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GRAPHICAL REGULAR REPRESENTATIONS OF 
NON-ABELIAN GROUPS, II 

LEWIS A. NOWITZ AND MARK E. WATKINS 

The present paper is a sequel to the previous paper bearing the same title 
by the same authors [3] and which will be hereafter designated by the bold-face 
Roman numeral I. Further results are obtained in determining whether a 
given finite non-abelian group G has a graphical regular representation. In 
particular, an affirmative answer will be given if (|G|, 6) = 1. 

Inasmuch as much of the machinery of I will be required in the proofs to 
be presented and a perusal of I is strongly recommended to set the stage and 
provide motivation for this paper, an independent and redundant introduction 
will be omitted in the interest of economy. Section 1 of I introduces much of the 
terminology, symbols, and conventions to be employed below. Results from I 
will be indicated by number preceded by " I " (e.g., Proposition 2.5 of I will 
be referred to as Proposition 1.2.5). In particular, the following letters and 
symbols will retain the meanings assigned to them in Section 1 of I: 

G, H, X, V(X), A (X), XGtH, Xu Aut(G), Z. 

The bibliographical references in this paper, of course, are numbered 
independently, as are the new results. 

1. Classification of non-abelian groups G with (|G|, 6) = 1. The proofs 
of the two theorems of this section will require the powerful result of W. Feit 
and J. G. Thompson [1]. 

FEIT-THOMPSON THEOREM. All finite groups of odd order are solvable. 

THEOREM 1. Let G be a non-abelian cyclic extension of an abelian group L, and 
suppose (|G|, 6) = 1. Then G is in Class I. 

Proof. By hypothesis there is an element b £ G such that each element of G 
has a unique representation in the form 

b3x 

where x £ L and j £ { 0 , l , . . . , s — 1}; here 5 is the least positive integer 
for which bs £ L. (By hypothesis, 5 ^ 5 . ) Since L is abelian while G is not, we 
may select an element a0 G L such that a0 (? Z(b). 
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We now select a,\, a2, . . . 6 L\Z(b) inductively as follows: Letting the 
subgroup d = (a0, ai, . . . , au b) and assuming Gt is not normal in G for 
i = 0, 1, . . . , m — 1, we select am Ç L\Gm-i so that am $ N(Gm-i), the 
normalizer of Gm_i in G. The process clearly terminates with some subgroup 
Gn = (ao, ai, . . . , aw, 6) such that Gn <\ G. (Conceivably Gn = G.) 

We assert that it suffices to prove that Gn is in Class I. For suppose this 
were so. Since G is of odd order, it is solvable by the Feit-Thompson Theorem. 
Since Gn < G, there exists a composition series: 

Gn = Nr < i\Tr_i < . . . < iV0 = G 

such that Ni-t/Nf is cyclic of prime order (cf. [2, p. 139]). With (|G|, 6) = 1» 
we are assured that the index [iV\-_i, Nt] ^ 5, and so by Theorem 1.1, iV2-_i 
is in C/ass I whenever iV* is (i = 1, 2, . . . , r) , proving inductively that G 
is in C/ass I. We may therefore assume without loss of generality that G = G„ 
and that G* is never normal in G for 0 ^ i < w. 

Recall that L < G and, trivially, (a0) <3 L. 
Cas£ 1: (do) <\ G. A relation of the form 

(1) 6-^06 = a0
k 

must hold. Let r = |a0|. Since a0 S Z(P), and 5 is odd, b2 and a0 do not commute. 
We first show that it may be assumed without loss of generality that the 

two congruences 

(2) k = - 2 (modr) 

and 

(3) 2k s= - 1 (modr) 

do not hold in (1) 
If (2) were to hold, set d = b2. The group G can as well be considered as a 

cyclic extension of L by d, with d~la^d = b~2a0b
2 = a0

A. Since r \ 6, & = 4 
cannot satisfy (2), and since r \ 9, & = 4 cannot satisfy (3). 

On the other hand, (3) implies 

(4) b~Wb = a0-K 

Substitution in (4) of / = b~l gives / a 0
2 / - 1 = a0

_1, or j ~la^~lj = a0
2, which 

is equivalent to (2). Henceforth we shall assume that (2) and (3) are false. 
Define the generating set H = H' \J H" of G with H' C\ H" = 0 and 

ff' = (H')-\H" = ( i f " ) - 1 as follows: 

if' = {a0, ao-"1, »̂ ̂ -1» ^ao, ô-1^"*8"1, &a0~
fc, &-1&o} 

and 

(5) if" = {au af1 , bai. . . ait af1. . . a r 1 ^ - 1 ^ ' = 1, . . . , n). 

If w = 0, then H = H' and Xi has the form of Figure 1. 
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b-HQ-ks~l 

FIGURE 1 

A straightforward verification of the 8 X S multiplication table of H' with 
itself is all t h a t is needed to construct Xi (cf. the second paragraph following 
the proof of Proposition 1.3.1.) 

If n ^ 1, Xi has the form of Figure 2. 

b-la<r»~1' 

an~
l . . . ci2~laclb' i ^ - i A - i 

baia2 . . . an • ar 

arlb~l f «2~1ar16-1 . . . 1 an-r1. . . a2~
1ar1b 

êa2~ 

FIGURE 2 

èan-i 

Observe t h a t the graph of Figure 1 is a subgraph of this graph a t tached only 
a t b and b~x. T h a t no other edges (i.e., not shown in Figure 2) can occur in X\ 
is justified by the following arguments : 
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Suppose 

(6) xy = z; x,y,z £ H 

were to hold. Then 
(i) The sums of the exponents of the symbol b in the two members of (6) 

must be equal, 
(ii) If m is the largest subscript i of a factor at

j appearing in (6) where 
dij G Gi, then am to some power must appear in both members of (6). 

(Otherwise am to some power could be set equal to an element of Gt for some 
i < m.) 

Thus, if any additional edge (i.e., not shown in Figure 2) represented an 
identity (6) when not all of x, y, z are in H\ then that identity would have to 
be equivalent to one either of the form 

(7) am{bc) = bai . . . am 

or of the form 

(8) dm'1 (be) = bai . . . am, 

where m is as in (ii) above and c Ç L C\ Gt for some i < m. However, (7) can 
be rewritten 

a^bcim = bcam-rl . . . ar1, 

which implies that am normalizes Gm-i, contrary to our construction. Likewise 
(8) leads to a contradiction; we first write 

(9) b-lam-lb = ai . . . amc -1 = cxam 

where C\ G L C\ Gm-\. Under inner automorphism by b we obtain b~2am~lb2 = 
(b~lCib)Q)-lamb), or 

(10) b-*am-W = ( i - ^ i & c r 1 ) ^ - 1 

by substitution from (9). However, since b~lCibci~~l Ç Gm_i, (10) would imply 
that the inner automorphism x »—> b~lxb has even order, giving a contradiction. 

Let y G A (X\). If n = 0 then b and b~l are the only vertices adjacent to both 
a vertex of valence 1 and a vertex of valence 2. If n ^ 1, thenfr and b~l are the 
only vertices of valence 3. Hence <p either fixes b and b~l or interchanges them. 
Since a0 is the only vertex adjacent to both b and b~1, a0 is a fixed point of 
A(Xi). Since b2 $ Z(a0) (since & g Z(a0) and b has odd order) Proposition 
1.2.5 implies that b is also a fixed point of A (Xi). Hence each vertex identified 
with an element of the subgroup (a0, b) is fixed point-wise by Proposition 1.2.3. 
If n = 0, we conclude that G is in Class l. lî n ^ 1, it is then obvious that bai 
is a fixed-point of A (Xi). Inductively, since ba\ . . . af is a fixed-point of 4̂ (Xi), 
then so is bai . . . atai+1 for i = 1, . . . , w — 1. Since the set of these fixed 
points generates G, Corollary 1.2.4 implies that G is in Class I. 
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Case 2: (a0) is not normal in G. Choose the generating set H = H' KJ H" 
where this time 

Hf = {a0, a0
_1, bj &_1, ba0l aô~lb~l, a0

_1è, 6_1a0, &
_1a0&, b~laçTlb] 

but H" is the same as in (5). 
First suppose that n = 0; i.e., that G = (a0, b). It is asserted that X\ 

assumes the form of Figure 3. 

+b-laQb 

a^b-1 é ao^b* *b 5-1V • b-la<rlb 

FIGURE 3 

As in Case 1, this is verified by a careful term-by-term consideration of the 
entries in the 10 X 10 multiplication table of H' and recognition of elements 
of H' as entries in the table. To facilitate recognition of elements of Hf we 
mention that not only does paragraph (i) of Case 1 above also apply here, 
but we have 

(hi) b^jaQb±j g (a0) for j = 1 and for (j, 6) > 1 where j = 1, . . . s - 1. 
For example, consider the product {a^~~lb) (a0~

1b~1). Were it to lie in H', 
the only possibilities by (i) would be a0, ao"*1, b~1a{)b1 and b~la<rlb. One 
immediately rules out a0 and a0

-1, since ba<rlb~l (L (a0) by (iii). Now suppose 

(11) (a0-1ô)(a0-1ô-1) = b-^ajb. 

Then 1 = b~1aob2a0b~1ao} whence an inner automorphism by b yields 

(12) 1 = (&-2a06
2)a0 (6-^06). 

Substitution from (11) for the last factor of (12) yields 

1 = (b-^b^ibao-'b-1). 

Another application of the inner automorphism gives 

1 = (i-'aoft8)^"1 

whence b~3a0b
3 G (a0), contrary to (iii). 

Finally, suppose 

(13) (flQ-tyiao-ib-1) = b-'ao-'b. 

Here a substitution of d = b2 for b is used. (The reader must verify that no 
other possible identities arising from the aforementioned multiplication table 
require a substitution of generators except for the five identities equivalent 
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to (13).) I t suffices to show t h a t a contradict ion arises if (13) still holds after b 

has been replaced by d. Thus , subs t i tu t ing into (13), we obtain 

(14) ao-Wao-ty-2 = b~2a<rlb2. 

However an inner automorphism by b applied to (13) yields b 1a0
 lba0

 x = 
6"2ao_162, which with (14) implies 

(15) (6- 1a 0 - 16)a 0 - 1 = ao-H&^o- 1»- 2) . 

Since a0
_ 1 commutes with the other factors in (15), one obtains a0

_ 1 = 
63a0

-1& -3 , cont rary to (iii). 
Such verification for the other entries in the multiplication table is similar 

in principle al though uniformly more e lementary and straightforward than 
in the foregoing example. Th is process, nonetheless, is tedious, repeti t ious, 
and perhaps best left to the reader. Le t it be accepted t h a t the graph Xi when 
n = 0 is correctly represented in Figure 3. Clearly any <p G A (Xi) ei ther fixes 
b and b~l or interchanges them. However the vertex b~l lies a t distance precisely 
2 from a ver tex of valence 1 while b does not have this proper ty . Hence b and 
b"1 and, therefore, a0 are fixed points and G is in Class I by Corollary 1.2.4. 

When n ^ 1, X\ has the form of Figure 4. 

+ b-laob 

• b^a^b 

a0~ty 

«o-1f 

a0~
lb-

+ ct,i 1 ia2' 

afty-1 ia2~
1ar1b~1 ••• + an-r

l • • • a2~1ar16~1 

a^1. . . a2~
1ar1b-1 

•a-1 

* an-rl 

> baia2. . . an 

FIGURE 4 
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The verification is identical to the procedure in Case 1 above. One then argues 
similarly that b and ô - 1 are fixed-points, whence so is a0. Thus (a0, b) is fixed 
point-wise by Proposition 1.2.3. It follows that ba\ is a fixed-point, too, and 
the procedure concludes as in Case 1. The proof of the Theorem is complete. 

THEOREM 2. Every non-abelian finite group whose order is relatively prime to 6 
is in Class I. 

Proof. Let G0 be a non-abelian finite group such that (|G0|, 6) = 1. By 
the Feit-Thompson Theorem, Go is solvable. 

Let 

(16) 1 = Gn < Gw_i < . . . < Gi < Go 

be a composition series for G0 where G*_i/G* is cyclic of prime order pt 

(i = 1, . . . , n), and by hypothesis, pt ^ 5. 
Since Gn_i is abelian while G0 is not, one can select an abelian group Gm 

in the series (16) such that Gm_i is non-abelian (1 ^ m ^ n — 1). By 
Theorem 1, Gm_i is in Class I. For each i = 1, . . . , m — 1, it follows from 
Theorem 1.1 that if Gt is in C/ass I, then so is G^-i. By induction we conclude 
that Go is in Class I. 

2. An odd non-abelian group with no graphical regular representa­
tion. At this point it would be reasonable to ask whether in Theorem 2 the 
integer 6 could not be replaced by the integer 2. After all, the Feit-Thompson 
Theorem requires of a group only that its order be odd. Moreover, all the non-
abelian groups shown in I and by Watkins [4] to belong to Class II have been of 
even order. There is, however, one non-abelian group of order 27 which belongs to 
Class II, all other non-abelian groups of order pz for odd prime p having been 
proved in [4] to be in Class I. 

THEOREM 3. The group G of order 27 given by G = (a, b, c\az = bs = c3 = 1, 
ac = ca; be = cb, ab = bac) is in Class II. 

Proof. Observe that the identity 

(17) aW = bjaVj 

for all i,j follows from the defining relations. The group G has precisely four 
normal subgroups of order 9: 

N± = (a, c), N2 = <6, c), N3 = (ba, c), N, = (ba~\ c). 

The pairwise intersection of any two of these is the center Z = {1, c, c - 1}, 
which is fixed set-wise under Aut(G). 

For i = 1, 2, 3, 4, let Mt = N\Z. Thus M = {Mi, M2l Mz, M,} forms a 
complete block system for the imprimitive group Aut(G) restricted to G\Z. 
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For later reference let us display these blocks. Observe that each Mt consists 
of six elements: three pairs, each consisting of an element with its inverse: 

M\ = {a, a~l, ac, a~1c~1, ac1, ar1c], 

M2 = {b, 6-i, be, b~lc-\ bc-\ b^c}, 

Mz = {ba, b-^ar^c, bac, b^ar1, bac'1, b-larlc~1}, 

MA = {bar1, b~lac~l, ba~1c~1, b~la, barlc, b~1ac}. 

We assert that given Xi, x2, yi, y2 G G\Z where %\ G Mt => x2 G Mt and 
3/1 G M; => y2 ? -M^ for all i, j = 1, 2, 3, 4, then there exists a unique auto­
morphism <p G Aut(G) such that < (̂xfc) = yk (k = 1, 2). It will suffice to 
prove that for arbitrary i,j,k,r,s,t£ {—1,0,1} there exists a unique 
ip G Aut(G) such that <p(a) = blajck and <p(b) = brascl unless biajclc and 
brascl are in the same set Mm. For applying <̂  to the defining relation ab = bac, 
we obtain 

v(a)<p(b) = <p(b)<p(a)<p(c). 

After substitution and application of (17) this becomes 

bi+raj+scjT = bi+raj+scis<p(c), 

whence 

(18) <p(c) = cjr'is. 

Now <p(c) = 1 if and only if the determinant 

J 1 

s r = 0. 

But that happens only when at least 3 entries are 0 (which is impossible) or 
<p(a) and <p(b) lie in the same Mm. Hence <p(c) is uniquely determined to be 
c or c~l by (18) and <p preserves all the defining relations of G. 

We next show that Aut(G) restricted to G\Z acts 4-transitively on the set M. 
The automorphism determined by a *-* b and b \-*ba acts on the blocks with 
cyclic decomposition (Mi, M2, AT3, MA) while the automorphism determined 
by a 1—» b and b^->ba~l acts with cyclic decomposition (Mi, M2, MA) (MZ). 
These two permutations on M generate the symmetric group 5 4 on M. 

Next observe that for 5 G Mt, the inner automorphism x >—> s^xs permutes 
all three pairs in each Mj for j 5e i and fixes each element of Mt. 

Let H C G have the properties: 1 G H = H"1 and (H) = G. It must be 
shown that for each such set H, there exists a non-identity automorphism 
cpo G Aut(G) such that <po(H) = H. Since <p(c) = c or c1 for all <p G Aut(G), 
it may be assumed that H C G\Z. Observe that (H) = G if and only if H 
contains at least one pair from each of at least two different sets Mt. Let 
Hi = H C\ Mt. We shall say Ht is improper if Ht = 0 or Mt. Otherwise Ht 
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will be termed proper. When Ht is proper, the unique pair in Mt to be included 
or excluded by Ht is the distinguished pair of Mt. If all sets Ht are improper 
then many cp £ Aut(G) will do for <p0 while if Hj is the only one which is proper, 
then choose cpo to be an inner automorphism by an element of Mj. 

We may assume t h a t a t least two of the Ht are proper, and in the light of the 
foregoing discussion, there is no loss of generality in assuming t h a t Hi and H2 

are proper with {a, a~1} and {b, b-1} as distinguished pairs. 
Case 1: T h e distinguished pair of Af3 is {bac-1, b-1a-1c-1} or i J 3 is improper, 

and the distinguished pair of MA is {ba~~lc, b-1ac) or HA is improper. Then let 
<pi be determined by a H-> a-1 and b i—> b~l. T h u s <pi(c) = c and <pi maps each 
distinguished pair onto itself, thereby fixing H set-wise. 

W e have also shown hereby t ha t it may be assumed t ha t not both i7 3 and 
H4 are improper. Since Aut(G) is 4-transitive on M, we may assume tha t Hz 
is proper. 

Case 2: T h e distinguished pair of Mz is {ba, b-1a-1c] or \bac, b-1a-1}, and 
the distinguished pair of MA is {ba-1c, b-1ac) or HA is improper. 

T h e involution <pi of Case 1 interchanges ba with b-1a-1 while fixing each of 
the other three distinguished pairs. Therefore, there is no loss of generality in 
assuming both t ha t {ba, b-1a-1c] is the distinguished pair of Mz and t h a t Hi 
is also proper. T h u s some two of the three sets Hi, H2, H\ have the same 
cardinali ty. I t is always possible to construct an automorphism <p0 inter­
changing the distinguished pairs of these two sets while fixing the other two 
distinguished pairs by defining <po(ba) = (ba)-1 and <po(d) = d where d 
belongs to the distinguished pair of t ha t set Hi, H2, or HA being fixed by <p0. 

Case 3: T h e distinguished pair in Ms is {ba, b^a^c} and the distinguished 
pair in MA is {ba-1, b^acr1} or [ba~1c~1, b~1a). 

I t m a y be assumed t h a t the distinguished pair of MA is {ba-1, b~1ac~1} since 
the involution determined by a i—> b~x and b «—» a - 1 maps the set of pairs 

(19) {{a, a-1}, {b, b-1), {ba, b^a^c], {ba-1, b^ac-1}} 

onto 

{{a, a-1}, {b,b-1}, {ba^^a^c}, {ba^c-1, b^a]}. 

Now consider the automorphism <p2 given by a*-+ba and b i—> b-1. T h e n 
ba^—^b~1(ba) = a and ba-1 <—» b-1 (b~1a-1c) = bar1c. T h u s cp2 transforms the 
given set (19) of distinguished pairs into the set considered in Case 2, and the 
proof is complete. 
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