholder, Gundy and Silverstein. 

THEOREM A (Burkholder, Gundy and Silverstein). A real-valued function 
h <E L (T) belongs to Re H if and only if 

sup \pr * h(0) | e L\T\ 
0 ^ r < l 
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HOLOMORPHIC FUNCTIONS 721 

where 

1 f2ir \ — r2 

p * h{6) = — / *h(elt)dt, 
Fr W 2TT J ° I - 2r cos(0 - /) + r2 

the Poisson integral of h. See [6, p. 249]. 

1.5. THEOREM B (Zygmund). Let h e Ll(T) with h â 0. TTZÉW /z e 
L log L if and only if 

I (2m Jt + z . 
F^ = T" Jo ~t h(elt)dt ^ H> 

2m J u e — z 
or equivalently, h G L log L z/ #«d on/y / / /z G Re i/1. See [6, pp. 
135-136]. 

2. The class M. We have the following relations among the various 
classes. The proof of M £ jV+ in the following theorem is due to P. R, 
Ahem. 

2.1. THEOREM. N 2 N+ 2 M 2 Up>0 Hp. 

Proof The relation N 5 N + is well known. The standard proof is by 
means of the canonical factorization. We give here another proof. Take as 
usual 

/(z) - exp(i±-j). 

Since log+\fr(e
ie) | = Pr($), we have 

0 log+|/r(^)|g = l, 0 ^ < 1 , 

so / G AT. Now, fix a > 0. We have 

d0 

2* J ° i + r,2 r ~ i - J 

1 + r 
tan H 1 —> oo as r —> 1" 

2?r 

Hence l o g + | / | , 0 ^ r < 1, are not uniformly integrable; s o / £ 7V+. 
The inclusion JV+ D M is obvious. Now take a function 

h G L ^ r ^ R e i / 1 

with /z ^ 0 and consider 
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Then 

log+ Mf(fi) = sup Pr * h(ff). 

Since h <£ Re /f1, we have, by Theorem A, 

0 log+ MM— = oo; 

so / £ M. For £" c r , we write 

Given e > 0, we can take r0 < 1 so that 

J 0 |P r*A(«) - M * ) l ^ ; < € / 2 , 

whenever r0 < r < 1, and 5 > 0 so that 

jf/,(*)# <e/2, 

whenever \E\ < 8. Thus 

JU-*<«£ 2m 

whenever \E\ < 8 and r0 < r < 1. Therefore we can conclude that 
log+ |^L 0 = r < I, form a uniformly integrable family; so f e A^+. 

The inclusion 

/>>0 

follows from the inequality 

log+ a ^ </ (a > 0, /? > 0) 

and the complex maximal theorem. For the proof of 

M * U Hp, 
p>0 

we take the following example of N. Yanagihara [12], who used it to show 
J / » 0 N+ * u > 0 /F, 
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™ - Mf-.7±i*«'>£\ 
where 

fexp - L |0| g 1, 

U 1 ^ |^| â 7T. 

Since ^ £ If(T) iot any /? > 0, 

To show that / e M, we note that 

log|/(e*) | = log K*) = h / T ^ - U 

[ l , 1 ^ |0| ^ w 

belongs to the Zygmund class L log L; so that, by Theorem B, 

log+ Mf(0) e L\T). 

This completes the proof. 

2.2. THEOREM. Le? /Î e L](T), h real-valued and let 

/«=»p(i/r;^>">4 
If h G Re H , //z£H /" e M. The converse is false. 

Proof We see easily that 

log+ Mf(0) ^ sup P * /z+(0). 
0^r<l 

By Theorem A , / i + G R e t f implies / e M. 
To show that the converse is false, we take a real-valued 

* <s Re i / \ L log L. 

We claim that /z + « Re Hx and A" € Re if1. Otherwise, /*+ e Re if1, 
or h~ e Re if1. Assume / i + e Re i/1, say. Then h~ = /z+ - * e 
Re if1, so |/z| = /z + 4- h~ e Re i/1. By Theorem B, |A| e L log L; so 
h ^ L log L, a contradiction. We note that 

log+ Mf(6) = sup (i>r * h)+ ^ sup |Pr * h\. 
0^r<l 0^r<l 

Since h e Re ifl, we have, by Theorem A, / e M. This completes the 
proof. 
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2.3. LEMMA [4, p. 97, Ex. 15]. Iff e N, then 

mMf(X)^—- sup / l o g + | / ( r ^ ) | - X > 1 , 
J iOg A 0 ^ r < l J U 277 

where A is a positive constant independent of f and 

"»Mf<to = I {9-MM > M I-
The following theorem shows a difference of N and M. 

2.4. THEOREM. 7 / / e N9 then 

/

'2ir AQ 

0 ( l o g + M / ( 0 ) y ^ < o o 

for all a (0 < a < 1). 

Proof. We set 
£ = {0:Mf(6) â e } , and 

"&/0O = I {* e £-M/(0) > X} |. 

We have by Lemma 2.3 

2m 

â 1 + 

ë 1 + 

1 f°° 
- j e (logX)a[-dmE

Mf(X)] 

-)e (logxr-'-miyixydk 

f(s„p / f^ l /^ l f ) 
277 \ 0 ^ r < l J U 277/ 

2TT ^ * X 

^ 1 + 

* xapg\): 

since 0 < a < 1. 

x / I TTdr^ïï < °°. 

Unlike TV or 7V+ (see [9] ), M is closed under integration as the following 
theorem shows. 

2.5. THEOREM. M is closed under integration. 

Proof Let / e M and let 

Then | F ( r ^ ) | ^ A/ /^) ; so M F ^ Mf Therefore / e M. 

https://doi.org/10.4153/CJM-1988-031-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1988-031-4


HOLOMORPHIC FUNCTIONS 725 

3. M as an F-space. We define an invariant metric d on M by 

f27T dO 
d(f, g) = J0 log(l + M(J - g)(0) ) —, fg^M. 

3.1. THEOREM. M is an F-space, i.e., a complete topological vector space 
with an invariant metric. 

Proof. It suffices (see [2, p. 51] ) to check the following properties: 
(i) d is an invariant metric, 

(ii) For a fixed / e M, c *—» </ is a continuous mapping from C 
into M, 

(iii) For a fixed c e C, / H» çf is a continuous mapping from M 
into M, 

(iv) M is complete. 
(i) is obvious, (ii) follows from the dominated convergence theorem as 

d(cf, 0) = j T log(l + \c\Mf(8) ) ™ -> 0 as c -> 0. 
dd_ 

(iii) Take A: an integer with |c| = A:. Then 

rf(c/, 0) ^ d(kf, 0) ^ fa/(/, 0); 

so f \-^ cf is continuous. 

(iv) Let {fn}™=o be a Cauchy sequence in M. Then {^} is a Cauchy 
sequence in 7V+. We know [10] that 7V+ is complete. So/^ •*-*/ e N + in 
the metric of N+ for some / e 7V+. It suffices to show that / e M and 
fn —> f in M. Given € > 0, we can find an integer k so that 

f2v de 
J0 l0g(l + M(fn - fmM)— < «, *, HI ^ fc. 

For 0 < r < 1, we see that 

Um M[ <Jm\ - WnXm = M[ (fjr ~ W)-

By Fatou's lemma, we have 
r27r dO 

log(l +M[(fm)r-frM) — 
2m r. 

(lm dd 
fk lim / log(l + M[(fm)r - (/„),](*)) — 

f27T dO 
hm / log(l + M(fm-fn)(6))-

/?—*x> 
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By the monotone convergence theorem, 

f2v dd 

J0 log(l +M(fm-fW))-

= lim /** log(l + M[ (fm)r - W) ) 

lit 

€. 

We have d(fm — f 0) ê c if m ^ Â;. In particular, / M - / G M ; S O / E M . 

This shows that fm ^> f in M. 

3.2. THEOREM. 77Z£ polynomials are dense in M. Therefore, M is 
separable. 

Proof. Let / e M. We show that ^ —» / in M as r —» 1 ~. Since / has the 
radial Umit at almost all 0, we see that for almost all 0, t I—> f(tel$) is 
continuous on the closed interval [0, 1]; so uniformly continuous. For such 
afl, 

M(f ~ frW)-» 0 as r - > l ~ . 

Since 

log(l + M(f-fr)(0)) ^ 2 log(l + M/(0)) e L ! ( n 

we have, by the dominated convergence theorem, 

[2>1T d0 
J0 log(l + M(f - fr){0) ) — -> 0 as r -> 1", 

that is, ^ - > / in M as r —> 1 ~. Since ^ can be uniformly approximated 
by polynomials on the closed unit disc, it can be approximated in M by 
polynomials. Hence the polynomials are dense in M. 

4. Bounded subsets of M. The following characterization of bounded-
ness in M and its proof are analogous to those in N+. See [11]. 

4.1. THEOREM. L C M is bounded if and only if 

/

'2ir r]Q 

. log+ Mf{0)— < K(< oo) for all f e L, and u
 2TT 

(ii) g/ve« c > 0, there is a 8 > 0 SMC/Ï f/za/ 

j [ log+ Mf(G)y < e for all f e L 
2TT 

whenever \E\ < 5. 
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Proof. (4=) Given a neighborhood 

V = {g e M:d(g, 0) < v) 

of 0 in M, we take € > 0 so that 

log(l + €) + — log 2 + € < 7J. 
2TT 

Find a 8 (0 < 8 < e) so that (ii) is satisfied. For / E L, we can find an 
£y c T so that 

|7\Ey| < 8 and log+ A/f(0) ^ K/8 on Ey. 

We have 

Mf{6) ^ exp(|) s L(S) on Ef. 

Now, if 0 < a < min(l, e/L(8) ), then, fo r / G L, we have 

d(af9 0) = fj log(l + |a|M/(0) ) 
d0_ 

2TT 

^ if log(l + c) ^ + L [log 2 + log+ M/(0) ] ^ 
" / 277 'TV 1 / 27T 

^ log(l + €) 4- A log 2 + X \ ^ l 0 8 + M / W £ 

5 
^ log(l + e) + — log 2 4- € 

<TJ. 

Thus aL c K Therefore L is bounded in M. 
(=>) Suppose that L ( c M) is bounded in M. Given TJ > 0, we can find 

an a0 = a0(r]) (0 < a0 < 1) so that 

f2w dO 
JQ log(l + \a\MM)— < v for a l l / e L 2TT 

whenever |a| ^ a0. We have 

/

277 J/3 

0 log+|«| MM— < T, for a l l / G L, |a| 
' 2 . ' - • - • - «b-

Since 

log+ M/ â log+ a^M/ + log —, 
«o 
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728 HONG OH KIM 

we have, for all / e L, 

/

lit JQ Çliî AÛ 

0 log+ Mf(0)^- ^ Jo log+ « o W ) f + log 
2TT «J0 ° " 2TT 

t] 4- log — 

# < oo. 

Thus (i) is satisfied. For (ii) given c > 0, take 77 < c/2 and a0 = OL0(TI) as 
above. We choose 8 > 0 so that 

— log — < c/2. 

If I J? I < S, then 

1 1 
=§ i? + 1̂ 1 log 

< c. 

« Q 277 

Thus (ii) is satisfied. This completes the proof. 

Let ck 10 and let rk î 1, /: = 1 , 2 , . . . . We consider 

/,(z) = expUi-^^), £ = 1 , 2 , . . . . 
V 1 - v / 

4.2. LEMMA. 

log+ M/,(0) = c | sup * ~ r^l 2 2 

o^r<i 1 — 2rkr cos 0 + rgr 

(frl)* |e| * -/2' = \ 2 1 . - i / ] - -2 

*. ck , sin 
sin d 

The proof is routine and is omitted. 
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' / 

4.3. LEMMA, log"1" Mfh k = 1, 2 , . . . are bounded in LX(T) if and only 

ck\og 1 + rt 
1 

Ï9 k — 1? A 

are bounded. 

Proof. Let 

4t = 

and let Ck 

estimates: 

0, sin" 
l l + r 2 J J ' * * = sin 

- l 

li + ,# TT/2 

[77/2, 7J-]. The proof will follow from the following 

JAk 2TT J U 1 — 2rk cos 

(ii) I log+ M/,(0)f 

<# 

0 + rtlir 
ci 

2nr 4-
1 — 2r» cos sin - 1 

1 -rt 

ILzjft 
ll + rl) 

1 - ^ 

+ rl l l + * 

= —cl 
2w k 

2/v 
2/i 

l l + ^ 
A u r 2 

2 + rA: 

1 + r , 2 

2lT 
ci 

(ni) IV^- iS-U 
(iv) I log+ M/^0) 

d9 

2TT * J Î 

~2 /V/2 

sin-1(( l-r2)/0+'3?)) 2 « 2 w 

( l - r ^ /O+^f l 

-f log- * + log 
4 1 

(v) ^ l o g + Mfk(0) 
d9 

2TT 

,^=#M^5). /2)(i-tf)/(i+tf) 0 2?7 2T7 
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This completes the proof. 

4.4. THEOREM. fk,k= 1 , 2 , . . . , form a bounded subset of M if and only 

if 

2 , 1 + /V 
ck log -~ —> 0 as k -> oo. 

1 ~ r* 
Proof (=>) Suppose that 7^, fc = 1 , 2 , . . . , form a bounded subset of M. 

Given € > 0, we can take S > 0 so that 

jE log+ M/,(0)£ < e, k = 1, 2,. 

whenever | £ | < 5. Choose &0 so that 

wl ** 
2 1 + rl 

< S whenever k ^ fcn. o-

For k â /:0,
 w e have 

c > ^ si r?^ Ck~ 
2 i de 

sin ' ( (1-#£)/(!+tf)) ^ i n ^ T T 

-2 ™ dO _ = 4 
l7r J (1T/2X1-/M1+'-*2) 0 2TTI 

^ 4 r8 
log 8 - log 

* 1 - rh 
2 1 + rt 

= \c\ log 1 ± 4 + c\ log 8 - c\ log Ï 
L 1 — rt 2J 

/2TT. 

We can choose kx so that 

ck log 1 < e whenever k ^ kx 
1 ~~ rk 

This shows that 

„2 ,„„ 1 + K 
c^log 

1 -ri 
0 as A: —> oo. 

(4=) Suppose that 

A r> 
0. 

By Lemma 4.3, the condition (i) of boundedness is satisfied. For the 
condition (ii), we write, for E c [0, TT], 

i^+MM0)^ = JEnAk + JEnBk + JE Enck 
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where Ak, Bk and Ck are as in the proof of Lemma 4.3. We have the 
following estimates. 

f < 2 P 
jEnAk

 = Ck J 0 l _ 
1 

1rk cos 6 + rk 1m 

de 2 
= ch 

J ^ci and 

Cmll 

t < r 

- 2 „ k Jo-n 

2 i de 
sur 'o- t f /O+rô *sin0 27r 

77 1 

iVd+r*2) 2 0 

= -cf log % + -ci log - . 
\ k \ - rl 4 * 2 

Take /c0 so that e^ < e/3 and 

I T , 1 + 7 7 . 1 ? , 7T 
-ci log 3 + -ci log - < e/3 
4 * 1 - /£ 4 * 2 

whenever A: â fc0. For A: ^ &0, we have 

< r2 1 + »fco 1 
-\E\—, 

1 — /v 2m 

^ c\\E\ Ym and 

X 
X 
f < 2 /'sin"1((l-^2)/(l+^2)) + l̂ l 1 </0 

JEnBk
 = Cl J i 

= ^ J si 

sin-1(( l-rMl+^2)) sin 0 277 

'sin"'((1-#£)/(!+'*)) + l£l 7T 1 </0 

» 2 0 2TT 

,2r / / i ... -2\ 
^ m s i n - ^ J . I . l j - l o g s i n - f i ^ ) ] 

4 
2 

1 + |£| /sin ll-fr2)l 

^ l o g ( l + | £ | / S 1 n - . ( ^ f ) ) . 

If we take S > 0 small enough, we can have 
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jf log+ Mfk(6)~ < €, all*, 

whenever, \E\ < S. Therefore fk, k = 1, 2, . . . , form a bounded subset 
of M. 

The proof of the following theorem was communicated to the author by 
Professor K. Izuchi, to whom the author expresses his sincere thanks. 

4.5. THEOREM. M is not locally bounded. 

Proof. We take ck I 0 and rk \ 1 (k —> oo) so that 

1 4- r2 

(i) c2
k log- % k = 1, 2 , . . . , 

1 ~ rk 

are bounded but 

1 4- r2 

(ii) c\ log 1 —> 0 as k —> oo. 
1 ~~ r £ 

For a > 0, we put 

fliz) = expUf^i) . 
\ 1 — rai 

By Theorem 4.4 and (ii), / " , k = 1 , 2 , . . . , are not bounded in M for each 
a > 0. By Lemma 4.3 and (i), log+ Mf\, k = 1 , 2 , . . . , are bounded in 
LX{T). If we set 

we see that F k, k = 1, 2, . . . , are not bounded in M for each « and 
a > 0. On the other hand, given € > 0 we can show that 

CWE-i c 0? e ^<%> 0) < e} = ̂  
for sufficiently large n and sufficiently small a > 0. In fact, if we set 

£ = («£ T:Mfl{6) tk l-^Y^], 

we have 

d(Fn,«M> 0) = X 1 0 ^ 1 + M f W : > ^ 
2w 

1M 1 

X^log(l+M/^))| 
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â log(l + l i ^ ) + 2« / r l o g + Mfk(6)^. 

Since log+ Mfh k = 1, 2 , . . . , are bounded in Ll(T), 

d(Fn^ 0) < e 

if n is large enough and a > 0 is small enough. Therefore V€ is not 
bounded in M. This completes the proof. 

4.6. THEOREM. 7/"/ e M, thenf^z) = /(fz), |f| < Inform a bounded set 
in M. 

Proof. Let F = { g G M:d(g, 0) < TJ} be a neighborhood of 0. We write 
z = re1 and f = pe'^. Since 

M#0) = M/p(0 + *) ^ M/(0 + *), 

we have, for |a| S 1, 

log(l + | a |M$0)) ^ log(l + |a|M/(0 + * ) ) 

^ l o g ( l + M/(0 + *) ) , |f| < 1. 

By the dominated convergence theorem, 

f27r dO 
J0 log(l + \a\M%0)) — 

f27r dd 
^ J0 log(l + |a|M/(0 + $) ) — "> 0 as H -> 0, 

uniformly on |f| < h There exists an a0 such that if \a\ ^ a0, 

J 0 log(l + | a | M f ) ) - < i , , |f| < 1, 

i.e., q/£ G V f ° r a ^ l?l < 1> if M = ao° Therefore {^}|f|<i f ° r m a 

bounded set in M. 

5. Linear functionals on M. We follow the methods of N. Yanagihara 
[10], in the proofs of Theorems 5.2 and 5.3. For the proof of the following 
lemma, see [10, Lemma 1]. 

5.1. LEMMA. Let mk f oo as k —> oa If 

Xk = O Qxp(-€kmk) 

for any sequence ek I 0, then 

Xk — O Qxp(—€rnk) for some c > 0. 
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5.2. THEOREM. If {Xk} multiplies M into H°°, that is 

f(z) = 2 û*z* e M implies 2 A*fl*z* e H°°9 

then 

Xk = O expl — € y — as k —> oo, /or some € > 0. 

iVoo/! Given ek I 0, let 

/ ,/togfc 

It suffices by Lemma 5.1 to show that 

Afc = O e x p ( - e , V ^ ) a s * 
log-

Let ck I 0, rk | 1 and let 

2 1 c^ log | 0 as A: —> oo. 

1 - r* 

Then we know by Theorem 4.4 that 

:1 + V ) 

oo. 

^ ( z ) = e x p ( c | -

= 2 a„(fcKz", 

fc = 1, 2 , . . . form a bounded sequence in M. Therefore, we have 

2 W * ) ^ ^ Z, < oo, \z\ ^ 1, Â: = 1, 2, 

In particular, 

IX^ fc ) K ^ L, A: = 1, 2, . . . , n = 1, 2, . . . 

Take ck so that 

1 ? 

Vk ^ 2c% â 1. 

Then 

log|%( /c) | ^ V2^fc(l + o( l ) ) . 

See [10, Remark 3]. That is, 

\ak(k)\ â e x p ( V 2 c ^ ( l + o(l) ) ). 
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Therefore, we have 

\\k\ exp(V2c|/c(l +o(l))) 4 g L , 

or 

\\k\ ^ Lrk
 k e x p ( - V2clk(\ + o(l) ) ). 

If we take rk = 1 — \/k and ck so that 

cl log = cl log * = 
1 - rk 

(4)2 /2 

i.e., 

c\ = (4)2 /2 log k ^ ^=, 

then rk and ck satisfy those condi 

|X,| ^ L ( l - 1 ) *exp(-< 

tions imposed on 

+ 

them. Thus 

o(l))) 

we have, rk and ck satisfy those condi 

|X,| ^ L ( l - 1 ) *exp(-< 

4 

on 

+ 

them. Thus 

o(l))) 

< r 1 r-vnl r "\ / 4 

on 

+ 

them. Thus 

o(l))) 

= C C X P l ^ V l o g ^ 4 

on 

+ 

them. Thus 

o(l))) 

This completes the proof. 

Now we have the following characterizations of continuous linear 
functionals on M. A°°(U) denotes the class of all holomorphic functions 
continuous up to the boundary which is of class C°° on T. 

5.3. THEOREM. If A is a continuous linear functional on M, then there 
exists a g e A°°(U) such that 

Kf = lim Pj f(rel6)We)^-, f e M. 

Conversely, if g e v4°°(J7) <2«d 

A/ = lim ("J fire'*)^)^ 

exists for all f e M, zTze/z A defines a continuous linear functional on M. 

Proof. Suppose A is a continuous linear functional on M and let 

bk = A(zk), k = 1 , 2 , . . . . 

Since {zk }£°=1 is bounded in M and A is continuous, bk, k = 1 ,2 , . . . form 
a bounded sequence, so that 
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g(z) = 2 b,f 
defines a holomorphic function in U. Let 

f{z) = 2 a/ e M 

Since {^}^G ^ form a bounded set in M by Theorem 4.6, {A/£}£e ^ form a 
bounded set in C. Hence 

Afi = lim T { 2 a*****) 

= 2 «A** 
is a bounded holomorphic function of f, |f| < 1. Thus {Z^} multiplies M 
into H°°. By Theorem 5.2, we have 

This shows that g e ^°°(I7). 
Next, l e t / (z ) = 2 fl^* e M. Then 

2 ^A/* Z ~* fr in M as « -> oo 
o 

a n d ^ —> / in M as r —» 1 ~~. Therefore 

A/ = lim A ( 2 A^ V ) 

= lim 2 a/bk 

oo 

0 

so 

Af = Um A/! = lim 2 fl^V 
oo 

>1 0 

Conversely, we assume that g e ^4°°((7) and 
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exists for all / e M. We define 

Then Ar is a continuous linear functional on M. Since 

Km AJ 
r->\ 

exists for all / G M, by the uniform boundedness principle, for any e > 0 
there exists 8 > 0 such that 

sup |A r / | < € 
r 

whenever d(f, 0) < 8. Therefore, 

\Af\ â B 5 |A r / | < € 

whenever d( / , 0) < 5. This shows that A is continuous. 

As an application we have the following theorem. We follow Davis's 
proof [1] of the corresponding theorem for 7V+. 

5.4. THEOREM. M is not locally convex. 

Proof. We know [3, Theorem 7.6] that there exists a singular inner 
function S with the following property: If 

g(z) = 2 bnz" e H2 

is orthogonal to SH2, then 

2 ny\bn\
2 = oo for any y > 0. 

n 

In fact, if ju is a singular measure with modulus of continuity 

<o(f, /x) = o( / log - ) 

then 

^(z) = exp(-J0 ^ 3 7 * ^ ) 

has the property. We claim SM is not dense in M. Otherwise, Sfn —> 1 in M 
for some sequence {fn} in M. Then Sfn ~* 1 in iV+. But we know [7] that 
SN~*~ is closed in iV+; s o l G SN~^, which is a contradiction. 

Now, suppose M is locally convex. Then there exists a nontrivial 
continuous linear functional A on M such that 

A(Sf) = 0 for all / e M. 
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By Theorem 5.3, there exists a g e A°°(U) such that 

A/ = lim C / > ' V ) ^ , / e M. 

Since A(Sz") = 0, w = 1, 2 , . . . , we have 

j ' , e^S^W6)^ = 0, „ = 1,2,.... 

As g e # 2 , g is orthogonal to SH\U). If g(z) = 2 i / then 

2 ny\bn^ = 00 for any y > 0, 

which is a contradiction to the fact g e yl°°(£/). This shows that M is not 
locally convex. 

6. M as an F-algebra. 

6.1. THEOREM. The multiplication in M is continuous. Therefore, M is an 
F-algebra. 

Proof. Fix g G M. Suppose fk^> f'mM and y£g —» /z in M. Then fk-* f 
in A + andy^g —> /z in N+. Since the multiplication in A + is continuous [1], 
we have h = fg. By the closed graph theorem, / 1—» fg is continuous 
in M. 

Now let fk —* / and g^ —» g in M. Then 

d(fkgm,fg) ^ d(fk(gm - g), 0) + d(g(fk - f), 0). 

As we saw above, 

d(g(fk - / 0) -* 0. 

Define Ak:M -» M by 

A*/i = ^A, A G M. 

Then AA, is a continuous linear operator. Also, Akh is convergent for each 
h e M. By the uniform boundedness principle, {A^} is bounded 
uniformly. Hence Akh —> 0 uniformly on A: as /z —> 0. Therefore 

lim d(fk(gm - g), 0) = 0 

uniformly on k. Hence fkgm —> 0 as m, Â: —> 00. This shows that the 
multiplication is continuous and hence M is an F-algebra. 

6.2. LEMMA. Let 
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be an outer function. Then \og\f\ e Re H if and only if 

log+ Mf, log+ M^\ e L\T). 

Proof. We easily see that 

l og+ | / ( r ^ ) | + log+ — L - = |P, * logl/l (0) I 
\j(re ) I 

It follows that 

[log+ MM 

1 
log+ Afl-

fm 
fk sup \Pr * log| / | (0) I 

0 S r < l 

log+ Mf{0) + log+ M^-\(0). 

Therefore log| / | e Re i/1 if and only if 

log+ Mf G L 1 ^ ) and log+ jU-M G L\T). 

This completes the proof. 

The following theorem characterizes the invertible elements of M. 

6.3. THEOREM. The only invertible elements of M are those outer functions 
f with 

log| / | e Re tf1. 

Proof. If / ( z ) = B(z)S(z)F(z) (the canonical factorization) is an 
invertible element of M, it is also an invertible element of iV+; so 
B(z)S(z) = 1. That is , / (z) = F(z\ the outer function. S ince / <= M and 
Mf €= M, 

log+ M / e L^T7) and log+ Afl-J e L 1 ^ ) . 

Therefore log| / | <E Re 7/1 by Lemma 6.2. The converse is obvious. 

For each X e £/, we define yx on M by j\(f) = f(X). Since 

log(l + l/(X) I ) ^ 2d(f, 0 ) — ! — , [8] 
1 — |A| 

we see that yx defines a continuous multiplicative linear functional on M 
and 

mx = {/ G M:/(À) = 0} = ker yx 
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is a closed maximal ideal. 

The following result characterizes the multiplicative linear functionals 
on M. We follow [7] for the proof of theorems below. 

6.4. THEOREM. If y is a nontrivial multiplicative linear functional on M, 
then y = yx for some A G U and hence X is continuous. 

Proof Let X = y(z). Then y(z - A) = 0. If |A| â 1, then z - X is 
invertible in M; so y(z — X) ¥= 0, a contradiction; so |A| < 1. Consider 

(z - X)M = { (z - A ) / / G M } . 

I f / e M and/(A) = 0, then 

/ (z ) = (z — A)g(z) for some g e M; 

so / G (z — A)M Therefore 

mx = (z — X)M c ker y. 

But mx is a closed maximal ideal in M. Hence 1% = ker y. Since ker y is 
closed, y is continuous. Furthermore, y ( / ) = /(A). 

6.5. THEOREM. There exists a maximal ideal m which is not the kernel of a 
multiplicative linear functional. 

Proof. Let 
/ flir Jt _j_ z \ 

5(z) = exp(-J0 7—-^) 
be a singular inner function. Since 1 € 5M, S M is a proper ideal of M. By 
Zorn's lemma, there exists a maximal ideal m containing SM. If m = m^ 
then Sf(X) = 0 for a n y / G M. But S (A) ^ 0 for any A; so m ¥= mx for any 
X <= U. 

REFERENCES 

1. C. S. Davis, Ph.D. Thesis, University of Wisconsin-Madison (1972). 
2. N. Dunford and J. T. Schwartz, Linear operators, Part I: General theory, Pure and Appl. 

Math. 7 (Interscience, New York, 1958). 
3. P. L. Duren, Theory of Hp spaces, Pure and Appl. Math. 38 (Academic Press, New York, 

1970). 
4. J. B. Garnett, Bounded analytic functions (Academic Press, New York, 1981). 
5. G. H. Hardy and J. L. Littlewood, A maximal theorem with function theoretic applications, 

Acta Math. 54 (1930), 81-116. 
6. P. Koosis, Introduction to Hp spaces, London Math. Soc. Lecture Note Series 40 

(Cambridge Univ. Press, Cambridge, 1980). 
7. J. W. Roberts and M. Stoll, Prime and principal ideals in the algebra N+, Arch. Math. 27 

(1976), 387-393. 
8. J. H. Shapiro and A. L. Shields, Unusual topological properties of the Nevanlinna class, 

Amer. J. Math. 97 (1975), 915-936. 
9. N. Yanagihara, On a class of functions and their integrals, Proc. AMS (1972), 550-576. 

https://doi.org/10.4153/CJM-1988-031-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1988-031-4


HOLOMORPHIC FUNCTIONS 741 

10. Multipliers and linear functionals for the class N , Trans. AMS 180 (1973), 
449-461. 

11. Bounded subsets of some spaces of holomorphic functions, Scientific Papers of the 
College of General Education, University of Tokyo 23 (1973), 19-28. 

12. N. Yanagihara and Y. Nakamura, Sugaku 28 (1976), 323-334 (Japanese). 

Korea Advanced Institute of Science and Technology, 
Seoul, Korea 

https://doi.org/10.4153/CJM-1988-031-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1988-031-4

