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In this paper, the interaction between an upper-layer vortex and a bottom topography is
investigated using an f -plane two-layer quasi-geostrophic model with a point vortex and
step-like topography. The contour dynamics method is used to formulate the model. A
steadily propagating linear solution along the topography, known as the pseudoimage
solution, is derived analytically for a weak point vortex, and the nonlinear solution
is obtained numerically. Numerical experiments show that the nonlinear pseudoimage
solution collapses with time. Saddle-node points in the velocity field are critical in
this collapse. Even after the collapse, the point vortex propagates along the topography
similarly to in the steadily propagating solution. Numerical experiments with various
initial conditions show that the point vortex has two types of motion in this system:
motion along the topography and motion away from the topography. In the latter case, the
point vortex and lower-layer potential vorticity anomaly form a heton-like dipole structure.
The motion classification results show that an anticyclonic (cyclonic) point vortex on
the deeper (shallower) side is more likely to form a dipole structure than a cyclonic
(anticyclonic) vortex on the deeper (shallower) side when their initial distance from the
topography is the same.

Key words: quasi-geostrophic flows, vortex dynamics, contour dynamics

1. Introduction

Ocean mesoscale eddies play an essential role in water exchange and material circulation.
In particular, western boundary regions are well known as areas with western boundary
currents characterized by eddy activity, with oceanic eddy termination frequently
occurring because the eddies tend to move westward (Chelton, Schlax & Samelson
2011). Since oceanic eddies transport momentum, heat and water masses, investigating
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their behaviour is essential for understanding the ocean environment and its variability
in the western region (Spall et al. 2008; Chelton et al. 2011; Baird & Ridgway 2012;
Dong et al. 2014). Western ocean regions have distinct topography, including continental
shelves/slopes. Since distinct topography can play an essential role in the evolution of
eddies, the investigation of eddy–topography interactions is critical for understanding the
material transport via the movement of eddies (Spall et al. 2008; Itoh & Yasuda 2010;
Ribbe et al. 2018).

A characteristic phenomenon in western boundary regions is that anticyclonic eddies
propagate poleward along the coast. On the eastern coast of Japan, Kuroshio warm-core
rings have been observed to propagate north (Yasuda, Okuda & Hirai 1992; Kaneko
et al. 2015). In the South Pacific, many observations have shown that anticyclonic eddies
that form off the eastern coast of Australia move poleward along the western boundary
(Schaeffer et al. 2017; Azis Ismail & Ribbe 2019). Itoh & Sugimoto (2001) numerically
reproduced the poleward movement of an eddy that was initially near the topography using
primitive equations and found that the effect of the steep bottom slope was an important
factor in this motion.

In the open ocean, eddies largely propagate west due to the β-effect; once eddies reach
the western boundary, they typically move along that boundary as if they are trapped.
However, there is an eastward-propagating solution with a dipole structure. This structure
is known as a modon (Stern 1975; Flierl et al. 1980). Hughes & Miller (2017) recently
observed modons moving eastward in the Tasman Sea using satellite altimeter data and
suggested that the bottom topography could play an important role in the formation
process. While the modon is a solution consisting of two vortices in the same density layer,
a dipole structure with eddies in different layers is also possible. This type of structure
is known as a heton (Hogg & Stommel 1985). Since hetons have high heat and material
transport capabilities, they are thought to be significant structures in the ocean (Richardson
& Tychensky 1998; Morel & McWilliams 2001; Serra & Ambar 2002; Carton et al. 2010;
Serra, Ambar & Boutov 2010).

Several studies have used idealized models to investigate the interaction between eddies
and the bottom topography (Wang 1991; McDonald 1998; Dunn, McDonald & Johnson
2001; White & McDonald 2004; Baker-Yeboah et al. 2010; Zhang, Pedlosky & Flierl 2011;
de Marez et al. 2017). McDonald (1998) and Dunn et al. (2001) studied the motion of
a point vortex near a step-like topography in a 1.5-layer quasi-geostrophic model in the
f -plane. McDonald (1998) found that intense vortices cause a potential vorticity front,
which is located along the topography, to wrap around themselves. They defined an
intense vortex as one in which the time scale for vortex circulation, Ta, is much shorter
than the time scale for topographic wave generation, Tw. Dunn et al. (2001) investigated
moderate, Tw ≈ Ta, and weak, Tw � Ta, point vortices. They found that a moderate vortex
forms a dipole structure consisting of a point vortex and the vortex caused by potential
vorticity conservation, while a weak vortex propagates steadily along the topography. They
analytically showed that a weak vortex propagates parallel to the topography. They referred
to this phenomenon as the pseudoimage of the vortex and derived its linear solution. Other
studies have also confirmed that the interaction of a vortex with a step-like topography
causes propagating vortices along the topography and the formation of dipole structures
(Dunn 2002; Dunn, McDonald & Johnson 2002; White & McDonald 2004).

Previous studies focused solely on situations in which vortices were located in the
same layer as the topography. However, the interaction between an upper-layer vortex
and a lower-layer topography is important to consider for oceanic applications because
of density stratification in real environments. Moreover, it is reasonable to hypothesize
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that the distance between the topography and the vortex is an important parameter for
controlling the system. However, the dependence of this parameter on vortex motion is
still unclear. Therefore, we investigated the interaction between the upper vortex and the
lower step-like topography using a two-layer quasi-geostrophic model in an f -plane. The
purpose of the present study is to clarify the types of motion that occur in this system and
the properties of each motion type.

After formulating the problem in § 2, we show the analytical results based on linear
theory at the limit of a weak point vortex in § 3. A finite-amplitude pseudoimage solution
is derived in § 4. In § 5, we numerically investigate the temporal evolution of both the
pseudoimage solution and the system. The conclusions are presented in § 6.

2. Model formulation

2.1. Potential vorticity and point vortex equations
In the present study, we used a two-layer quasi-geostrophic model in the f -plane, with
the point vortex in the upper layer and the step-like topography in the lower layer (see
figure 1). Our model has two layers with an average thickness of Hj and a density of ρj,
where j = 1, 2 denotes the upper and lower layers, respectively. The density in each layer is
written in terms of the reference density of the fluid, ρ0, and the density difference between
the two layers, Δρ, as ρ1 = ρ0 and ρ2 = ρ0 + Δρ. The point vortex in the upper layer has
a circulation of Γ and is located at a distance of Y0 from the topography. In the lower layer,
hB, which denotes the bottom topography, is written as hB = −ΔHsgn( y), where ΔH is
the amplitude of the bottom topography and sgn( y) is the sign function. Assuming that
ΔH/H2 � 1, we can use the quasi-geostrophic approximation to formulate this system.
The governing equation and the quasi-geostrophic potential vorticity, qj, in each layer can
be written in non-dimensional forms as

∂qj

∂t
+ J(ψj, qj) = 0, (2.1)

q1 = ∇2ψ1 − γLψ1 − (ψ1 − ψ2), (2.2)

q2 = ∇2ψ2 + γH(ψ1 − ψ2)+ hB, (2.3)

where t is the time, J is the Jacobian and ψj is the streamfunction in the jth layer. The
equations in this system were non-dimensionalized using the length scale L = √

g′H1/f
and the time scale T = ( f ΔH/H2)

−1, where g′ is the reduced gravity and f is the Coriolis
parameter. We scaled the relative vorticity by T−1 = f ΔH/H2 and the streamfunctions
by L2T−1 = (g′H1/f )(ΔH/H2). The non-dimensional amplitude of the point vortex
circulation is ε = |Γ |T/L2 = |Γ |f /(g′H1)/(ΔH/H2). The remaining non-dimensional
parameters in the equations are γH = H1/H2 and γL = Δρ/ρ0. In addition to these
non-dimensional parameters, the initial y-coordinate of the point vortex, Y0, contributes
to the behaviour of this system. Also, Y0 is non-dimensionalized by L. It should be noted
that the streamfunction in the jth layer is invariant under the transformation ψj(x, y) →
−ψj(x,−y).

Our model has a point vortex in the upper layer and a potential vorticity front that
initially lies along the step-like topography, y = 0, in the lower layer. Based on the
locations of the point vortex, (X(t), Y(t)), and the potential vorticity front, y = η(t, x),
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Figure 1. Schematic illustration of the model configuration. (a) The cross-section of the two-layer fluid. (b)
The initial condition for this problem. The point vortex indicated by ∗ is located at y = Y0 and has a circulation
of Γ .

we can write the non-dimensional potential vorticity in each layer as

q1 = εsgn(Γ )δ(x − X, y − Y), (2.4)

q2 = −sgn( y − η). (2.5)

The velocity caused by the topography can be determined based on the potential vorticity
anomaly in the lower layer, Δq2. This anomaly occurs because of the displacement
between the potential vorticity front and the topography and is given by

Δq2 =
⎧⎨
⎩

+2, 0 < y < η

−2, η < y < 0
0, otherwise

. (2.6)

In terms of η(t, x), X(t) and Y(t), the governing equation in this system can be written as

∂η

∂t
+ u2(t, x, η)

∂η

∂x
= v2(t, x, η), (2.7)

dX
dt

= u1(t,X, Y),
dY
dt

= v1(t,X, Y), (2.8)

where uj and vj are the horizontal components of the velocity and are given by

uj = −∂ψj

∂y
, vj = ∂ψj

∂x
. (2.9a,b)

The streamfunction is determined by the equations

∇2
(
ψ1
ψ2

)
− M

(
ψ1
ψ2

)
=
(
εsgn(Γ )δ(x − X, y − Y)

Δq2

)
, (2.10)

written in vector form, where the coefficient matrix, M , can be written as

M =
(
γL + 1 −1
−γH γH

)
. (2.11)

947 A45-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

66
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.667


Interaction between an upper-layer point vortex and a bottom

2.2. Vertical mode decomposition
The streamfunctions in each layer can be decomposed into vertical modes. The eigenvalues
and eigenvectors of M are denoted by λ± and V ± = (U±,V±), which can be written as

λ± = 1 + γL + γH ±
√
(1 + γL + γH)2 − 4γHγL

2
, (2.12)

V ± = (U±,V±) =
(

1,
1 + γL − λ±

γH

)
. (2.13)

We note that the quantities λ−1/2
+ and λ−1/2

− correspond to the non-dimensional internal
and external Rossby radii of deformation, respectively. We can define the streamfunctions
of the + and − modes as

ψ± = U±ψ1 + V±ψ2. (2.14)

By substituting (2.14) into (2.10) and using Green’s function, we can write ψ± as

ψ±(t, x, y) = U±εsgn(Γ )G±(x,X, y, Y)+ 2V±
∫ ∞

−∞
dx′

∫ η(t,x′)

0
dy′G±(x, x′, y, y′),

(2.15)
where the Green’s function in each mode, G±, is given by

G±(x, x′, y, y′) = − 1
2π

K0

(√
λ±
√
(x − x′)2 + ( y − y′)2

)
. (2.16)

The streamfunction in each layer, ψj, can be obtained from (2.14) and (2.16). We can
decompose the streamfunction ψj into the point vortex effect, Ψj, and the topographic
effect, φj. According to (2.16) and (2.15), the streamfunctions caused by the point vortex
can be written as

Ψ1 = −εsgn(Γ )
V−−V+

{V+G−(x,X, y, Y)− V−G+(x,X, y, Y)} , (2.17)

Ψ2 = εsgn(Γ )
V−−V+

{G−(x,X, y, Y)− G+(x,X, y, Y)} , (2.18)

while those caused by the topography can be written as

φ1 = 2V+V−
V−−V+

∫ ∞

−∞
dx′

∫ η(t,x′)

0
dy′ {G−(x, x′, y, y′)− G+(x, x′, y, y′)

}
, (2.19)

φ2 = 2
V−−V+

∫ ∞

−∞
dx′

∫ η(t,x′)

0
dy′ {V−G−(x, x′, y, y′)− V+G+(x, x′, y, y′)

}
, (2.20)

where U± = 1.

2.3. Contour dynamics
The flow field in this system is given by (2.9a,b) and (2.17)–(2.20). The horizontal velocity
in the jth layer, uj = (uj, vj), is the sum of the velocity due to the point vortex, up

j , and the
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velocity due to the topography, ut
j. According to (2.17) and (2.18), the velocity in the upper

layer due to the point vortex can be written as

up
1(t, x, y) = εsgn(Γ )

V−−V+

{
V+
∂G−
∂y

(x,X, y, Y)− V−
∂G+
∂y

(x,X, y, Y)
}
, (2.21)

v
p
1(t, x, y) = −εsgn(Γ )

V−−V+

{
V+
∂G−
∂x

(x,X, y, Y)− V−
∂G+
∂x

(x,X, y, Y)
}
, (2.22)

while the velocity in the lower layer due to the point vortex can be written as

up
2(t, x, y) = −εsgn(Γ )

V−−V+

{
∂G−
∂y

(x,X, y, Y)− ∂G+
∂y

(x,X, y, Y)
}
, (2.23)

v
p
2(t, x, y) = εsgn(Γ )

V−−V+

{
∂G−
∂x

(x,X, y, Y)− ∂G+
∂x

(x,X, y, Y)
}
. (2.24)

According to (2.19) and (2.20), the velocity in the upper layer due to the topography can
be written as

ut
1(t, x, y) = 2V+V−

V−−V+

∫ ∞

−∞
dx′ {G−(x, x′, y, η)− G+(x, x′, y, η) ,

−G−(x, x′, y, 0)+ G+(x, x′, y, 0)
}

(2.25)

vt
1(t, x, y) = 2V+V−

V−−V+

∫ ∞

−∞
dx′ {G−(x, x′, y, η)− G+(x, x′, y, η)

} ∂η
∂x′ (t, x′), (2.26)

while the velocity in the lower layer due to the topography can be written as

ut
2(t, x, y) = 2

V−−V+

∫ ∞

−∞
dx′ {V−G−(x, x′, y, η)− V+G+(x, x′, y, η) ,

−V−G−(x, x′, y, 0)+ V+G+(x, x′, y, 0)
}

(2.27)

vt
2(t, x, y) = 2

V−−V+

∫ ∞

−∞
dx′ {V−G−(x, x′, y, η)− V+G+(x, x′, y, η)

} ∂η
∂x′ (t, x′).

(2.28)

According to (2.7) and (2.8), we can determine the evolution of the system by using
(2.23)–(2.28) to calculate the advection velocity at the front and at the point vortex.

The method of contour dynamics was used in this study to calculate the temporal
evolution of the system (Zabusky, Hughes & Roberts 1979). The contour dynamics method
allows for an accurate treatment of inviscid fluid dynamics and has been used in numerous
studies on the interaction between vortices and potential vorticity fronts (Stern & Flierl
1987; Bell 1989; Wang 1991; McDonald 1998; Dunn et al. 2001; Dunn 2002; White &
McDonald 2004; Baker-Yeboah et al. 2010; Zhang et al. 2011).

3. Linear dynamics and pseudoimage solutions

3.1. Linearized equations
If we assume that the displacement of the potential vorticity front is small, |η| � 1, and
we maintain |η| � 1, we can also assume that ε ≤ O(|η|). Then, the governing equation
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(2.7) becomes
∂η

∂t
= v

p
2(t, x, 0)+ vt

2(t, x, 0), (3.1)

where the O(|η|2) terms are neglected. In this approximation, the velocities caused by the
topography can be written as

ut
1(t, x, y) = 2V−V+

V−−V+

∫ ∞

−∞
dx′

{
∂G−
∂y′ (x, x′, y, 0)− ∂G+

∂y′ (x, x′, y, 0)
}
η(t, x′), (3.2)

vt
1(t, x, y) = 2V−V+

V−−V+

∫ ∞

−∞
dx′ {G−(x, x′, y, 0)− G+(x, x′, y, 0)

} ∂η
∂x′ (t, x′), (3.3)

in the upper layer and

ut
2(t, x, y) = 2

V−−V+

∫ ∞

−∞
dx′

{
V−
∂G−
∂y′ (x, x′, y, 0)− V+

∂G+
∂y′ (x, x′, y, 0)

}
η(t, x′),

(3.4)

vt
2(t, x, y) = 2

V−−V+

∫ ∞

−∞
dx′ {V−G−(x, x′, y, 0)− V+G+(x, x′, y, 0)

} ∂η
∂x′ (t, x′), (3.5)

in the lower layer.

3.2. Linear topographic wave
In the absence of a point vortex, we examined the waves governed by linearized equations
(3.1). Substituting the form of the wave solution, η = η̂0 exp{i(kx − ωt)}, where η̂0 is a
constant amplitude, k is the wavenumber in the x-direction and ω is the frequency, into
the governing equation, we obtain the condition for the existence of a non-trivial solution,
η̂0 /= 0, as

ω = k
V−−V+

(
V−√

k2 + λ−
− V+√

k2 + λ+

)
, (3.6)

where we used both (2.16) and the relation∫ ∞

−∞
dx exp(−ikx)K0

(√
λ±(x2 + y2)

)
= π exp(−|y|

√
k2 + λ±)√

k2 + λ±
. (3.7)

This relation (3.6) is the dispersion relation for linear topographic Rossby waves
propagating along a step-like topography which has been derived by Rhines (1977).
According to (3.6), the phase speed and group velocity are

c = 1
V−−V+

(
V−√

k2 + λ−
− V+√

k2 + λ+

)
, (3.8)

cg = 1
V−−V+

(
λ−V−

(k2 + λ−)3/2 − λ+V+
(k2 + λ+)3/2

)
, (3.9)

respectively. Since λ− < λ+ and V+ < V− hold for any value of k, c and cg are always
positive.
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3.3. Linear pseudoimage solutions
In a previous study, Dunn et al. (2001) used a 1.5-layer model to show the motion of a point
vortex propagating steadily along a step-like topography and referred to this phenomenon
as the pseudoimage of the vortex. In this study, we sought to determine the linear solution,
referred to as the linear pseudoimage solution, and to investigate the properties of the
solution.

To determine the steadily propagating solution of (3.1) that progresses with the point
vortex, we assumed that the solution was in the form η = η(x − cpset), where the
propagating speed, cpse, is given as cpse ≡ dX/dt. Since dX/dt = ut

1(t,X, Y) = O(ε), we
can consider a situation in which the point vortex is fixed at (0, Y0). According to (3.1),
the governing equation then becomes

−cpse
∂η

∂x
= ∂Ψ2

∂x
(x, 0)+ 2

V−−V+

∫ ∞

−∞
dx′ {V−G−(x, x′, 0, 0)− V+G+(x, x′, 0, 0)

}
× ∂η

∂x′ (t, x′), (3.10)

where vp
2 = ∂Ψ2/∂x. Although the term on the left side in the above equation has an order

of O(ε2), to investigate the asymmetry of the solution due to the sign of cpse, we leave this
term explicitly in the equation. Using both Fourier transform methods and (2.16) and (3.7),
we can obtain the solution to (3.10) as

η(x − cpse) = 1
2π

∫ ∞

−∞
dk

exp(ik(x − cpset))
c − cpse

F [Ψ2(x, 0)], (3.11)

where c is the phase speed of the topographic Rossby waves (3.8), and F [Ψ2] is the Fourier
transform of Ψ2,

F [Ψ2(x, 0)] = −1
2
εsgn(Γ )
V−−V+

{
exp(−|Y0|

√
k2 + λ−)√

k2 + λ−
− exp(−|Y0|

√
k2 + λ+)√

k2 + λ+

}
. (3.12)

By substituting (3.11) into the linearized streamfunction caused by the topography, φj, we
can obtain the linear pseudoimage solution in the two-layer model

φ1 = −1
2π

V−V+
V−−V+

∫ ∞

−∞
dk

exp(ik(x − cpset))
c − cpse

×
(

exp(−|y|
√

k2 + λ−)√
k2 + λ−

− exp(−|y|
√

k2 + λ+)√
k2 + λ+

)
F [Ψ2(x, 0)], (3.13)

φ2 = −1
2π

1
V−−V+

∫ ∞

−∞
dk

exp(ik(x − cpset))
c − cpse

×
(

V− exp(−|y|
√

k2 + λ−)√
k2 + λ−

− V+ exp(−|y|
√

k2 + λ+)√
k2 + λ+

)
F [Ψ2(x, 0)]. (3.14)

The propagating velocity, cpse, is given as

cpse = −∂φ1

∂y
(0, Y0) = sgn(Y0)

2π

V−V+
V−−V+

×
∫ ∞

−∞
dk

exp(−|Y0|
√

k2 + λ−)− exp(−|Y0|
√

k2 + λ+)
c − cpse

F [Ψ2(0, 0)]. (3.15)
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Figure 2. The φj field (a,c) and the φj + Ψj field (b,d) of the linear pseudoimage solution in the upper layer
(a,b) and lower layer (c,d). The positive and negative streamlines are indicated by the solid and dashed lines,
respectively. The positions of the maximum or minimum value are denoted by the cross. In the left panels, the
contour interval is 0.005, and the minimum values are −0.0235 in the upper layer and −0.0292 in the lower
layer. In the right panels, the contour interval is 0.001, and the maximum values are 0.0694 in the upper layer
and 0.0098 in the lower layer. In all the cases shown here, sgn(Γ ) = −1, ε = 0.1, Y0 = 1, γL = 10−3 and
γH = 1. The point vortex is indicated by the closed circle at (0,1). The topography is located along y = 0.

The sign of cpse is equal to the sign of Y0Γ . The fields of the streamfunction, φj and
φj + Ψj, are shown in figure 2. Although the φj field is similar to its counterpart in the
1.5-layer model, the φj + Ψj field differs from its counterpart. In the 1.5-layer model, the
fluid on the opposite side of the point vortex is at rest because the pseudoimage solution
completely cancels any effects from the point vortex on this side. In a two-layer model,
this cancellation is achieved only in the vicinity of the topography in the lower layer.

3.4. Small but non-zero amplitude pseudoimage solution
If we suppose that 0 < ε � 1 but ε is finite, we can examine the properties of a two-layer
pseudoimage with a finite amplitude. In this parameter region, φj may have poles at the
wavenumbers, kc, that satisfy c = cpse. The integrations (3.13) and (3.14) do not include
kc when the point vortex moves in the opposite direction of the topographic waves, i.e.
cpse < 0. In contrast, if cpse > 0, the solutions include a singularity because the path
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Figure 3. (a) The dependencies of the wavenumbers, kc, which satisfy c = cpse on sgn(Γ )ε for Y0 = 1 and
are calculated from (3.8) and (3.15). Since c is a function of k2, there are both positive and negative kc.
As sgn(Γ )ε → 0, |kc| diverges to infinity. (b) The dependence of the propagation velocity, cpse, on Y0. The
propagation velocity has a maximum at approximately Y0 = 0.7. In both panels, γH = 1 and γL = 10−3.

must contain kc. In the 1.5-layer model, Dunn et al. (2001) confirmed that a finite length
wave train in the wake of the vortex is excited and that the point vortex drifts towards the
topography due to the presence of the singularity. Similar behaviours are expected in the
two-layer model. However, since the poles kc correspond to short waves, the singularity
only has a small influence on the pseudoimage solution (see figure 3a).

Figure 3(b) shows the Y0 dependence of cpse in the parameter region 0 < ε � 1. The
propagation speed, |cpse|, does not monotonically decrease along Y0, and it has an extreme
value at Y0 ≈ 0.7. This corresponds to the radial distance in the lower layer where the
upper-point vortex has its maximum azimuthal velocity, i.e. the internal Rossby radius of
deformation, λ−1/2

+ ≈ 0.7. Another feature is that cpse is non-singular as Y0 → 0. This
non-singularity occurs because the lower layer lacks a singular point at the location of the
point vortex.

4. Finite-amplitude pseudoimage solution

It is difficult to obtain analytical expressions for finite-amplitude, nonlinear solutions. In
this section, we determined finite-amplitude steadily propagating solutions by numerically
solving (2.7) with (2.21)–(2.28). According to the linear arguments, the finite-amplitude
pseudoimage solutions can exist only when sgn(Γ Y0) = −1. Hence, in this section, we
focus on the case of an anticyclonic point vortex at the deeper side.

First, we use the Galilean transformation,

x → ξ = x − cpset. (4.1)

Then, the governing equation can be written as

− cpse
∂η

∂ξ
+ u2

∂η

∂ξ
= v2. (4.2)

As a result, the pseudoimage solutions satisfy the equation

∂η

∂ξ
= v2

u2 − cpse
. (4.3)

The boundary condition can be written as

η → 0 as |ξ | → ∞. (4.4)
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Interaction between an upper-layer point vortex and a bottom

Furthermore, we assume that the solution is symmetric with ξ = 0. Therefore, we have

η(−ξ) = η(ξ). (4.5)

We compute η only for ξ ≤ 0.
To perform the numerical calculations, we discretize the potential vorticity front into

N nodes for −ξ∞ ≤ ξn ≤ 0, where ξ1 = −ξ∞ and ξN = 0. Since the contribution of the
far field is weak in the integration (2.28) and (2.29), the node spacing near the crest
should be fine, whereas the spacing in the far field can be rough. Therefore, we set
ξn = μ0(n − N) for n ≥ N1 and ξn = −W + 1 − μ0(N1 − n)− exp[μ0(N1 − n)/5] for
n < N1, where W = μ0(N − N1) and ξ∞ = W − 1 + μ0(N1 − 1)+ exp[μ0(N1 − 1)/5].
In this study, we set μ0 = 0.02, N = 2650 and N1 = 1150; thus, we have W = 30 and
ξ∞ � 151. The finite-difference form of (4.3) is

ηn+1 − ηn−1

ξn+1 − ξn−1
= v2,n

u2,n − cpse
, n = 1, . . . , 2N − 1. (4.6)

The boundary conditions at ξ = ξ1, ξN are

η1 = 0, (4.7)

ηN = ηN−1 − ηN−2

ξN−1 − ξN−2
(ξN − ξN−1)+ ηN−1, (4.8)

where (4.7) corresponds to (4.4), and (4.8) indicates that the front can be approximated as
a quadratic function near the origin. As a result, we can obtain the frontal displacement, ηn,
and the propagation velocity, cpse, for the given values of ε by solving (4.6), (4.7), (4.8),
with the condition that the solution propagates with the point vortex, cpse = u1(0, Y0),
where the point vortex is located at (0, Y0). We used MINPACK (Moreé, Garbow &
Hillstrom 1980) to solve the nonlinear simultaneous equations, with the front displacement
of the linear solution (3.11) as the initial value in the iterative calculation. In this study,
the midpoint method was used for the numerical integration. The validity of the obtained
solutions was confirmed by conducting numerical experiments with the solutions as initial
conditions. In the following subsections, we set the remaining parameter values as γH = 1,
γL = 10−3 and Y0 = 1.

4.1. Dependency on ε
Figure 4 shows the frontal displacement and propagation speeds for various values of ε
obtained by solving the simultaneous equations. As ε increases, both the displacement
and the propagation speed, |cpse|, increase. Figure 4(b) suggests that the linear solution is
valid for small values of ε. Figure 5 shows that the nonlinearity sharpens the peak of the
frontal displacement.

4.2. The saddle-node point
Figure 6 shows the current vectors caused by the frontal displacement and the point vortex
in ξ–y coordinates. There are two saddle-node points in the front with u2 − cpse = 0. Since
these points also exist when ε is small, the existence of these points is believed to be a
common feature of the pseudoimage solutions. The existence of this point may affect the
time evolution of the front as in eddy–jet interactions (Bell & Pratt 1992; Capet & Carton
2004); this will be investigated with numerical experiments in § 5.1.
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Figure 4. (a) The potential vorticity front and (b) its propagation speed for each value of ε. Here, ε ranges from
0.1 to 1 in steps of 0.1. The front with the maximum displacement was observed for ε = 1. The propagation
speed obtained by the linear solution is indicated by the dashed line in the right panel.
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Figure 5. The potential vorticity front of the linear (dashed line) and nonlinear (solid line) solutions for
ε = 1.
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Figure 6. The potential vorticity front of the nonlinear solution and the current vectors caused by the nonlinear
solution and the point vortex in ξ–y coordinates. (a) Shows the case ε = 0.1, and (b) shows the case ε = 1. The
closed circles on the front represent the saddle points.

5. Numerical experiments for nonlinear evolution

In this section, we perform numerical experiments. First, we consider the temporal
evolution of the pseudoimage solution obtained in the previous section. Then, to
investigate the temporal evolution of the system in the parameter space consisting of ε
and Y0, we perform numerical experiments with various initial conditions.
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Interaction between an upper-layer point vortex and a bottom

As in the previous section, we resolve the front into discrete nodes with positions
(xn, ηn). From the Lagrangian perspective, the temporal evolution of these nodes can be
written as

dxn

dt
= u2(t, xn, ηn), (5.1)

dηn

dt
= v2(t, xn, ηn). (5.2)

We can determine the temporal evolution of the system by calculating (2.8), (5.1) and
(5.2). The velocities advecting the point vortex and the front can be evaluated numerically
by calculating (2.21)–(2.28). The numerical integration scheme used to calculate the
velocities is the same as in the previous section. The initial node distribution is the same as
that in § 4. Since the front near the point vortex elongates with time in its evolution, a new
node is added by linear interpolation to keep a spatial resolution when the distance between
the adjacent nodes, μ, is μ > 1.5μ0, where μ0 = 0.02. This interpolation is performed in
the region of |x| ≤ W because the elongation of the front is negligibly small in the region
of |x| > W, where W = 30. When filamentation structures appear, the number of nodes in
the front rapidly increases. To avoid calculating a large number of nodes, we use a contour
surgery algorithm (Dritschel 1988; Shimada & Kubokawa 1997). In particular, we employ
the algorithm described in Shimada & Kubokawa (1997). The validity of the predefined
parameter μc, the minimum distance between two segments on the front, was verified by
comparing the area surrounded by the front and the topography in surgery and no-surgery
experiments for several different parameters. The fourth-order Runge–Kutta method was
used for time integration in the numerical experiments. The accuracy of the calculation
was verified by comparing the phase speed of a small-amplitude sine wave in the absence
of a point vortex calculated by the numerical experiment with the analytical result (3.8).
All the numerical experiments in this section used γL = 10−3, γH = 1, μc = 0.002 and a
time step of Δt = 0.01. The parameters ε and Y0 are shown for each experiment.

5.1. Temporal evolution of the pseudoimage
Figure 7 shows the evolution of the nonlinear pseudoimage solution for ε = 1. Figure 7(a)
demonstrates that a frontal wave was generated, and that the wavenumber increased as the
wave approached the saddle-node point in the direction of movement. Figure 7(b) shows
that the frontal wave is stationary and grows near the saddle-node points in the coordinate
system that moves with the pseudoimage. These features suggest that the symmetry of the
pseudoimage solutions is unstable and likely to collapse (see figure 8a). On the other hand,
the propagation speed of the point vortex remains nearly constant for some time, as shown
in figure 8(b), suggesting that the interaction between the vortex and the potential vorticity
anomaly is insensitive to the shape of the front. The frontal wave dynamics is the same as
that of the topographic waves. The phase speed along the front, cf , can be written as

cf = u2 + c, (5.3)

where u2 is the velocity along the front and c is given by (3.8). Since the waves are
stationary in the moving coordinate system, i.e. cf − cpse = 0, we can calculate the
wavenumber as

0 = u2 + c − cpse, (5.4)

which shows that k is infinitely large at the stagnation point. Figure 9(a) shows the
frontal displacement of the frontal wave at t = 50, which we can use to estimate the local
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Figure 7. (a) Temporal evolution of the front of the nonlinear solution for ε = 1. The solid line corresponds
to the front at t = 50, while the dash-dotted line corresponds to the front at t = 0. The fluid in the shaded area
has a higher potential vorticity. (b) Temporal evolution of the amplitude of the frontal wave in the coordinate
system moving at cpse. The remaining parameter is Y0 = 1.
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Figure 8. (a) Temporal evolution of the front of the nonlinear solution for ε = 1. The solid line corresponds
to the front at t = 400, while the dash-dotted line corresponds to the front at t = 0. The fluid in the shaded
area has a higher potential vorticity. (b) Temporal evolution of the ratio of the propagation velocity of the point
vortex, up, to the propagation velocity obtained from the nonlinear solution, cpse. The parameters used in the
numerical experiment are the same as those in figure 7.

wavenumber as a function of the moving coordinate, ζ = x − cpset. Figure 9(b) shows that
the wavenumbers calculated by (5.3) agree well with those estimated from the experiment.
The theoretical group velocity based on the wavenumber in the moving coordinate system,
cgf = u2 − cpse + cg, where cg is given by (3.9), is shown in figure 9(c). The group
velocity in the ξ -direction is negative and vanishes at the stagnation point. Therefore,
according to the experimental result shown in figure 7, the wave energy converges at the
stagnation point.

5.2. Generation of a heton-like vortex pair and the classification of the motion based on ε
We show the results of experiments in which the parameter ε was varied, and we reveal the
typical temporal evolution patterns of this system. In all the experiments in this subsection,
the initial position of the point vortex was fixed at (0, 1), and there was initially no frontal
displacement.
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Figure 9. (a) The frontal disturbance caused by the difference between the η obtained from the numerical
experiment at t = 50 and that obtained from the nonlinear pseudoimage solution. (b) The distribution of the
stationary wavenumber. The solid line indicates the stationary local wavenumber obtained from the phase
velocity of the linear frontal wave, while the crosses indicate the local wavenumber estimated from (a). (c) The
group velocity of the stationary wavenumber as a function of ε. In all panels, the closed circles on the zero
vertical coordinate denote the ξ coordinate of the saddle-node points, and the shaded area corresponds to the
region where u2 − cpse < 0. The parameters used in the numerical experiment are the same as those in figure 7.

5.2.1. An anticyclonic point vortex
We first consider the case of an anticyclonic point vortex, i.e. sgn(Γ ) = −1. Figure 10
shows the temporal evolution of the potential vorticity front interacting with the point
vortex with ε = 0.1. The temporal evolution of the velocity of the point vortex, (up, vp), is
shown in figure 11. The point vortex moves steadily along the topography, combining
with the vortex caused by the small frontal displacement. We refer to the behaviour
in which the point vortex moves along the topography as pseudoimage-type behaviour.
Because the amplitude is small in this case, the disturbance retains the shape of the
pseudoimage solution. When ε is larger, e.g. ε = 1, the disturbances collapse, similar to
those shown in figure 8(b); however, they are classified as pseudoimages if they move
along the topography.

Figure 12 shows the evolution of the front and the point vortex for ε = 10. The temporal
evolution of (up, vp) is shown in figure 13. The point vortex attracts the high potential
vorticity fluid from the shallow side, forming a dipole structure. Due to the formation
of this dipole structure, the point vortex has a velocity component perpendicular to the
topography, vp (see figure 13). Since the dipole structure includes both the upper-layer
point vortex and the lower-layer vortex created by the potential vorticity patch, we hereafter
refer to this behaviour as heton-type behaviour (Hogg & Stommel 1985).

McDonald (1998) used a 1.5-layer model to describe the existence of motion types other
than those described above when the point vortex is intense, i.e. ε  1. Figures 14 and 15
show the temporal evolution for ε = 100. During the early stages of the temporal evolution,
the point vortex draws a large amount of fluid from the shallower side and wraps the fluid
around itself. However, as more time passes, the filament wrapped around the point vortex
has a weaker effect on the point vortex, and the system resembles a system with a moderate
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Figure 10. The temporal evolution of the potential vorticity front interacting with the anticyclonic point
vortex. The parameter values are ε = 0.1 and Y0 = 1.
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Figure 11. The trajectory of the point vortex in (a) x–y space and (b) up–vp space for the case shown in
figure 10, obtained by computing from t = 0 to t = 100. The starting points at t = 0, which are located at (0, 1)
on the left and (0, 0) on the right, are indicated by the closed circles.

ε, forming a hetonic structure consisting of the filament-wrapped point vortex and the high
potential vorticity patch from the shallower side.

5.2.2. A cyclonic point vortex
We next consider a cyclonic point vortex, i.e. sgn(Γ ) = 1. Figures 16 and 17 show the
temporal evolution of the front and the point vortex, as well as the evolution of the velocity,
(up, vp), for ε = 1. The point vortex moves in the same direction as the topographic waves,
and the small-scale wave train behind the peak of the front is confirmed. As discussed
in § 3.4, this wave train occurs only for cyclonic point vortices, and it is excited by the
singularity in (3.13) and (3.14) in linear theory, which was shown mathematically in Dunn
et al. (2001). Although wave radiation was expected to weaken the isolated structure, it
propagated similarly to the anticyclonic vortex, at least in our computation time. Therefore,
we refer to this behaviour as pseudoimage-type behaviour. The point vortex did not drift
towards the topography, as discussed by Dunn et al. (2001). However, the behaviour for
longer computation times remains unknown.
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Figure 12. The temporal evolution of the potential vorticity front and the anticyclonic point vortex. The
parameter values are ε = 10 and Y0 = 1.
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Figure 13. The trajectory of the point vortex in (a) x–y space and (b) up–vp space for the case shown in
figure 12, obtained by computing from t = 0 to t = 30. The starting points at t = 0 are indicated by the closed
circles.

Figures 18 and 19 show the results for ε = 10. With this parameter value, the point
vortex moves towards the topography in the deeper region, attracting low potential vorticity
fluid. As a result, the point vortex approaches and then passes the topography, forming a
dipole structure with the low potential vorticity fluid. After the dipole structure is formed,
the vortices move away from the topography. We classify this behaviour as heton-type
behaviour. The behaviour for ε = 100 is shown in figures 20 and 21. Similar to the
anticyclonic case, the cyclonic point vortex initially wraps the filament around itself;
however, as more time passes, the filament stops wrapping, and the vortex couples with
the low potential vorticity patch in the deeper region, resulting in a heton-type motion.

5.3. Classification of the motion based on ε and Y0

In the previous subsection, we used numerical experiments with the strength of the point
vortex, ε, as a parameter to demonstrate that there are two types of motions that commonly
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Figure 14. The temporal evolution of the potential vorticity front and the anticyclonic point vortex. The
parameter values are ε = 100 and Y0 = 1.
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Figure 15. The trajectory of the point vortex in (a) x–y space and (b) up–vp space for the case shown in
figure 14, obtained by computing from t = 0 to t = 30. The starting points at t = 0 are indicated by the closed
circles.

occur in our model. Previous studies have observed the formation of dipole structures
in various systems and have identified the regions where the dipole structures form in
parameter space (e.g. Shimada & Kubokawa 1997; Vandermeirsch, Carton & Morel 2003;
Capet & Carton 2004). In this subsection, we conduct numerical experiments with ε and
the initial location of the point vortex, Y0, as parameters and classify the motion types
in ε–Y0 space. Based on the trajectory in up–vp space, we classified pseudoimage-type
motions as those where the temporal evolution of vp asymptotically approached zero
or oscillated near zero after a sufficiently long calculation, while other motions were
classified as hetonic. The numerical experiments were conducted until t = 100. In the
case that f = 10−4 s−1, H2 = 2000 and ΔH = 1000 m, T = f −1(ΔH/H2)

−1 = 2 × 104 s,
so that t = 100 corresponds to approximately 200 days.

Figure 22(a) depicts the phase diagram for the anticyclonic case, showing the
distribution of the typical motion types in ε–Y0 space. The ε–Y0 relation at the boundary
between the two motion types can be divided into two regions. For Y0 < 1, the value of Y0
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Figure 16. The temporal evolution of the potential vorticity front for a cyclonic point vortex. The parameter
values are ε = 1 and Y0 = 1.
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Figure 17. The trajectory of the cyclonic point vortex in (a) x–y space and (b) up–vp space for the case shown
in figure 16, obtained by computing from t = 0 to t = 200. The starting points at t = 0 are indicated by the
closed circles.

changes rapidly and approaches zero at small but finite ε. This feature occurs because the
point vortex and the topography are in different layers. When Y0 = 0, a point vortex with
negative Γ moves towards the deeper side (Y > 0), and if ε is small, the pseudoimage
propagates along the topography with Y /= 0. For Y0 > 1, the slope of the boundary
between the two motion types in ε–Y0 space becomes gentler, and the slope becomes
linear for sufficiently large Y0. This feature occurs because when the value of Y0 is initially
large, the point vortex and the front interact primarily through the barotropic mode. Since
the non-dimensional internal Rossby deformation radius, λ−1/2

+ , is approximately 0.7 in
this model, the barotropic mode dominates the interaction when Y0 > λ

−1/2
+ . Because the

frontal self-advection component has a baroclinic component even when Y0 is large, the
results of our model do not exactly match those of a barotropic model.

Figure 22(b) shows the phase diagram for the cyclonic case. When Y0 = 0, the motion
is symmetric about the x-axis, similar to the case of the anticyclonic point vortex, since
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Figure 18. The temporal evolution of the potential vorticity front and the cyclonic point vortex. The
parameter values are ε = 10 and Y0 = 1.
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Figure 19. The trajectory of the cyclonic point vortex in (a) x–y space and (b) up–vp space for the case shown
in figure 18, obtained by computing from t = 0 to t = 30. The starting points at t = 0 are indicated by the
closed circles.

ψj(x, y) = −ψj(x,−y). Therefore, in the pseudoimage motion starting from Y0 = 0 with
ε = 1 shown in figure 22(b), the cyclonic point vortex moves to the shallower side of
y < 0 and propagates in the opposite direction to the topographic wave, in contrast to the
behaviour shown in figures 16 and 17. Although the border that divides the behaviour is
unclear, all of the pseudoimages with Y0 > 0.25 in our experiments have a similar structure
to that shown in figure 16. The boundary between pseudoimage-type and heton-type
motions is almost the same as that in the anticyclonic case. However, in the cyclonic case,
the slope of this boundary is smaller than that in the anticyclonic case for Y0 < 1. This
difference occurs due to the difference in the direction of the displacement of the front.
In the cyclonic case, as ε increases, the front tends to move away from the point vortex in
the y direction, whereas in the anticyclonic case, the front approaches the point vortex as
ε increases. This result indicates that for the same value of Y0, the anticyclonic vortex is
more likely to interact with the topography than the cyclonic vortex.
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Figure 20. The temporal evolution of the potential vorticity front and the cyclonic point vortex. The
parameter values are ε = 100 and Y0 = 1.
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Figure 21. The trajectory of the cyclonic point vortex in (a) x–y space and (b) up–vp space for the case shown
in figure 20, obtained by computing from t = 0 to t = 30. The starting points at t = 0 are indicated by the
closed circles.
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Figure 22. The diagram of the motion classification in ε–Y0 space. The circulation of the point vortex is (a)
sgn(Γ ) = −1 and (b) sgn(Γ ) = 1. The triangles and circles in the diagram indicate pseudoimage-type and
heton-type motions, respectively.
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6. Summary

In this study, the interaction between a point vortex in the upper layer and the step-like
topography in the lower layer was investigated using a two-layer quasi-geostrophic model
in the f -plane. The results can be summarized as follows.

(i) We derived the linear pseudoimage solution that steadily propagates along the
topography in the two-layer system and discussed the properties of the solution. The
results suggested that the steadiness of the finite-amplitude solution is lost when the
solution propagates in the same direction as the topographic waves, and that the point
vortex can move along the topography even when the point vortex and topography
are close because they are in different layers.

(ii) The finite-amplitude, steadily propagating nonlinear pseudoimage solution was
calculated numerically. We found that the flow field of the system, which includes
the solution, always has saddle-node points on the potential vorticity front in a
coordinate system that moves with the solution. In the numerical experiments where
the nonlinear solution was used as the initial condition, short frontal waves appeared
near the saddle-node point, and the symmetric structure of the front collapsed. Even
after the collapse, the point vortex moved in the same manner as in the steadily
propagating solutions.

(iii) We showed that the point vortex has two types of motion in this system: motion along
the topography due to the pseudoimage when the strength of the point vortex, ε, is
small, and motion away from the topography due to the formation of a heton-like
structure when ε is large. In addition to ε, we treated the initial distance between the
point vortex and the topography, Y0, as a parameter and classified the motion types
in ε–Y0 space. We found that pseudoimage-type motion exists in the region where
Y0 is large or ε is small, while heton-type motion exists in the region where Y0 is
small or ε is large. The boundary in parameter space that separates these motions
behaves differently in relation to Y0 and the internal deformation radius. When the
diagrams of the anticyclonic and cyclonic point vortices are compared, it can be seen
that the anticyclonic vortex is more likely to move away from the topography than
the cyclonic vortex for the same value of Y0.

In this study, the eddy interacting with the bottom topography was approximated by a
point vortex. In this approximation, the deformation and dissipation effects of the vortex
itself were ignored. However, we believe that our results capture the fundamental processes
in the interaction between upper eddies and the steep bottom topography because a study
that used a finite-size vortex and a 1.5-layer model (Dunn 2002; Dunn et al. 2002) obtained
similar results to a study that used a point vortex model (Dunn et al. 2001).

In a more realistic scenario, ε and Y0 may vary over time. In particular, mesoscale
eddies in western boundary regions continue to approach the bottom topography while
interacting with the topography due to the β-effect. This suggests that the motion of a
vortex can switch from along the topography to away from the topography. The change
in the behaviour of the eddy over time corresponds to a transition in the type of motion
in the parameter space considered in this study. Therefore, it is important to investigate
this transition process to understand interactions in the western regions of the ocean. The
findings of this study are the first step towards understanding this transition. The details
of these transitions, especially the conditions for the formation of the vortex pair, will be
investigated in future work.
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