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ON AN F-ALGEBRA OF HOLOMORPHIC
FUNCTIONS

HONG OH KIM

0. Introduction. The complex maximal theorem of Hardy and Little-
wood states:

(M,,). For 0 < p < oo, there exists a positive constant G, such that if f
is holomorphic in the unit disc U of the complex plane then

p i0y | p
o MY =, sup [ e P

where

M) = sup 1/

The corresponding statement to the limiting case p = 0 can be stated as
follows:

(M,)) There exists a positive constant C; such that if f is holomorphic
in U

2 do 2 ) do
f log+ Mf(0)— = C, sup f log+l f(re’e) | —,
0 27 o=r<1 v 0 2

where log" ¢ = max(log ¢, 0).
The statement (M) is false as the following example shows.

Example. Consider

1 + 2
fi@) = em( )
1 —:z
By a routine calculation we see that

1 — 72

— 2rcos § + r¥

log ¥ f(re?) | = 1

and

1

—, |0 =
|sin 6|

log" Mf(8) =

17 é Iol é T.
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HOLOMORPHIC FUNCTIONS 719

Therefore we have

27 . 40
sup [ logt e | 2 = 1,
2

0=r<l

but

2 do fﬂ/z 1 db
log" Mf(6)— = 2 —_——— = 0.
f o %8 ’z )277' 0 sin 627 o

In this connection, we consider the following three successively stronger

conditions on the functions f holomorphic in U:
(a) log™| £, (0 = r < 1), are bounded in L'(T), where

I = fire?)
and T is the boundary of U.
(b) log+| L1, (0 = r < 1), are uniformly integrable, that is,

(i) log™ £, (0 = r < 1), are bounded in L(T), and
(i1) given € > 0, there exists a § > 0 so that

0., d0
.Llogﬂfr(e’”) @ O=r<l,
2

whenever E C T with its Lebesgue measure |E| < 4.
(¢) log™| £, (0 = r < 1), have an L!(T)-majorant, or equivalently,

2m
/0 log™® Mf(0)‘—i€ < oo,
27

The Nevanlinna class N is the class of all functions f holomorphic in U
satisfying the condition (a), The Smirnov class N is that of all functions f
holomorphic in U satisfying (b). We denote by M the class of all functions
f holomorphic in U satisfying the condition (c). The study on the classes N
and NT has been well established (see [3], [4], [8], [9] etc).

The study of the class M was suggested to the author by Professor P. R.
Ahern, to whom the author wishes to express his sincere gratitude.

In Section 2, the containment relations with other classes and some
relations with the class Re H' are given. In Sections 3, 4 and 5, we have
some properties of M as an F-space. Our results are similar to those on N *
by N. Yanagihara [10, 11] and by C. S. Davis [1]. In Section 6, we prove
that M becomes an F-algebra and obtain some properties of M as an
F-algebra which are also similar to those of N* obtained by J. W. Roberts
and M. Stoll [7]. For example, the multiplicative linear functionals are
determined and the invertible elements are characterized.

1. Preliminaries. We summarize some facts which will be needed in the
sequel. The standard references are the books [3, 4, 6].
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1.1. Radial limits. For f € N, the radial limit
f4(@%) = lim fire®)
r—1
exists for almost every ¢ and log| f*| € L(T) unless f = 0.
1.2. Canonical factorization. A function f € N can be factored as

J(z) = B(z)(S\(2)/8y(2) )F(2),

where B(z) is the Blaschke product with respect to zeros of f(z), S, (z),
k = 1, 2, are the singular inner functions with no common factor and
F(z) is an outer function for the class N, i.e.,

et 4 g
Si(z) = exp(—/o e”—_zd[l.k(t))

with positive singular measures dyu,, k = 1, 2, and
1 21 Gl 4 )
F(iz) = w exp(— f %———Z log| f*(e") | dt)
20 VO & — 2
with w a constant of unit modulus. It is known that a function f € N
belongs to N if and only if S, = 0.

1.3. H?. The Hardy space H” (0 < p = oo) consists of all functions, f,
holomorphic in U, for which || f |l, < oo, where

27 ) do\\/r
sup (/ | f(re') |p—) ,0<p <oo,
o0sr<1 \V 0 2
A, =

sup |f(z) ], p = oo.
zelU

It is known that
U H” ¢ N*.
p>0
Identifying f with its radial limit f* we can consider H” as a closed
subspace of L7(T) as

n M e dt
H? — {g € ITMy:g(—n) = |, g™ —
27

1.4. Re H'. Re H' is defined to be the class of all real parts of the
functions of the class H'. For the class Re H ', we have the well-known
theorem of Burkholder, Gundy and Silverstein.

=0,n = 1,2,...].

THEOREM A (Burkholder, Gundy and Silverstein). A real-valued function
h € L\(T) belongs to Re H' if and only if

sup |p, * h(@) | € L\(T),

0=r<l
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where
1 [ 1—r?

* h(f) = —
P h(6) 20 /0 1 — 2rcos(@ — 1)

the Poisson integral of h. See [6, p. 249].

1.5. THEOREM B (Zygmund). Let h € LNT) with h = 0. Then h €
Llog L if and only if

" rzh(ei’)dt,

1 Zﬂeit"'z it 1
F) = > fo (et € H',

or equivalently, h € L log L if and only if h € Re H'. See [6, pp.
135-136].

2. The class M. We have the following relations among the various
classes. The proof of M & N in the following theorem is due to P. R.
Ahern.

2.1. Tueorem. N 2 N* 2 M 2 U, HP.

Proof. The relation N 2 N * is well known. The standard proof is by
means of the canonical factorization. We give here another proof. Take as
usual

1+ z)
—)
Since log*|£(€?%) | = P.(6), we have

fz) = exp(

2 )
fo ogtlf@ 2 —1, 0=r<1,
27

so f € N. Now, fix a > 0. We have

a L a1 -7 df
1 + i6 —2/ A st
fo VGl 01 — 7Y + 6% 27

1+rf"/(1_’) dn ( 0)
 2n 0 1+n2 n_l—r

]+r —l( a ) —
= tan —ocoasr—>1 .
T 1 —r

Hence log*|£|, 0 = r < 1, are not uniformly integrable; so f & N*.
The inclusion N* D M is obvious. Now take a function

h € L\(T)\Re H'

with # = 0 and consider

https://doi.org/10.4153/CJM-1988-031-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1988-031-4

722 HONG OH KIM

1 et o
Then
log™ Mf(§) = sup P * h(b).
0=r<l1

Since h & Re H', we have, by Theorem A,
2 do
/ logt Mf(6)— = oo;
0 27
so f & M. For E C T, we write

d _ df df
fEPr *hO) = Lll’, *h(6) = h@®) | + fEh(ﬂ)E

2m do f do
= P xh@) —h@)|— + |.h(O)—.
NG O + Joh®OF
Given € > 0, we can take ry, < 1 so that

2
ﬁ)m*mm—h@¢@<dz
27

whenever ry < r < 1, and § > 0 so that
do
whenever |E| < 8. Thus
d
./l; P = h(0)§—7; <

whenever |E| < & and r, < r < 1. Therefore we can conclude that
log+|frl, 0 = r < 1, form a uniformly integrable family; so f € N*.
The inclusion

M> U HP
p>0

follows from the inequality
logta=a” @>0,p>0)
and the complex maximal theorem. For the proof of

M#* U HP,
p>0

we take the following example of N. Yanagihara [12], who used it to show
NT # U,y H,
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s = el [, 5 g v %)

—m il
where

1
exp—, 161 =1,
W) = G

e, 1 =0 = .
Since y & LP(T) for any p > 0,

P
fengH.

To show that f € M, we note that

1
log| f() | = log (&) = { /@’

1, 1= =n
belongs to the Zygmund class L log L; so that, by Theorem B,
log™ Mf(6) € LY(T).
This completes the proof.
2.2. THEOREM. Let h € LX(T), h real-valued and let
it
f(z) = cxp(% /iﬂ Zi’ t ih(eit)dt).

Ifh" € Re H', then f € M. The converse is false.

Proof. We see easily that
log™ Mf(@) = sup P+ h* ().
0=r<i .
By Theorem A, h* € Re H' implies f € M.
To show that the converse is false, we take a real-valued
h € Re H\L log L.

We claim that AT & Re H! and h~ & Re H'. Otherwise, h* € Re H',
or h~ € Re H'. Assume ht € Re H', say. Then h~ = h* — h €
Re H',so |h| = hT + A~ € Re H'. By Theorem B, |#| € L log L; so
h € Llog L, a contradiction. We note that

log* Mf(@) = sup (P.*xh)" = sup |P. *h|.
0=r<l1 0=r<l1

Since h € Re H 1, we have, by Theorem A, f € M. This completes the
proof.
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2.3. LemMA [4, p. 97, Ex. 15). If f € N, then

A 2 o df
A= f log T freé®) | =, A >1,
"y M) log A 022 Jo % ftre )|277'

where A is a positive constant independent of f and
mag ) = | {6:MF(6) > A} |
The following theorem shows a difference of N and M.

2.4. THEOREM. If [ € N, then
21
J aox™ mp0) L < oo
0 27

foralla (0 < a < 1).
Proof. We set
E = {0:Mf(0) = e}, and
myyQ) = | {0 € E:Mf(6) > A} |.
We have by Lemma 2.3

J3 aogt w2~ [+ .

< 1 oo Q| E
=1+ EW— ./e (lOg >\) [“def(A)]

=1+ foo og N 'L (N
- 20 J € € A Mf

A

aA 2m o dl
1+ ——( sup P log+|f(re’0) | ——)
27

27 \o=r<i1

f 0 dA
X NIV T < 00,
¢ Alog A)

since 0 < a < 1.

Unlike Nor NT (see [9]), M is closed under integration as the following
theorem shows.

2.5. THEOREM. M is closed under integration.

Proof. Let f € M and let

F(z) = f (z) f(2)dz = f ; fte®)eat.
Then |F(ré®) | = Mf(6); so MF = M. Therefore f € M.
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3. M as an F-space. We define an invariant metric d on M by

2m do
d(f, 8) = fo log(1 + M(f — g)(0))5;, fgeM

3.1. THEOREM. M is an F-space, i.e., a complete topological vector space
with an invariant metric.

Proof. 1t suffices (see [2, p. 51]) to check the following properties:
(1) d is an invariant metric,

(ii) For a fixed f € M, ¢ — ¢f is a continuous mapping from C
into M,

(iii) For a fixed ¢ € C, f > ¢f is a continuous mapping from M
into M,

(iv) M is complete.

(1) is obvious. (i1) follows from the dominated convergence theorem as

d(cf, 0) = leog(l + |c|Mf(a))§ —0asc— 0.

(i) Take k an integer with |c| = k. Then
d(cf, 0) = d(kf, 0) = kd(f, 0);
so f > ¢f is continuous.

(@iv) Let {/, Eo:() be a Cauchy sequence in M. Then {f,} is a Caufll.y
sequence in N . We know [10] that N™ is complete. So f, = f € N™ in
the metric of N* for some f € N*. It suffices to show that f € M and
J, — fin M. Given € > 0, we can find an integer k so that

27 do
fo log(1 + M(f, — £,)0)— <e¢ n,mZ=k.
27

For 0 < r < 1, we see that

lim M Un)r = 5DA1O) = M (£,), — £1(O).

By Fatou’s lemma, we have

2 do
S st + mich, - fx0) 2

IA

27 do
tim [ a1+ MU, — U160 2

A

27 do
tim [ tog(1 + M7, - X6 5

n—00

IA

€.
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By the monotone convergence theorem,

2 do
f o log(l + M(f, = NO) -~
T

. 2 d0
=lim | log(1 + M[ ) — £10)) Py

r—1

lIA

€.

We have d(f,, — f,0) = eif m = k. In particular, f,, — f € M;sof € M.
This shows that f,, — fin M.

3.2. THEOREM. The polynomials are dense in M. Therefore, M is
separable.

Proof. Let f € M. We show that f, — f'in M as r — 1" . Since f has the
radial limit at almost all 8, we see that for almost all 8, 1 — f(z¢%) is

continuous on the closed interval [0, 1]; so uniformly continuous. For such
aé,

M(f—f)0)—0 asr—1".
Since
log(1 + M(f — £)6)) = 2log(1 + Mf(6)) € L\(T),
we have, by the dominated convergence theorem,
2m do _
N log(1 + M(f—j;)(ﬂ))2——>0 asr—1 ,
T
that is, /. — fin M as r — 1. Since f, can be uniformly approximated
by polynomials on the closed unit disc, it can be approximated in M by

polynomials. Hence the polynomials are dense in M.

4. Bounded subsets of M. The following characterization of bounded-
ness in M and its proof are analogous to those in N*. See [11].

4.1. THEOREM. L C M is bounded if and only if
. o db
@ J, log Mf(0)2— < K(< o0) foralf € L, and
a
(i1) given € > 0, there is a 8 > 0 such that
+ do
- log Mf(@®)— < e forallf € L
27

whenever |E| << 8.
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Proof. (<) Given a neighborhood
= {g € M:d(g, 0) < n}
of 0 in M, we take ¢ > 0 so that

log(1 + €) + — log 2 + € < .
2w

Find a 8 (0 < 8 < ¢) so that (ii) is satisfied. For f € L, we can find an
E; C T so that

IT\E;| <8 and log" Mf(6) = K/8 on Ey.
We have

K
Mf(0) = exp(:s—) = L@ onkEg

Now, if 0 < a < min(1, ¢/L(8)), then, for f € L, we have

do

2
d(of, 0) = _/0 log(1 + |a|Mf(0))5;

df . d9
= /E, log(l + 9 = + |, llog 2 + log" Mf(®) ]
8 d9
= log(l + ¢ + > log 2 + /;\Ef log™ Mf(());

§_log(1+e)+—28;log2+€

<.

Thus aL C V. Therefore L is bounded in M.
(=) Suppose that L(C M) is bounded in M. Given n > 0, we can find
an ay = ay(n) (0 < ag < 1) so that

21 do
./0 log(1 + |a|Mf(6)) > <q forallf eL
vz

whenever |a| = a,. We have

27 n db
fo log™ |af Mf(0)2— <mn forall f € L, |a| = a.
T

Since
1

)

logt Mf = log® ayMf + log
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we have, for all f € L,

27 ) 27 9 1
f log* Mf(f))fg = f log* aOMf(a)i + log —
0 2m 0 27 ag

§n+logi
%

= K < oo.

Thus (i) is satisfied. For (ii) given € > 0, take n < €¢/2 and a;, = o(n) as
above. We choose § > 0 so that

)
— log 1 < €/2.
2‘7 ao

If |E| < 8, then

df dé 1 do
1o+M0—§f10+ 0—+f10———
'L g MIO)— = [ log" aoMfiO)— + J, 8 2
=1 + |E| log 11
(XO 2W
< e
Thus (ii) is satisfied. This completes the proof.
Letc, | Oandletrn, 11,k =1,2,.... We consider
1+
(@) = exp(cil — rkz), k=12,....
4.2. LEMMA.
1 — rf?
log™ Mf,(6) = ¢ su k
g ML) k 0§rgl 1 — 2rrcos 0 + rr?
1 — 2 B 2
ci Tk 5, 10] = sin 1(1 rkz),
1 — 2r.cos 0 + rf 1 + 7

=31 1= r
¢y—, sin ( 2) =160 = 7/2,
sin 6 1+ 7
G /2 =0=m

The proof is routine and is omitted.
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4.3. LemMa. log" Mf,, k = 1, 2,. .. are bounded in L(T) if and only
if
1+
¢ log - ’kk—lz,...
— 2
are bounded.

Proof. Let

1= r )
A, = |0, sin 5], Bx = [sin , /2
1+ 7 1+ rk
and let C, = [n/2, w]. The proof will follow from the following
estimates:

df /277 1 -1 df
. + v _ 2 k @2
@ A log " i)y = cic Jo 7 cosl +riam K
.. df
(ii) L log™ Mf,(6)—
2 _ 2
S (]
- 2r;, cos sin_l(l " rkz) + r? G
Tk
1, 1— 1 1—rf
= _Ck 2
2 2 1+
R T P/ S R
Tk
1,
= — .
27 *
(iii) j;k log* Mﬁ((ﬂ); =205 = 4%

d0 /2 aT 1 d0
. + 2 -
@iv) -/l;k log Mfk(o)z,,- = ¢ ‘/‘Sm* QA=A+ 2 0 2

f'rr/2 1 0
=3 (l—rﬁ)/(Hrﬁ)Ed

2 2
1+
&[10g T

+ lo _"f]
—rk2 g2‘

A
o

db
) L log™ Mf(6) -

=a [ 1@_§lo(l_+_r,3)

k) @iy D/A+1d § 2 Y7 1 — ’k2 :
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This completes the proof.
4.4. THEOREM. fi, k = 1,2, ..., form a bounded subset of M if and only

if
_+_ 2
ci log rk2—>0 as k — oco.
1 —r

Proof. (=) Suppose that f;, k = 1,2, ..., form a bounded subset of M.
Given € > 0, we can take § > 0 so that

do
ﬁlogJ’ MiO)— <e k=12,...,
2

whenever |E| < 8. Choose k; so that
1 — 2
Z——r% < § whenever k = k.

21 +r

For k = k;, we have
- /s , 1 db
€ sinfl((l-r/,z)/(l'f’/?)) Cksin /] E

2 2 2
= [7 B liogs — tog T1 %
2

= op J @A-Hra+rd) g 21 + rk2
1+ r?

= [cﬁ log rk2 + ¢z log 8 — ¢ log Z\/2a.
1 - rk 2

We can choose k| so that

1+ 7
 log k ¢ whenever k = k,.
k 1 — r? !
k

This shows that

1+ 7
c,% log "k2__>0 as k — oo.
l_rk

(<) Suppose that

1+rk2

— 2
Tk

¢ log — 0.

By Lemma 4.3, the condition (i) of boundedness is satisfied. For the
condition (ii), we write, for E C [0, 7],

de
+
Llog Mfk(a)'z—w = -/;nAk + _/;?an + V/I::mck
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where 4, B, and C, are as in the proof of Lemma 4.3. We have the
following estimates.

/ 5 /27 1 — 7 b _
. = C —_ = R
End kJo 1 — 2r, cos 0 + r}2n k
Jine,
Jion,

A

ci, and

1A

MIA

/‘ﬂ'/Z 2 1 46
sin”'(1=rd)/(1+1d) k sin 0 27

IA

1 7/2 a1l
27 (A=r)H)/(A+r0) 286

1 1+r2 1
=—cilog———"—k2+—c
4 l_rk 4

Take kq so that ¢} < e/3 and
1, 1+7

g 5+

4 1 - rk

12 ™
—c; log — < €/3
45085

whenever k = k. For k = k,, we have

1 + 1
[ oaltmgl
ENA, 1 — "o 2w

1
< 21—
./;znck = CllElzw’ and

jl:?mBk

2j’sin_'((l—rk2)/(1+rk2))+lEl 1 46
1 J sin A=y +rd)) sin 8 27

) fsin"((l—r,f)/(l+r;3))+lE| 7 1df
k

A

= sin (1= +rd) 5557—7-
2 2 )
_ (1 —
_ % log(sin_l(l ”‘2) + lEI) — log sin 1( rg)]
4 1+ Ty 1+ T
) 2
1 —
_ % log|1 + |E|/sin 1( rkz)]
4 1 + rk
2 2
41 —
= a log(l + |E|/sin 1(_%) )
4 1+

rko

If we take § > 0 small enough, we can have
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]
fElog+ Mﬁ((ﬂ)d— <e allk,
2

whenever, |E| < 8. Therefore f;, k = 1, 2,..., form a bounded subset
of M.

The proof of the following theorem was communicated to the author by
Professor K. Izuchi, to whom the author expresses his sincere thanks.

4.5. THEOREM. M is not locally bounded.
Proof. We take ¢, | 0 and r, 1 1 (k — 00) so that

1+
) cklgl "‘ k=1,2,...,

k
are bounded but
2

1+
(ii) c,:); log rkz -0 ask — co.
1 - rk

For a > 0, we put

1+
fiz) = exp(aCi r"z)-
1 —nez
By Theorem 4.4 and (ii), f, k = 1, 2 , are not bounded in M for each
a > 0. By Lemma 4.3 and (i), log™ Mfk, k =1,2,..., are bounded in

L (T). If we set
F, o4 (2) = f{z)/n forn=1,2,...,

we see that F, ,,, k = 1, 2,..., are not bounded in M for each n and
a > 0. On the other hand, glven € > 0 we can show that

{Fraidiz1 € {8 € Mid(g,0) < ¢} =

for sufficiently large n and sufficiently small & > 0. In fact, if we set
1 +
- {0 e T-Mf@) = ——2—\[-5}

we have

0
d( n,o,k> O) flOg(l + MF, nak)d_

+
nglog(lJrn \f)de
k

2 27

w g 8
+ fT\Ek log(1 + Mf3(6)) -~
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+
= log(l + il—-zﬁ) + 2a fT10g+ Mfk(o)g—z.

Since log" Mf;, k = 1, 2,..., are bounded in L\(D),
d(F, 1 0) <€

if n is large enough and « > 0 is small enough. Therefore ¥ is not
bounded in M. This completes the proof.

4.6. THEOREM. If [ € M, then f(z) = f(§z2), |{| < 1, form a bounded set
in M.

Proof. Let V = {g € M:d(g, 0) < 1} be a neighborhood of 0. We write
z = ré? and ¢ = pe'¥. Since

Mf(0) = Mf,(6 + ¢) = Mf(0 + ),
we have, for |a| = 1,
log(1 + |a|Mf(6)) = log(1 + lalMf(6 + ¢))
= log(1 + Mf(0 + ¢)), ¢l < L

By the dominated convergence theorem,

21 do
J 7 1061 + lalmag)) =

2
= /0 log(1 + |a|Mf(0 + xp));i—a —0 asla]—0,
7
uniformly on [{| < 1. There exists an «; such that if |a] = «y,
27 do
o log(1 + IaIMfg(ﬂ))Z <n <1,

ie, af € Vfor all [{| < 1, if la| = a Therefore {£}y <, form a
bounded set in M.

5. Linear functionals on M. We follow the methods of N. Yanagihara
[10], in the proofs of Theorems 5.2 and 5.3. For the proof of the following
lemma, see [10, Lemma 1].

5.1. LEMMA. Let m; 1 oo as k — oo. If
A = O exp(—eumy)
Jor any sequence €, | 0, then

A, = O exp(—emy) for some e > 0.
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5.2. THEOREM. If {\,} multiplies M into H, that is
flz)y =2 akzk € M implies 2 Akakzk e H™,

/| k X
A, =0 exp(—c ) as k — oo, for some ¢ > 0.
log k

Proof. Given ¢, | 0, let

f max( \/ log k)
€k = Ek, —\—/_——‘ .
k

It suffices by Lemma 5.1 to show that

A, = O expl—e ——k— as k — oo.
k Pl € log k

Let Cy J, 0, 1y T 1 and let

then

cilog 10 ask— oo

-

Then we know by Theorem 4.4 that

1+
0 = el 1]
1 —rez
= 2 a,(k)rz",
n
k =1,2,...form a bounded sequence in M. Therefore, we have

=EL<oo, |zl =1L,k=12,....

2 Na, oz

In particular,
Na,kK)Iri =L, k=12,...,n=12,....
Take ¢ so that

lIA

1
— =2

N7

Then
logla, (k) | = V2ck(1 + o(1)).
See [10, Remark 3]. That is,

la, (k) | = exp(V2cik(1 + o(1))).
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Therefore, we have

el exp(V2ek(1 + o(1))) rf = L,
or

Ml = L ¥ exp(— V2ik(1 + o(1))).

If we take , = 1 — 1/k and ¢, so that

= 7 log k = ()*/2

2
Cr log —
k

ie.,
o = (e’)2/2 log k = ———1
, k 2\/];,

then r, and ¢, satisfy those conditions imposed on them. Thus we have,

A= L(l - %)_k exp(—c;‘ \/ lol;k 1+ 0(1)))
= Cexp(—ek \/T]g(k—).

This completes the proof.

Now we have the following characterizations of continuous linear
functionals on M. A°°(U) denotes the class of all holomorphic functions
continuous up to the boundary which is of class C* on T.

5.3. THEOREM. If A is a continuous linear functional on M, then there
exists a g € A®(U) such that

2m o — df
Af = lim /0 f(re’a)g(e'e)d—, feM.
r—1 27
Conversely, if g € A®(U) and
27 L —
Af = lim f . freg @
r—co 27

exists for all f € M, then A defines a continuous linear functional on M.

Proof. Suppose A is a continuous linear functional on M and let

by = ACZF), k=1,2,....

Since {z" }i~, is bounded in M and A is continuous, b;, k = 1,2, .. . form
a bounded sequence, so that
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gz) = 2 b*
defines a holomorphic function in U. Let
fiz) = T aqf € M.

Since { f}¢<y form a bounded set in M by Theorem 4.6, {Af};<, form a
bounded set in C. Hence

k
lim T(E akgkzk)
k—o0 0

Mg

=2 akgkg‘k

is a bounded holomorphic function of ¢, [{| < 1. Thus {b, } multiplies M
into H*. By Theorem 5.2, we have

[k
bl = O exp(—e )
log k

This shows that g € 4°(U).
Next, let f(z) = = a,z2° € M. Then

Dartk—f inMasn— o
0

and f, — fin M as r — 17 . Therefore

lim A(E akrkzk)

n—o0 0

A,

I

n
lim ) a,rb,
n—o0 ()

(o]
= 2 akbkrk;
0
SO

Af = lim Af = lim X, a;b,r*
r—1 0

r—1
o dp
= lim f 0 f(re’a)g(e’a)é—.
r—1 27
Conversely, we assume that g € 4°°(U) and

27 Ly —
Af = lim f 0 f(re’e)g(e’a)c—ig
r—1 27
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exists for all f € M. We define

ASf = f ﬂﬂmﬂ , feM

Then A, is a continuous linear functional on M. Since

lim A, f

r—1
exists for all f € M, by the uniform boundedness principle, for any € > 0
there exists 8 > 0 such that

sup A, f| < e

whenever d(f, 0) < 8. Therefore,
Af] = Tim A f] < e
—1

whenever d(f, 0) < 8. This shows that A is continuous.

As an application we have the following theorem. We follow Davis’s
proof [1] of the corresponding theorem for N*.

5.4. THEOREM. M is not locally convex.

Proof. We know [3, Theorem 7.6] that there exists a singular inner
function S with the following property: If

gz) = 2 b, € H?

is orthogonal to SH?, then

> n”lb,,l2 = oo foranyy > 0.

n

In fact, if p is a singular measure with modulus of continuity

o(t, p) = 0(1 log %)

then

Sm—wﬁﬁf”mﬂ

has the property. We claim SM is not dense in M. Otherwise, Sf, — 1in M
for some sequence { f,} in M. Then Sf, — 1 in N*. But we know [7] that
SNT is closed in N'; so 1 € SN, which is a contradiction.

Now, suppose M is locally convex. Then there exists a nontrivial
continuous linear functional A on M such that

ASf) =0 forall f € M.
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By Theorem 5.3, there exists a g € 4A°°(U) such that
e —g.dl
w = tim [ @@L fem
r—1 Y0 27

Since A(SZ") = 0,n = 1,2,..., we have
2w o — df

/ elnHS(elﬂ)g(ezﬂ)_

0 2

As g € H?, gis orthogonal to SHXU). If g(z) = = b,z" then

=0, n=12,....

> nylbnl2 = oo foranyy > 0,

which is a contradiction to the fact g € A°°(U). This shows that M is not
locally convex.

6. M as an F-algebra.

6.1. THEOREM. The multiplication in M is continuous. Therefore, M is an
F-algebra.

Proof. Fix g € M. Suppose f, — fin M and f,g — hin M. Then f, — f
inN" and fig—hin N ¥ Since the multiplication in N * is continuous [1],
we have h = fg. By the closed graph theorem, f > fg is continuous
in M.

Now let f, = f and g, — g in M. Then

d(fi&m 18) = d(fi (8 — &), 0) + d(g(fy — 1), 0).

As we saw above,
d(g(f, — f.0) = 0.
Define Ak:M — M by

Then A, is a continuous linear operator. Also, Ak is convergent for each
h € M. By the uniform boundedness principle, {A,} is bounded
uniformly. Hence A; 4 — 0 uniformly on k as & — 0. Therefore

lim d(fi(g,, — £.0) =0

nm—>00
uniformly on k. Hence f,g,, — 0 as m, k — co. This shows that the
multiplication is continuous and hence M is an F-algebra.

6.2. LEMMA. Let

1y = e [ S oalien 1 4]

it _
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be an outer function. Then log|f] € Re H' if and only if
1
logt Mf, log* 1\/1(;) e LY(T).

Proof. We easily see that
1

+ i0 +
log™ | f(ré”) | + log 0]

= |B, * log|f () |.

It follows that
log™ Mf(6)
L = JSup [P, * log| f1(0) |
10g M(—)(a) =r
S

1
= log" Mf(8) + log™" M(})(o).
Therefore log|f| € Re H' if and only if
1
log"™ Mf € L(T) and log* M(?) e LY.

This completes the proof.
The following theorem characterizes the invertible elements of M.

6.3. THEOREM. The only invertible elements of M are those outer functions
[ with

log|f| € Re H'.

Proof. If f(z) = B(z)S(z)F(z) (the canonical factorization) is an
invertible element of M, it is also an invertible element of Nt so

)

B(z)S(z) = 1. That is, f(z) = F(z), the outer function. Since /' € M and
1/f € M,

logt Mf € LN(T) and log" M(}) e L\(T).

Therefore log|f] € Re H' by Lemma 6.2. The converse is obvious.
For each A € U, we define v, on M by v,(f) = f(M). Since
1

1 — A

we see that vy, defines a continuous multiplicative linear functional on M
and

log(1 + [f(A) ) = 2d(/. 0) (8]

my, = {f € Mif(\) = 0} = ker v,
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is a closed maximal ideal.

The following result characterizes the multiplicative linear functionals
on M. We follow [7] for the proof of theorems below.

6.4. THEOREM. If v is a nontrivial multiplicative linear functional on M,
then y = vy, for some A\ € U and hence X is continuous.

Proof. Let A\ = y(z). Then y(z — A) = 0. If [\| = 1, then z — A is
invertible in M; so y(z — A) # 0, a contradiction; so |JA| < 1. Consider

( — NM = { — NS e M),
If f € Mand f(\) = 0, then

f(z2) = (z — N)g(z) for some g € M,
so f € (z — AMM. Therefore

my = (z — A)M C kery.

But m, is a closed maximal ideal in M. Hence m, = ker y. Since ker vy is
closed, v is continuous. Furthermore, y(f) = f(A).

6.5. THEOREM. There exists a maximal ideal m which is not the kernel of a
multiplicative linear functional.

Proof. Let
2 il 2
S(z) = CXp(“/O ?———Z-dﬂ(t))

be a singular inner function. Since 1 & SM, SM is a proper ideal of M. By
Zorn’s lemma, there exists a maximal ideal m containing SM. If m = m,
then Sf(\) = 0 for any /' € M. But S(A) # 0 for any A; so m # m, for any
A e U

REFERENCES

1. C.S. Davis, Ph.D. Thesis, University of Wisconsin-Madison (1972).
2. N. Dunford and J. T. Schwartz, Linear operators, Part I: General theory, Pure and Appl.
Math. 7 (Interscience, New York, 1958).
3. P. L. Duren, Theory of H” spaces, Pure and Appl. Math. 38 (Academic Press, New York,
1970).
. J. B. Garnett, Bounded analytic functions (Academic Press, New York, 1981).
. G. H. Hardy and J. L. Littlewood, 4 maximal theorem with function theoretic applications,
Acta Math. 54 (1930), 81-116.
6. P. Koosis, Introduction to HP spaces, London Math. Soc. Lecture Note Series 40
(Cambridge Univ. Press, Cambridge, 1980).
7. J. W. Roberts and M. Stoll, Prime and principal ideals in the algebra N*, Arch. Math. 27
(1976), 387-393.
8. J. H. Shapiro and A. L. Shields, Unusual topological properties of the Nevanlinna class,
Amer. J. Math. 97 (1975), 915-936.
9. N. Yanagihara, On a class of functions and their integrals, Proc. AMS (1972), 550-576.

9N

https://doi.org/10.4153/CJM-1988-031-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1988-031-4

HOLOMORPHIC FUNCTIONS 741

Multipliers and linear functionals for the class N*, Trans. AMS 180 (1973),

449-461.

Bounded subsets of some spaces of holomorphic functions, Scientific Papers of the
College of General Education, University of Tokyo 23 (1973), 19-28.

12. N. Yanagihara and Y. Nakamura, Sugaku 28 (1976), 323-334 (Japanese).

10.

11.

Korea Advanced Institute of Science and Technology,
Seoul, Korea

https://doi.org/10.4153/CJM-1988-031-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1988-031-4

