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Background
A key step toward understanding psychiatric disorders that
disproportionately impact female mental health is delineating the
emergence of sex-specific patterns of brain organisation at the
critical transition from childhood to adolescence.
Prior work suggests that individual differences in the spatial
organisation of functional brain networks across the
cortex are associated with psychopathology and differ
systematically by sex.

Aims
We aimed to evaluate the impact of sex on the spatial
organisation of person-specific functional brain networks.

Method
We leveraged person-specific atlases of functional brain
networks, defined using non-negative matrix factorisation,
in a sample of n= 6437 youths from the Adolescent Brain
Cognitive Development Study. Across independent discovery
and replication samples, we used generalised additive
models to uncover associations between sex and the spatial
layout (topography) of personalised functional networks (PFNs).
We also trained support vector machines to classify
participants’ sex from multivariate patterns of
PFN topography.

Results
Sex differences in PFN topography were greatest in association
networks including the frontoparietal, ventral attention and
default mode networks. Machine learning models trained on
participants’ PFNs were able to classify participant sex with high
accuracy.

Conclusions
Sex differences in PFN topography are robust, and replicate
across large-scale samples of youth. These results suggest a
potential contributor to the female-biased risk in depressive and
anxiety disorders that emerge at the transition from childhood to
adolescence.
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Many psychiatric disorders show sex differences in prevalence,
presentation and trajectory. For example, the lifetime prevalence of
internalising disorders such as depression and anxiety is nearly
twice as high in females,1 and developmental disorders such as
attention-deficit hyperactivity disorder often present differently in
males and females, leading to disparities in diagnosis and treatment.
These sex differences tend to emerge during the transition from
childhood to adolescence, a time when functional brain networks
implicated in these disorders are refined.2,3 Previous research has
begun to link sex differences in internalising disorders with sex
differences in multimodal neuroimaging measures, including in
studies of youth.4–6 Therefore, understanding and treating mental
health conditions for all individuals, including those that are more
prevalent in and differentially impact females, requires a clear
understanding of sex differences in neurodevelopment.

Prior neuroimaging studies have revealed significant sex
differences in functional networks supporting cognitive and
emotional processes, including the frontoparietal7,8 and default
mode9 networks. Dysfunction within these networks has been
linked with psychiatric disorders, including anxiety and depres-
sion.10–14 Critically, these functional networks are highly person-
specific in their spatial organisation across the cortex (‘functional
topography’). Substantial individual differences in the size, shape
and spatial location of brain regions comprising these networks
emerge gradually during neurodevelopment, with evidence of sex-

specific patterning3,15 associated with X-linked gene expression
patterns.15 Innovations in precision brain mapping approaches
have begun to chart the person-specific functional topography of
personalised functional brain networks (PFNs),16–18 and have
uncovered novel associations with internalising psychopathol-
ogy14,19,20 and cognition.3,21

In a recent study of individuals across a broad age range
(n= 693, 8–22 years old),15 we presented the first report of sex
differences in PFN functional topography. Given the ongoing
‘reproducibility crisis’ in psychology and neuroscience wherein a
large proportion of research findings fail to replicate in new data-
sets,22 it is important to determine whether sex differences in
functional topography are replicable across demographically
diverse samples with a wider variety of magnetic resonance
imaging (MRI) scanning locations and procedures. Moreover, it
remains unclear whether these sex differences are consistently
observed at the critical transition from childhood to adolescence
when many psychiatric disorders first emerge, and whether these
differences are associated with pubertal hormone levels. Here we
examine sex differences in PFN topography in youth, using
non-linear modelling and machine learning in data from the
Adolescent Brain Cognitive Development (ABCD) Study®23
(n= 6437, ages 9–10 years). We hypothesised that sex differences
would be greatest in association networks, as the functional
topography of these networks showed the strongest associations
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with sex assigned at birth and cortical X-linked gene expression
patterns in our previous work.15 Of note, the novel participant
sample used in the present study differs from that used in previous
work15 across a number of dimensions, including sample size, age
range, pubertal stage, scanner types and protocols, data collection
sites, functional MRI tasks, racial/ethnic diversity and socioeco-
nomic status, allowing us to rigorously test the reproducibility and
generalisability of our findings.

Method

Participants

Participants from the ABCD Study®23 baseline assessment were
drawn from the ABCD BIDS Community Collection (ABCC,
ABCD-316524). These data were collected across 21 sites in the USA,
with Institutional Review Board (IRB) approval from the University
of California, San Diego, as well as from each of the respective study
sites. Written informed consent (parents or guardians) and assent
(children) were obtained. Criteria for participation in the ABCD
Study® are described in detail in previous work.25 From the full
baseline sample (n= 11 878, 9–10 years old), we excluded
participants with incomplete data or excessive head motion during
functional magnetic resonance imaging (fMRI) scanning
(Supplementary Fig. 1, available at https://doi.org/10.1192/bjp.
2025.135), yielding a final sample of n= 7459. Analyses were
conducted in matched discovery (n= 3240, 50.46% female) and
replication (n= 3197, 49.13% female) samples drawn from the
ABCD Reproducible Matched Samples (ARMS24,26), with siblings
excluded separately in the discovery and replication samples to avoid
leakage across subsamples during model cross-validation
(Supplementary Fig. 1). Importantly for the present study, we note
that participant ‘sex’ was assessed using a binary caregiver-reported
question regarding the assignment of sex at birth on the original birth
certificate. Hereafter, we use the term ‘sex’ to refer to sex assigned at
birth, the term ‘female’ to refer to individuals assigned female at
birth, and the term ‘male’ to refer to individuals assigned male at
birth. Demographic information for the participants included in the
present study is presented in Supplementary Table 1.

fMRI processing

As in our prior work,21,27 we leveraged data from the ABCD BIDS
Community Collection (ABCC) 3165 processed with the ABCD-
BIDS pipeline, which included distortion correction and alignment,
Advanced Normalization Tools (ANTS28) denoising, FreeSurfer29

segmentation and surface and volume registration with rigid-body
transformation.30,31 Following this, further processing was done
using the DCAN BOLD Processing (DBP) pipeline, which includes
de-meaning and de-trending of fMRI data with respect to time;
denoising using a general linear model with regressors for signal
and movement; bandpass filtering between 0.008 and 0.090 Hz
using a second-order Butterworth filter; applying the DBP
respiratory motion filter (18.582–25.726 breaths per minute); and
applying DBP motion censoring (frames exceeding a framewise
displacement threshold of 0.2 mm or failing to pass outlier
detection at ±3 standard deviations were discarded). We then
concatenated cleaned time series data for resting-state and task-
based scans, as in previous work,21,27 to maximise the data available
for analysis. We excluded participants who had fewer than 600
remaining repetition times following motion censoring, as well as
those who failed ABCD quality control for their T1 or resting-state
fMRI scan.

Definition of PFNs

Detailed information about the neuroimaging acquisition for the
ABCD Study®, including scanner manufacturers and MRI scanning
protocols, has been described previously.32 Following the same
fMRI preprocessing steps (Supplementary Information) as in our
prior work in this data-set,21,27 we maximised the available high-
quality data for our analyses by concatenating fMRI time series
from three task-based scans (Emotional N-Back Task, Stop-Signal
Task and Monetary Incentive Delay Task) and two resting-state
scans, and retained only those individuals passing strict motion
correction (a minimum of 600 remaining repetition time in total
following motion censoring). Functional brain regions comprising
large-scale networks have been shown to vary substantially in their
size, shape and spatial location across individuals.16,17 We therefore
employed a precision brain-mapping approach, as in previous
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Fig. 1 Definition of personalised functional networks (PFNs). (a) We employed a precision brain-mapping approach that leverages spatially re-
gularised, non-negative matrix factorisation (NMF) to define individual-specific atlases of functional brain network organisation. In this
approach, NMF is performed using a previously derived group consensus atlas (17 × 59 412) and each individual’s functional magnetic
resonance imaging time series. This yields a 17 × 59 412 loading matrix for each participant, where each row represents a network (k), each
column represents a vertex (v) and each cell represents the extent to which each vertex belongs to a given network. This probabilistic definition
can be converted into discrete network definitions for display by labelling each vertex according to its highest loading. This procedure also
yields a network timeseries matrix representing blood oxygen level dependent activity at each timepoint (t) for each network (k). (b) Probabilistic
and discrete parcellations of three networks are displayed for the group average and four randomly selected participants. PFNs capture distinct
inter-individual differences in topographic features. Inter-individual variation in topographic features is particularly prominent in association
networks such as the default mode network and frontoparietal network. In contrast, sensory and motor networks are more consistent across
individuals.
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work,3,15,19,21,27 that leverages spatially regularised, non-negative
matrix factorisation (NMF)33 to define individual-specific atlases of
functional brain network organisation (Fig. 1(a)).3,34 This approach
has been implemented in previous studies using this data-set21,27 to
identify 17 PFNs, revealing substantial inter-individual differences
in the spatial layout of functional brain regions, with the greatest
heterogeneity in association networks (Fig. 1(b)).

Statistical analyses

We aimed to (a) evaluate whether individual-specific patterns of
PFN topography were associated with sex and (b) assess the extent
to which sex can be accurately classified from patterns of PFN
topography in new individuals. To this end, we first conducted a
mass univariate analysis relating vertex-wise PFN topography to
sex, then trained multivariate classification models using rigorous
cross-validation, as described in detail below.

Mass univariate analysis

To determine whether sex is associated with distinct patterns of PFN
topography, we first evaluated vertex-wise associations, as in our
previous work,15 using generalised additive models (GAMs) with
penalised splines. These GAMs were fit at each vertex and included a
linear covariate for in-scanner head motion (mean fractional
displacement), a non-linear term for age and a random effect
covariate for data collection site. We accounted for multiple
comparisons within each PFN by controlling the false discovery
rate (FDR;Q< 0.05). Spatial maps of GAM loadings were compared
across discovery and replication samples using conservative spin-
based permutation testing to account for spatial autocorrelation.35 To
determine the role of pubertal development and hormone levels in
shaping potential sex differences in PFN topography, we also
conducted mass univariate analyses using data from the Pubertal
Development Scale (PDS)36 and salivary hormone levels for
dehydroepiandrosterone (DHEA), testosterone and oestradiol.37

DHEA and testosterone were collected for both sexes; oestradiol
was collected for females only.

Multivariate classification

To leverage the high-dimensional data from individual-specific
patterns of PFN topography across the whole cortex simulta-
neously, we next trained a linear support vector machine (SVM) to
categorise participant sex based on their multivariate PFN loadings
matrix. SVM is a common form of classifier that is well suited to
leveraging high-dimensional data for binary classification, and has
been shown to perform well in previous work.15 Replicating the
procedure in our prior work,15 we applied nested, twofold cross-
validation (2F-CV), with the inner loop used to determine the
optimal tuning parameter C to balance model bias and variance,
and the outer loop used to estimate model accuracy in held-out
data. Classifier performance was evaluated using accuracy,
sensitivity, specificity and the area under the receiver operating
characteristic (ROC) curve. We also evaluated classifier perfor-
mance relative to a set of 1000 null models, where participant sex
was permuted relative to PFN topography on each iteration.

Prior to model training and testing, we eliminated siblings to
avoid leakage of family structure across subsamples, yielding a total
sample of n= 6437 (discovery: n= 3240, 50.46% female; replica-
tion: n= 3197, 49.13% female) for all multivariate classification
analyses. Before beginning our 2F-CV procedure, we first split the
data between the matched discovery and replication samples
according to the previously defined ABCD Reproducible Matched
Samples.24,26 Then, separately within the discovery and replication
samples, we performed 2F-CV as follows (Supplementary Fig. 2).

For the outer 2F-CV loop, we trained and tested the SVM model
using split-half subsets separately within either the discovery or
replication sample. After training the model in one half of the data
and testing its performance in the other held-out half, we then
repeated this procedure in reverse. Prior to model training,
covariates for age, site and in-scanner head motion (mean
framewise displacement) were regressed from each feature,
separately in the training and testing sets to avoid leakage. To
determine whether classification accuracy was driven by the choice
of split, we repeated this analysis using 100 permuted splits of the
data, each time randomly dividing the discovery and replication
samples into independent training and testing sets.

Inner 2F-CV loops were used to determine the optimal tuning
parameter C by further randomly dividing the training set of the
outer 2F-CV loop into two subsamples. The first split-half
subsample was used to train the SVM model with each of
15 possible C parameter values: [2−5, 2−4, : : : , 28, 29]. These models
were each tested in the second held-out subsample as in our
previous work.15 We then repeated this procedure using the second
held-out subsample for training and the first subsample for testing,
calculating the average held-out classification accuracy across the
two subsamples for each value of the parameter C. The optimal C
parameter value was selected as the C with the highest average held-
out classification accuracy, and this optimal C parameter was used
to train the models within the outer 2F-CV loop. It is worth noting
that even the smallest subdivisions of the data in our nested 2F-CV
procedure still contained >1000 participants each at a minimum,
yielding sufficient statistical power to train and test our machine
learning models using the most conservative possible (fewest folds)
cross-validation approach.

To evaluate the relative importance of each feature within the
SVM model, we first extracted feature weights for each network
loading at each vertex and averaged these weights across the
100 randomly permuted splits of the data. Then, to avoid
challenges with interpretation due to the covariance structure
among feature weights, we applied Haufe transformation38 to
invert the models prior to feature weight interpretation. Next, we
averaged the Haufe-transformed weight maps across the training
and testing sets from the outer loop of the matched-samples
2F-CV procedure. As in our univariate analysis, spatial maps of
SVM weights were compared across samples using spin-based
permutation testing.35

Results

Association between sex and person-specific
functional topography

To characterise sex differences in functional brain network
topography just prior to the transition from childhood to
adolescence, we leveraged previously defined maps of PFNs
(Fig. 1) for each individual in the ABCD Study® data-set21

(n= 6437, 9–10 years old, 49.8% female). These maps reflect each
individual’s unique functional topography of 17 canonical large-
scale networks. To determine whether a participant’s sex is reflected
in their person-specific patterns of functional brain network
organisation, we first conducted mass univariate analyses using
GAMs to relate vertex-wise PFN loadings to sex.

We found spatially heterogeneous associations between sex and
PFN topography in both discovery and replication samples. Sex
differences in functional topography were greatest in association
networks (Fig. 2(a)–(c) and Supplementary Figs. 3 and 4), with
some PFNs exhibiting greater loadings in females (e.g. frontopar-
ietal and dorsal attention networks) and others exhibiting greater
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loadings in males (e.g. default mode and ventral attention
networks). We evaluated the total effect of sex at each vertex by
summing the absolute value of the z-statistic across all 17 PFNs.
This analysis revealed that associations between sex and PFN
topography are greatest in association cortices such as the inferior
parietal lobule, ventrolateral prefrontal cortex and orbitofrontal
cortex (Fig. 2(d) and Supplementary Fig. 5). We observed highly
consistent spatial distributions of GAM loadings across discovery
and replication samples (r= 0.90, Pspin < 0.001; Fig. 2(e)) and with
our prior work in an independent data-set15 (r= 0.59, Pspin <

0.001; Fig. 2(f)), using conservative spin-based spatial random-
isation testing to account for spatial autocorrelation.35 These results
were also found to be consistent in sensitivity analyses that included
pubertal stage, pubertal timing and salivary hormone levels as
covariates (Supplementary Figs 6–9), and we observed no
significant associations between PFN topography and pubertal
measures, including pubertal stage, pubertal timing and salivary
hormone levels (Supplementary Figs 10 and 11).

Next, we sought to confirm these vertex-wise mass univariate
results by using multivariate classification to leverage the full
pattern of PFN topography across the cortex. To evaluate how
multidimensional patterns of PFN topography relate to participant
sex, we trained linear SVM classifiers to categorise participants’ sex
from PFN topography patterns using conservative cross-validation.

These models were able to correctly identify held-out participants’
sex as either male or female from PFN topography patterns with
high accuracy averaged across the 100 SVM iterations within each
subsample (discovery, 87.4%; replication, 87.2%; Fig. 3(a) and
Supplementary Fig. 12(a)), successfully replicating our prior work.15

Model sensitivity and specificity were 0.876 and 0.872, respectively,
in the discovery sample (replication: 0.870 and 0.870), with a large
area under the ROC curve (discovery, 0.966; replication, 0.965),
indicating excellent model performance on held-out data that
exceeded chance-level accuracy from randomly permuted null
models (mean, 0.50; P < 0.001; Fig. 3(a) and Supplementary Fig.
12(a), inset histograms).

Model performance was robust to the choice of split in
participants between the training and testing sets, as evidenced by
repeated random cross-validation (discovery: mean accuracy
87.4%, 95% CI [0.873, 0.875]; replication: mean accuracy 87.2%,
95% CI [0.871, 0.873]). To identify which brain regions contributed
most to the correct classification of participant sex from functional
topography, we examined the SVM feature weights after applying
Haufe transformation38 to invert the models for interpretability.
Replicating prior results,15 we found that association networks
contributed most to the classification of participant sex, primarily
those within the frontoparietal, ventral attention and default mode
networks (Fig. 3(b), (c) and Supplementary Fig. 12(b), (c)). Vertex-
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Fig. 2 Univariate analysis identifies that sex differences are greatest in association networks. We fit a generalised additive model (GAM) at each
vertex to determine the impact of sex on network loadings. Site, age and motion were included as covariates, with age modelled using a
penalised spline and sitemodelled as a random effect. We accounted for multiple comparisons within each network with false discovery rate (Q
< 0.05). (a) The number of vertices in each network with significant sex effects was summed separately for males and females within the
discovery set. This process revealed that sex differences were greatest in the association cortex, specifically the frontoparietal, default mode
and ventral attention networks. (b) The same analysis was conducted within the replication set, which yielded convergent results identifying
the same three networks as having the greatest sex differences. (c) Significant vertices are displayed for the frontoparietal and default mode
networks from the discovery set, as these networks were among those with the greatest sex differences. (d) The absolute sex effect across 17
networks was summed to examine the overall effect of sex at a given vertex. The summary measure depicted from the discovery set shows
that the areas with the greatest sex effects are in association cortices. (e) The hexplot shows agreement between discovery and replication
samples in the association between sex and network loadings (r= 0.90, Pspin< 0.001). (f) This hexplot shows agreement between the discovery
sample in the ABCD Study® and an independent data-set (Philadelphia Neurodevelopmental Cohort, PNC) from our previous report15 (r = 0.59,
Pspin < 0.001) in the associations between sex and network loadings. FP/FPN, frontoparietal network; VA, ventral attention; DA, dorsal
attention; DM/DMN, default mode network; AU, auditory; SM, somatomotor; VS, visual; F, female; M, male.
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wise patterns of feature weights also provided convergent results
with mass univariate analyses (discovery: r= 0.86, Pspin < 0.001;
replication: r= 0.83, Pspin < 0.001; Fig. 3(d) and Supplementary
Fig. 12(d)). The spatial pattern of feature weights was also highly
consistent across samples (r= 0.93, Pspin < 0.001; Supplementary
Fig. 13). We also found convergent results when SVM models were
trained separately on vertex-wise loadings from each PFN
independently, with ventral attention, default mode and frontopar-
ietal networks showing the best model performance across
discovery and replication samples (Supplementary Fig. 14).

Discussion

Our results demonstrate robust and replicable sex differences in the
spatial patterning of functional brain networks in youth. Across
analytic approaches and independent samples, we consistently find

that the spatial patterning of person-specific functional brain
networks significantly differs based on sex as a biological variable.
While no single brain region or network is systematically larger or
smaller in its spatial extent across all males or females, we find that
the greatest sex differences in functional topography tend to be
disproportionately found in association areas such as the
frontoparietal, default mode and ventral attention networks, with
weaker effects found in sensory and motor cortices. These results
represent a successful replication of prior findings15 in a large
sample of participants, and suggest that sex might be one of many
factors that shape the development of functional networks in youth
at the precipice of the critical transition to adolescence. By
characterising sex differences in functional topography in youth,
this study provides a key stepping stone towards addressing sex
differences in susceptibility to psychiatric symptoms that emerge
during the transition to adolescence.
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Fig. 3 Support vector machine (SVM) models classify participant sex based on personalised functional network (PFN) topography. SVMs
were trained with nested, twofold cross-validation (2F-CV) to classify participants’ sex (male or female) from PFN functional topography. (a)
Depiction of the average receiver operating characteristic (ROC) curve from 100 SVMmodels with permuted split-half, train-test participant
assignments. Average area under the ROC curve was 0.96; average sensitivity and specificity were 0.88 and 0.87, respectively. Inset
histogram shows the null distribution of classification accuracies where participant sex was randomised, with the average accuracy from
true (non-randomised) data represented by the dashed red line. (b) The absolute values of the feature weights were summed at each
location across the cortex, revealing that association cortices contributed most to the classification of sex. (c) Positive and negative feature
weights were summed separately across all vertices in each network to identify which networks contributed most to the classification.
Association networks, namely the frontoparietal, ventral attention and default mode networks, were identified as the most important
contributors to the classification. (d) Hexplot showing agreement between the absolute summed weights from the multivariate SVM
analysis and loadings from the mass univariate generalised additive model (GAM) analysis in the discovery sample (r = 0.85, Pspin < 0.001).
All panels represent results from the discovery sample. See Supplementary Fig. 12 for results from the replication sample and
Supplementary Fig. 13 for comparison of SVM weights between the discovery and replication samples. FP, frontoparietal; VA, ventral
attention; DA, dorsal attention; DM, default mode; AU, auditory; SM, somatomotor; VS, visual; F, female; M, male.
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Sex differences in personalised functional brain
network topography in youth

Extending prior work describing sex differences in neuroimaging
features in young adults,39,40 our results suggest that sex differences
in functional topography are consistently observed in children just
prior to the transition to adolescence. This critical transition period
that often coincides with pubertal changes is marked by the
emergence of many common psychiatric disorders, including
depression and anxiety, which disproportionately affect females.1

This time period also coincides with the maturation of functional
brain networks, including the protracted development of associa-
tion networks such as the frontoparietal and default mode
networks,41,42 which have been shown to have distinct profiles of
functional development between males and females.43 These
association networks also exhibit the most person-specific patterns
of functional topography among all large-scale brain networks,3

and are associated with symptoms of psychopathology.19,20 Our
observation that these networks also reflect an individual’s sex
aligns with previous findings,44 including recent findings in
adults,39,40 and suggests that sex differences in functional brain
networks may play a role in the emergence or exacerbation of sex
differences in psychiatric disorders during the transition to
adolescence. Thus, future studies may seek to further investigate
potential behavioural consequences of sex differences in association
network topography in youth, as well as the potential role of
functional brain network development as an early biomarker for
sex-specific psychiatric symptom emergence in youth.

Sex differences in functional topography consistently
replicate across independent data-sets

Replication studies often fail,45 and even successful replication
studies most often yield results with smaller effect sizes than initial
discoveries.46 The present study not only successfully replicates
findings observed in our prior work, but also uncovered effect sizes
that were approximately the same or even larger than in the
previous study.15 Specifically, the present study confirmed the
presence of sex differences in PFN topography and replicated the
observation that these differences are primarily found in association
networks. This successful replication is especially notable in light of
the many differences between the data-sets in each study, including
sample size, age range, scanner types and protocols, data collection
sites, fMRI tasks, racial/ethnic diversity and socioeconomic status.
Thus, the present study represents a strong counterexample to the
ongoing reproducibility crisis in psychology and neuroscience.22

Several important distinctions between the present study and
this previous work provide context for interpreting these results.
First, the previous study15 used data from the Philadelphia
Neurodevelopmental Cohort (PNC; n= 693); here, we applied
the same analytical approach to a data-set that is an order of
magnitude larger (ABCD Study®; n= 6437). This considerable
increase in sample size may explain the improvement in model
performance on held-out data between studies (from 82.9 to 87.1%
accuracy), as models trained in larger data-sets with rigorous cross-
validation are less likely to be overfit.47,48 Second, the previous
study15 assessed individuals aged 8–23 years old while the present
study leveraged data from the baseline assessment of the ABCD
Study® when participants were 9–10 years old. The more restricted
age range in the present study may also help to explain the
improved model performance, since functional brain network
topography changes throughout development.2,3 Although age was
included as a model covariate in both studies, it is possible that the
smaller age range in the present study still yielded some advantage
in classifying sex from patterns of functional topography at a more
restricted time period of brain development.

Limitations

There are several limitations of this study worth noting. First, sex
was assessed using a binary parent-reported question regarding the
assignment of sex at birth on the original birth certificate, and we
lacked a sufficiently large sample size to examine functional
topography of intersex youth. Importantly, existing data suggest
that binary classifications of sex do not align well with the complex
mosaics of male and female characteristics observed in individual
brains.49 Thus, further research is warranted to more comprehen-
sively characterise person-specific patterns of male, female and
intersex characteristics in functional brain network topography.
Second, prior work has shown that functional brain network
connectivity is associated with both sex and gender in youth.50

Because the present study aimed to understand sex differences in
functional topography, future work is also needed to investigate the
potential effects of continuous gender dimensions such as gender
identity and expression. Given that only 0.5% (n= 58) of baseline
ABCD Study® participants reported being, or possibly being,
transgender,51 and given that gender continues to develop
throughout early adolescence, future studies in longitudinal
timepoints will be key in investigating potential individual or
interactive effects of sex and gender in shaping neurodevelopment.

Third, the present study leveraged a cross-sectional sample at a
single time point from within an ongoing longitudinal study of
youth. As youth from the ABCD Study® continue to participate in
follow-up study sessions from childhood to adulthood, it will
become increasingly possible to investigate changes in sex-specific
functional brain network topography with critical developmental
changes such as puberty across longer time scales than investigated
in the present study. Moreover, because puberty was already under
way in a substantial portion of females in the ABCD Study®, future
studies of younger individuals will be required to investigate the
activational role of pubertal hormones, which begin before physical
changes become observable, on sex differences in functional
topography. Future longitudinal studies considering the complex
interplay of biopsychosocial factors related to sex and gender devel-
opment may also reveal mechanistic links between sex-specific
patterns of functional brain network topography and sex differ-
ences in psychiatric illness manifestation (e.g. internalising
symptoms). Fourth, the present study focused on sex differences
in functional rather than structural differences in brain organisa-
tion, although sex differences in gross structural anatomy (e.g. head
size) are well documented.52 However, recent work has demon-
strated that sex differences in functional brain organisation do not
appear to be systematically associated with structural imaging
measures such as surface area or microstructural organisation.44

Future directions: using precision brain mapping to
inform female mental health

In addition to the future directions noted above, our observation
that person-specific patterns of functional brain network topogra-
phy show sex differences, particularly in association networks
related to psychiatric symptoms,19,20 also lays important ground-
work for future studies of sex differences in mental health,
including mental health conditions that disproportionately impact
females. First, future work should further examine how PFN
topography develops across the female reproductive lifespan, with a
particular focus on changes across critical hormonal transition
periods such as puberty, pregnancy and menopause. These
hormonal transition periods are known to have substantial impact
on neurodevelopment and often align with the timing of psychiatric
illness onset,53 yet have been historically underfunded and
understudied.54 Extending the study of PFNs across the lifespan
therefore has potential to improve our understanding of how
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neuroplasticity during hormonal shifts impacts functional topog-
raphy and trajectories of psychiatric illness. Second, longitudinal
studies examining how sex differences in PFN topography emerge
during development may inform early preventions or personalised
treatments for psychiatric illnesses such as personalised neuro-
modulation via transcranial magnetic stimulation (TMS), filling
critical gaps in existing treatment options.

Finally, it is worth noting that sex-specific individual differ-
ences in the topography of association networks may also reflect
childhood environments and socioeconomic status,27 which have
also been shown to explain a large portion of inter-individual
variance in psychopathology symptoms.55 Taken together with
evidence of sex differences in stress responses across the lifespan,56

our findings motivate future research into whether sex differences
in the effects of environmental stressors are associated with sex
differences in association network topography and psychiatric
illness. Additionally, environmental stressors have been shown to
confer vulnerability to psychiatric symptoms during future
reproductive time points characterised by significant hormonal
fluctuations such as pregnancy57 and menopause.58,59 Future work
may therefore seek to parse the independent and interactive effects
of hormonal, genetic and environmental factors that, together, may
shape individual-specific spatial patterning of functional networks
across the female reproductive lifespan.
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