CONTINUITY OF LIE DERIVATIONS ON BANACH ALGEBRAS

by M. I. BERENGUER and A. R. VILLENA

(Received 14th January 1997)

The separating subspace of any Lie derivation on a semisimple Banach algebra A is contained in the centre of A.

1991 Mathematics subject classification: 46H40, 17B40.

The Lie structure induced on a Banach algebra by the bracket [a, b] = ab - ba is of lively interest for their intimate connections with the geometry of manifolds modeled on Banach spaces. Many mathematics have studied Lie derivations on associative rings [1, 5] and Lie derivations on some Banach algebras [2, 7, 8].

A Lie derivation of a Banach algebra A is a linear map D from A into itself satisfying D([a, b]) = [D(a), b] + [a, D(b)] for all $a, b \in A$. In this paper we study the continuity of a Lie derivation D on an arbitrary semisimple Banach algebra A. We measure the continuity of D by considering its separating subspace, which is defined as the subspace S(D) of those elements $a \in A$ for which there is a sequence $\{a_n\}$ in A satisfying $\lim a_n = 0$ and $\lim D(a_n) = a$. S(D) is easily checked to be a Lie ideal of A and the closed graph theorem shows that D is continuous if, and only if, S(D) = 0.

Until further notice we assume that A is a unital semisimple complex Banach algebra and D stands for a Lie derivation of A. Let $\mathcal{Z}(A)$ denote the centre of A. For each $a \in A$ let ada denote the continuous linear operator ada(b) = [a, b] from A into itself. If P is a closed ideal of A we will denote by Q_P the quotient map from A onto A/P.

The next important result was essentially stated by M. P. Thomas and illustrate the typical sliding hump argument.

Lemma 1 [10, Proposition 1.3]. Let X and Y be Banach spaces, $\{T_n\}$ a sequence of continuous linear operators from X into itself, and let $\{R_n\}$ be a sequence of continuous linear operators from Y into Banach spaces Y_n . If F is a linear operator from X into Y such that $R_nFT_1 \cdots T_m$ is continuous for m > n, then $R_nFT_1 \cdots T_n$ is continuous for sufficiently large n.

Lemma 2. If P is a primitive ideal in A of infinite codimension, then $[A, S(D)] \subset P$.

Proof. Let us first observe that the extended centroid of A/P is \mathbb{C} (see [6, Theorem 12]) and does not satisfy the standard polynomial identity S_4 (see [9, Theorem 7.1.14]).

We claim that there exist $\lambda \in \mathbb{C}$, a linear functional μ on A, and a functional ν on A such that

$$(D(a2) - (Da)a - a(Da)) - (\lambda a2 + \mu(a)a + \nu(a)) \in P$$

for all $a \in A$. Indeed, for every $a \in A$, we have

$$0 = D([a^2, a]) = [Da^2, a] + [a^2, Da] = [Da^2 - (Da)a - a(Da), a].$$

Consequently, the map q defined on A by $q(a) = Da^2 - (Da)a - a(Da)$ is a commuting trace of the bilinear map B(a, b) = D(ab) - (Da)b - a(Db) on $A \times A$. The map q can be handled in the same way as in the proof of Theorem 1 in [1], the only difference being in the application of [1, Lemmas 1 and 2] to A/P instead of A.

We can now proceed as in the proof of [1, Theorem 4] in order to prove that the map d defined on A by $d(a) = D(a) + \lambda a + \frac{1}{2}\mu(a)$ satisfies

$$d(ab) - (d(a)b + ad(b)) \in P$$

for all $a, b \in A$ and therefore $Q_P d$ is a derivation from A to A/P. Indeed, the identity (4) in that proof becomes

$$d(ab+ba) - (d(a)b+d(b)a+ad(b)+bd(a)+\rho(a,b)) \in P$$

for all $a, b \in A$, for a suitable symmetric bilinear functional ρ on $A \times A$. The identity (7) now becomes

$$\rho(a, a)([ab, c] + [ba, c]) - \rho(a, b)[a^2, c] - \rho(a, a^2)[b, c] + (2\rho(a^2, b) - \rho(a, ab + ba))[a, c] \in P$$

for all $a, b, c \in A$. In particular $\rho(a, a)[a^2, c] - \rho(a, a^2)[a, c] \in P$ which gives $\rho(a, a)[[a^2, c], [a, c]] \in P$ for all $a, c \in A$. The arguments used in the proof of [1, Theorems 2 and 4] apply to this situation and it may be concluded that $\rho(a, b) = 0$ for all $a, b \in A$. Consequently, $d(a \cdot b) - (d(a) \cdot b + a \cdot d(b)) \in P$ for all $a, b \in A$, where $a \cdot b = \frac{1}{2}(ab + ba)$. By the same method as at the end of the proof of [1, Theorem 4] we get the relation $[a, b]r(d(ab) - d(a)b - ad(b))s[a, b] \in P$ for all $a, b, r, s \in A$, which yields the desired conclusion, since A/P is not commutative.

Our next goal is to prove that $S(d) \subset P$. To this end we set an infinite-dimensional complex irreducible Banach left A-module X such that $P = \{a \in A : aX = 0\}$. We apply the construction in [4, Theorem 2.2] to get sequences $\{a_n\}$ in A and $\{x_n\}$ in X such that

 $a_n \cdots a_1 x_n \neq 0$ and $a_{n+1} a_n \cdots a_1 x_n = 0$ for all $n \in \mathbb{N}$. For $n \in \mathbb{N}$, we define the continuous linear operators $T_n(a) = aa_n$ from A into itself, $R_n(a+P) = ax_n$ from A/P into X, and $S_n(a+P) = aa_n + P$ from A/P into itself. It is a simple matter to verify that $R_n Q_P dT_1 \cdots T_m$ is continuous for m > n. Lemma 1 shows that $R_n Q_P dT_1 \cdots T_n$ is continuous for some $n \in \mathbb{N}$. On the other hand, it is immediate that $Q_P dT_1 \cdots T_n - S_1 \cdots S_n Q_P d$ is continuous and therefore $R_n S_1 \cdots S_n Q_P d$ is continuous. Consequently,

$$0 = R_n S_1 \cdots S_n \mathcal{S}(Q_P d) = \mathcal{S}(Q_P d) a_n \cdots a_1 x_n.$$

Since $S(Q_P d)$ is easily seen to be a two-sided ideal of A/P, we see that

$$\mathcal{S}(Q_P d)X = \mathcal{S}(Q_P d)(A/P)a_n \cdots a_1 x_n \subset \mathcal{S}(Q_P d)a_n \cdots a_1 x_n = 0.$$

Hence $S(Q_P d) = 0$ and therefore $S(d) \subset P$.

For every $a \in A$, we have $adad = adaD + \lambda ada$ and [9, Proposition 6.1.9(c)] shows that $S(adaD) = \overline{ada(S(D))}$ and $S(adad) = \overline{ada(S(d))}$. Therefore

$$[a, \mathcal{S}(D)] \subset \overline{\mathrm{ad}a(\mathcal{S}(D))} = \mathcal{S}(\mathrm{ad}aD) = \mathcal{S}(\mathrm{ad}ad) = \overline{\mathrm{ad}a(\mathcal{S}(d))} \subset P$$

for all $a \in P$.

Lemma 3. $S(D) \subset Z(A)$.

Proof. Suppose that the result fails. Then the set \mathcal{P} of those primitive ideals P of A for which $[A, S(D)] \not\subset P$ is non empty. According to Lemma 2 each $P \in \mathcal{P}$ has finite codimension and therefore A/P is simple. Moreover it is obvious that dim A/P > 1. On account of [3, Theorem 2 and Corollary 1] $Q_P(S(D)) = A/P$ for every $P \in \mathcal{P}$. Let I_0 denote the intersection of all the primitive ideals of A for which $[S(D), A] \subset P$.

Take $P_1 \in \mathcal{P}$. Since $I_0 \not\subset P_1$ and A/P_1 is simple, it follows that $Q_{P_1}(I_0) = A/P_1$. Since A/P_1 is not commutative we can choose $a_1 \in I_0$ such that $[a_1, A] \not\subset P_1$.

Assume that P_1, \dots, P_n and a_1, \dots, a_n have been chosen satisfying the following conditions:

- (i) $P_k \in \mathcal{P}$,
- (ii) $a_k \in I_{k-1}$, where $I_k = I_0 \cap P_1 \cap \cdots \cap P_k$,
- (iii) $\operatorname{ad} a_1 \cdots \operatorname{ad} a_k(A) \not\subset P_k$,

for $k = 1, \dots, n$. We claim that there exists $P_{n+1} \in \mathcal{P}$ such that $I_n \not\subset P_{n+1}$ and $ada_1 \cdots ada_n(A) \not\subset P_{n+1}$. If the claim were false, there would be

$$\operatorname{ad} a_1 \cdots \operatorname{ad} a_n(A) \subset \bigcap_{P \in \mathcal{P}, I_n \not\subset P} P.$$

Let $b_1 \in A$ such that $b_2 = ada_1 \cdots ada_n(b_1) \notin P_n$ and note that $b_2 \in \bigcap_{P \in \mathcal{P}, I_n \notin P} P$. Let X be a finite-dimensional irreducible Banach left A-module with $P_n = \{a \in A : aX = 0\}$. By the Jacobson density theorem it is a simple matter to show that there exists $b_3 \in A$ such that dim $b_3b_2X = 1$ and $(b_3b_2)^2X = 0$. Set $c = b_3b_2$. Since dim cX = 1, there exists a linear functional f on A such that (cac - f(a)c)X = 0 for all $a \in A$. Consequently, we have

$$cac - f(a)c \in I_{n-1} \cap P_n \cap \left(\bigcap_{P \in \mathcal{P}, I_n \not\subset P} P\right) = \operatorname{Rad}(A) = 0.$$

Hence dim $cAc < \infty$. Since $c^2 \in P_n$, we have

$$c^2 \in I_n \cap \left(\bigcap_{P \in \mathcal{P}, I_n \notin P} P\right) = \operatorname{Rad}(A) = 0.$$

Consequently, $(adc)^2 a = -2cac$ for all $a \in A$. Since $dim(adc)^2(A) < \infty$, we see that $D(adc)^2$ is continuous. On the other hand, it is immediate that $D(adc)^2 - (adc)^2 D$ is continuous. Therefore $(adc)^2 D$ is continuous and hence $(adc)^2(\mathcal{S}(D)) = 0$. Thus $c\mathcal{S}(D)c = 0$ and

$$0 = Q_{P_n}(c)Q_{P_n}(\mathcal{S}(D))Q_{P_n}(c) = Q_{P_n}(c)(A/P_n)Q_{P_n}(c) = 0.$$

From this it follows that $Q_{P_n}(c) = 0$, a contradiction. Choose P_{n+1} with the claimed properties. On account of [1, Corollary 1] the linear subspace of A/P_{n+1} generated by $\{adQ_{P_n}(a)(Q_{P_{n+1}}(A)): a \in A\}$ equals A/P_{n+1} . Since $Q_{P_{n+1}}(I_n) = A/P_{n+1}$ and $ada_1 \cdots ada_n(A) \notin P_{n+1}$, we conclude that there is $a_{n+1} \in I_n$ such that $ada_1 \cdots ada_n ada_{n+1}(A) \notin P_{n+1}$.

Note that, for all $m, n \in \mathbb{N}$,

$$Q_{P_n} Dada_1 \cdots ada_m = \sum_{k=1}^m adQ_{P_n}(a_1) \cdots adQ_{P_n}(D(a_k)) \cdots adQ_{P_n}(a_m) + adQ_{P_n}(a_1) \cdots adQ_{P_n}(a_m)Q_{P_n}D.$$

Since $\sum_{k=1}^{m} adQ_{P_n}(a_1) \cdots adQ_{P_n}(D(a_k)) \cdots adQ_{P_n}(a_m)$ is continuous and $Q_{P_n}(a_m) = 0$ if m > n, Lemma 1 shows that $Q_{P_n}Dada_1 \cdots ada_n$ and therefore $adQ_{P_n}(a_1) \cdots adQ_{P_n}(a_n)Q_{P_n}D$ are continuous for some $n \in \mathbb{N}$. Accordingly, we have

$$0 = \operatorname{ad} Q_{P_n}(a_1) \cdots \operatorname{ad} Q_{P_n}(a_n) Q_{P_n}(\mathcal{S}(D)) = \operatorname{ad} Q_{P_n}(a_1) \cdots \operatorname{ad} Q_{P_n}(a_n) (A/P_n)$$

which contradicts the choice of a_n and P_n .

Theorem. Let D be a Lie derivation on a semisimple Banach algebra A. Then $S(D) \subset Z(A)$. Accordingly, D is continuous if Z(A) = 0.

Proof. If A is a complex Banach algebra without unit, then its unitization A_1 is a unital semisimple complex Banach algebra and we extend D to a Lie derivation on A_1 by defining $D_1(1) = 0$. The preceding lemma shows that $S(D_1) \subset Z(A_1)$. On the other hand, we have $S(D) \subset S(D_1)$ and therefore $S(D) \subset A \cap Z(A_1) = Z(A)$.

If A is a real Banach algebra, then we consider its complexification A_c and we extend D in the obvious way to a Lie derivation D_c of A_c . From what has already been proved, we conclude that

$$\mathcal{S}(D) \subset A \cap \mathcal{S}(D_{c}) \subset A \cap \mathcal{Z}(A_{c}) = \mathcal{Z}(A).$$

Next we show a discontinuous derivation on a semisimple Banach algebra whose centre is \mathbb{C} .

Example. Let A be the Banach algebra of the Hilbert-Schmidt operators on an infinite-dimensional complex Hilbert space with an identity adjoined. A is semisimple, $\mathcal{Z}(A) = \mathbb{C}$, and [a, b] is a trace class operator whenever a, b lie in A. Therefore [A, A] is not closed in A and hence there exists a discontinuous linear functional f on A whose kernel contains [A, A]. The discontinuous linear operator D from A into itself defined by D(a) = f(a)1 is easily seen to be a Lie derivation of A.

REFERENCES

1. M. BREŠAR, Commuting traces of biadditive mappings, commutativity preserving mappings and Lie mappings, *Trans. Amer. Math. Soc.* 335 (1993), 525–546.

2. P. DE LA HARPE, Classical Banach-Lie algebras and Banach Lie groups of operators in Hilbert space (Lecture Notes in Math. 285, Springer-Verlag, Berlin, 1972).

3. I. N. HERSTEIN, Lie and Jordan structures in simple, associative rings, Bull. Amer. Math. Soc. 67 (1961), 517-531.

4. B. E. JOHNSON and A. M. SINCLAIR, Continuity of derivations and a problem of Kaplansky, *Amer. J. Math.* 90 (1968), 1067–1073.

5. W. S. MARTINDALE, 3rd, Lie derivations of primitive rings, Michigan Math. J. 11 (1964), 183-187.

6. W. S. MARTINDALE, 3rd, Lie isomorphisms of prime rings, Trans. Amer. Math. Soc. 142 (1969), 437-455.

7. C. R. MIERS, Lie derivations of von Neumann algebras, Duke Math. J. 40 (1973), 403-409.

8. C. R. MIERS, Lie triple derivations of von Neumann algebras, Proc. Amer. Math. Soc. 71 (1978), 57-61.

M. I. BERENGUER AND A. R. VILLENA

9. T. W. PALMER, Banach Algebras and the General Theory of *-algebras. Volume I: Algebras and Banach Algebras (Cambridge University Press, 1994).

10. M. P. THOMAS, Primitive derivations on non-commutative Banach algebras, *Pacific J.* Math. 159 (1993), 139–152.

DEPARTAMENTO DE ANALISIS MATEMATICO FACULTAD DE CIENCIAS UNIVERSIDAD DE GRANADA 18071 GRANADA SPAIN *E-mail:* avillena@goliat.ugr.es