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Abstract

The paper presents new demonstrably convergent first-order iterative algorithms for
unconstrained discrete-time optimal control problems. The algorithms, which solve the
linear-quadratic problem in one iterative step, are particularly suited for solving nonlinear
problems with linear constraints via penalty function methods. The proofs of the
reduction of cost at each iteration and convergence of the algorithms are provided.

1. Introduction

The purpose of this paper is to provide a new computational technique for
solving discrete-time optimal control (or multi-stage decision) problems.
Discrete-time systems are described by difference equations and involve choices
or decisions at each of a finite set of times or stages. The optimal multi-stage
decision problem is then to minimize the cost associated with each sequence of
decisions.

Many economic and engineering problems in all sectors of business and
industry can be viewed as multi-stage decision processes. Examples of this type of
problem, where a finite change in control causes a finite change in the state of the
system, include ecological systems, inventory control, resource allocation, produc-
tion scheduling and the control of a system of water reservoirs.
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130 Nikola B. Nedeljkovic [2|

As differential equations are harder to solve than difference equations, discrete
approximations are sometimes used for solving continuous-time problems. Since
both continuous and discrete-time controls can be considered as points in
appropriate spaces, in view of the fact that the theory of functional analysis
reflects to a degree our abstractions of intuitive geometric properties, it is not
surprising that there are great similarities in the analyses for continuous and
discrete-time systems. In general, formulas for the discrete-time case turn out to
be somewhat more complex than their continuous-time counterparts, but are
easier to justify as problems regarding the existence of solutions of differential
equations do not arise.

Although difference equations are easier to solve than the differential equa-
tions, optimization of discrete-time systems is still a formidable task when the
number of state and control variables and the number of stages and constraints is
large. In [8], for instance, the Tennessee Valley Authority, which manages a
system of 40 water reservoirs, reported that the maximum size of the severely
constrained problem of controlling a system of water reservoirs solved with the
existing numerical methods involved a system of 6 reservoirs. A general analytic
solution of the discrete-time problem does not exist and recourse must be made to
numerical methods. Dynamic programming, although impressive in comparison
with direct enumeration, is effective only when the number of variables is small.
Consequently, many iterative methods have been developed. Dyer and McRey-
nolds [1] devised a second order method known as the successive sweep (SV)
algorithm. Jacobson and Mayne [4] invented the differential dynamic program-
ming (DDP) and Gershwin and Jacobson [2] analysed DDP for constrained
problems and applied it to optimal orbit transfer. Since the SV algorithm [1] and
the second order DDP algorithms in [4] and [2] are generally not convergent as
they require the inversion of matrices which may be singular, Ohno [7] modified
the second order discrete-time algorithm for problems with and without con-
straints and proved its local convergence (when the starting point is sufficiently
close to the optimum). Recently, Wong and Teo [10] devised a computational
method for optimal control problems with discrete delays and bounded control
region.

The general characteristic of the existing first order methods, in comparison
with second order methods, is that they require a large number of iterations.
However, the second order methods require the computation of second order
derivatives which is time consuming and necessitates a large computer memory;
in fact, the computational effort per iterative step and memory requirements
increase as a cubic function of the number of state and control variables. It is
clear that a fast first order method would substantially increase our ability to
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solve large problems. One such technique is the algorithm in [9] developed by
Teo, Wong and Clements for solving time-lag optimal control problems with
control and terminal constraints. Control parametrization technique is for con-
tinuous time optimal control problems. However, it can also be applied to discrete
time optimal control problems.

The aim of this paper is to present a fast first-order method for discrete-time
systems. A number of rapidly convergent algorithms, known as LQRE, for
continuous-time optimal control problems, was presented in [6]. Here we show
that it is possible to develop discrete-time versions of the continuous-time LQRE
algorithms. As the continuous-time algorithm in [6] is a first order method with
the speed of convergence comparable to that of second order methods, its
discrete-time analog (which is a globally convergent first order algorithm and
converges on the linear-quadratic problem in one step) should be seen as a step in
that direction.

The organization of the paper is as follows. Section 2 contains the definition of
the problem. A statement of the proposed algorithm is given in Section 3. Section
4 is devoted to the proof of reduction in the value of the cost functional, whilst
global convergence of the algorithm to a point satisfying a first order necessary
condition for optimality is proved in Sections 5 and 6. Finally in Section 7 we
show how the discrete-time LQRE algorithm in conjunction with the penalty
function method can be applied to constrained problems in general and to
problems with linear constraints in particular.

2. Definitions and assumptions

Let N > 1 be a fixed integer, let U denote the space of admissible controls
defined as the set of all ordered TV-tuples u = (M 0 , ul,...,uN_l), uk^Rm,
k = 0,l,...,N - 1, and let x = (x0, xl,...,xN),xk e R",k = 0 ,1 , . . . , JV, denote
the state of a system governed by a first order ordinary difference equation

**+i =f(xk,uk,k), k = 0,l,...,N - 1,

*o = Xo> Xo specified. (2.1)

The problem to be solved is the following.
Minimize the cost functional J: U -* R defined by

/ ( « ) = £ L(xk,uk,k) + F(xN) (2.2)
k-0

subject to the system equation (2.1).
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Note that uk and xk axe m and n dimensional vectors.
In the sequel f(xk, uk, k) and L(xk,uk,k) will also be denoted by fk(xk, uk)

and Lk(xk, uk), respectively. Since one can consider the above problem as a
multi-stage process, it is customary to refer to uk and xk as the control and state
of the system at stage k. We assume that F: R" -> R is continuously differentia-
ble, that / : R " x r x N - > i ( " and L: R" x Rm x N -» R are continuously
differentiable in the first two arguments and that the solution to the discrete-time
optimal control problem defined by (2.1) and (2.2) exists.

For the purpose of the analysis in this paper, it is convenient to write equations
(2.1) and (2.2) in a slightly different form. Let QN: R" -* R"Xn be continuously
differentiable and let A: R" X Rm x N -> RnXn, B: R" X Rm x N -» R"Xm, Q:
R" X Rm X N -» RnX", P: RnX Rm X N -» RmXm and R: R" X Rm X N ->
ftmxm ^g continuously differentiable in the first two arguments. In addition, let
(2(x, w, k), QN(X) > 0 (positive semi-definite) and R(x, «, k) > 0 (positive defi-
nite) for all x <= R", u e Rm and k e IN_1 = {0,1,... ,N - 1}. Without any loss
of generality Q{x, w. k), QN(x) ar>d ^(x> w» ^) c a n be considered as being
symmetric. Then (2.1) and (2.2) can be rewritten as

*k+i = A(xk, uk, k)xk + B(xk, uk, k)uk + g(xk, uk, k), k e IN_X,

x0 = Xo. (2-3)

and

N-l

J(")= E { I ^ S ( ^ A : ' " A > ^ ) ^ + ulP(xk,uk,k)xk
A = 0

+ i«J'/l(*jt, Mk, A:)M^ + q(xk, uk, k)} + F(xN) (2.4)

where the symbol T denotes transpose of a vector or matrix and the functions g
and q are defined by

u,k) -A(x,w,k)x- B(x,u,k)w,

- « T P ( X , co, A:)X - WR{X, «, fc)w.

If there is no confusion possible, to avoid cumbersome notation such as

A(xk,uk,k), -~-(x,«, , etc.,

we shall simply write

3 f
Ak, -r^-, etc., respectively.
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[s] Discrete-time optimal control 133

3. Statement of the algorithm

Let x = (x0, xl,...,xN), the solution of (2.1) (or, equivalently of (2.3)) for
some nominal control u = (M0, ul,...,UN_l), denote a nominal state of the
system. Define Sk e R"x", k e IN_l as the solution of the matrix difference
equation

Sk = Qk + A'Sk+1Ak - Wk
TVkWk; SN = QN (3.1)

and let

hk e R", k e IN_,

be the solution of

^ ^ ^ ^f1 (3.2)

where

+ Pk), (3.3)

+1Bk, (3.4)

Dk e RmXm is a positive definite matrix, and

e(x) = F(X) ~ \TQNX, (3.5)

Vk^-»lWk, (3.6)

Vk^-uT
kVk-xlWk, (3.7)

Pk(x, «) = jxT
k[Qk(x, " ) + ^[(X, o>)Sk+1Ak(X, ")] x t

« )x + Bk(X, w)co

(3-8)

The bars above the symbols indicate that the respective quantities are evaluated
at x = *k and <o = uk. Also Ak(x, w), etc., denote A(x< u> k), etc., dfk/dx and
dfk/du denote the Jacobians, whilst dpk/dx and dpk/du are considered row
vectors. Observe that, for Dk > 0, Vk > 0.

In addition, define

fk = uk+Vk-
lWkxk, (3.9)

l^Vk-
l + fk (3.10)

https://doi.org/10.1017/S0334270000004409 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000004409


134 Nikola B. Nedeljkovic [6]

and

Then the proposed algorithm can be stated as follows.
Discrete time LQRE algorithm

STEP 1. Select some nominal control u, compute the nominal state 3c according
to (2.1) and the value of the cost functional J(u) for that nominal control, given
by (2.2).

STEP 2. Solve equations (3.1) and (3.2). Compute A(K) according to (3.11). Set
£ = 1. If A(M) = Ostop.

STEP 3. Apply control u: iik = uk + 8uk, k e /A,_1, and compute the corre-
sponding state of the system x: xk = xk + 8xk, k e IN= {0,1,...,N), where
Suk = -e]3k - Vk

lWk8xk. Compute the cost/(w).
STEP 4. If J(u) - J(u) + ieA(u) < 0, set x = x, u = u, u = it, J{u) = J(u)

and go to Step 2. If the above criterion is not satisfied, set e to e/2 and go to Step
3.

REMARK 3.1. Although the proofs in Sections 4, 5 and 6 hold for an arbitrary
Dk > 0, unless otherwise stated, it will be assumed that Dk = Rk.

REMARK 3.2. All continuous-time LQRE algorithms presented in [6] have their
discrete-time analogs. Both first and second order algorithms can be obtained
depending on the manner in which Ak, Bk, Qk, Pk, Bk and QN are chosen. An
algorithm worth explicit mention is the discrete-time analog of FORE-3 [6], which
is a highly efficient first-order algorithm devised specifically for problems with
nonlinear dynamics and quadratic cost; in the discrete version of FORE-3 we set
Ak = dfuk/dx, Bk = dfk/du (Qk > 0, Pk, Rk > 0 and QN > 0 are given when the
problem is specified).

4. Proof of reduction at each iteration

In this section we derive an expression (correct to the first order of 8xk and 8uk)
for the increment of the cost functional at each iteration of the proposed
algorithm and show that the increment represents a reduction in the value of the
cost functional.

From the identity
N-l
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[7] Discrete-time optimal control 135

after xk+l and Sk are substituted with the right-hand sides of (2.3) and (3.1), it
follows that

N-l _

E i{(Akxk + Bk"k + gk)TSk+i(Akxk + Bkuk + gk)

-xT
k(Qk + AkSk+lAk - Wk

TVkWk)xk}

~ WNQN^N + ko^oXo = 0. (4.1)

Adding this zero quantity to the expression (2.4) we have

N-l

J(u) = E [\xlAT
kSk+1Akxk + %xlAT

kSk+lBkuk + \uk

1Akxk + g[Sk+1Bkuk +

-\xT
k{{Qk + AkSk+1Ak) - Wk

TVkWk)xk

+ ixlQk*k + "T
kPkxk + Wk^kuk + Ik] + i

where e is defined by (3.5).
Consequently,

N-l

E {^H'[Rkuk + ul

uk + gISk+1Akxk + gT
kSk+yBkuk

and

N-l

E {\xT
kQkxk - \xT

kQkxk + ^xl

- ixlA~lSk+lAkx + \uT
k'Rkuk + iiT

kBkSk+xAkxk

+ uT
kPkxk + \uT

kB
T

kSk+lBkiik + gT
kSk+lAkxk

1Bkuk + \glSk+lgk + qk + ixjJW^V1
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where Ak, Bk, etc., stand for Ak(xk, uk), Bk(xk, uk), etc., respectively. It follows
that

8J = J{ii) - / ( « ) = J(u + 8u) - J(u)

= e(xN)-e(xN) + £

uIVk$Uk - xlWk8uk - uT
kWk8xk

•fk^ki^k + Vk
lWk8xk) + zT

k\

o o
where

and pk, k e / ^ . j is a scalar function on i?" X Rm defined by (3.8).
As Ak and Qk are continuous in both arguments, Yk converges to 0 as

\8zk\ -» 0, where | | is the Euclidean norm in Rn+m. Expanding pk(xk, uk) =
Pk(xk + Sxk, uk + 8uk) about xk and uk in 8xk and 8uk, we have

8J t= *(*„) - e{xN) + t ff^f " uWk ~ xlWk)8uk

+ t ok(8zk) (4.2)

where

and

lim ^ Z, = 0.
l«**l-o \ozk\
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Clearly,

lin, I&SM-O.
l«**|-0 \0Zk\

Further by expanding e(xN) about xN in dxN, (4.2) can be written in the form

N-l _ _ _ _ N-l

+ E { Vk8«k + ***** + r[Vk8uk + iT
kWk8xk } + £ **(«**) (4.3)

where <j>* and ipk are defined by (3.6) and (3.7), respectively and

On the other hand if Tik e /?" is defined as the solution of (3.2) and 8xk is
considered as the solution of

^ ^ , fceV,, ^ = 0, (4.4)

where lim|Szt|_0 \j\k(8zk)\/\8zk\ = 0, then, from the identity
N-l

- hT
k+18xk+l) = 0,

k=0

it follows that

= 0.

(4-5)

Adding (4.5) and (4.3), the expression for 8J becomes

8J = "t'UlSu, + VkVk
xWk8xk + Vk+1^8uk

where

and

rk
 4 ok(i$zk) + **+i^

j

<(Szkl <•

^/T
kVk

l -

N-l

r± E

. Clearly, l im | f a t | ^ 0 |/-fc|/|6zA| = 0. Let

" * + l Q K/t + ^
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Then

8J= Z{KVk(8uk+V^Wk8xk)}+r. (4.6)

Finally, by setting

6uk = -tfa - Vk
lWkSxk, e e [0,1], (4.7)

we have

V-->N£[EVk&)+r, (4.8)
fc=0

5/ = -cA(«) + r (4.9)

where

If 8uk is chosen according to (4.7), 8xk, the solution of

** + l + 5 j c* + l = / * ( * * + Sxk> "fc + 5«fc)> k e / JV-1« 5jC0 = °>

with xfc, /c e IN= {0,1,...,JV} and uk, k e IN-\, specified, is a continuous
function of e. Therefore, arguing along the lines similar to those in [6] for the
continuous case, it is not difficult to show that lime_0|r|/e = 0.

Since Vk is positive definite it is immediate from (4.8) that for ]3k # 0 and e
sufficiently small,

8J = -et WkVkh + r < 0,

i.e. under the above assumptions the variation 8J represents a reduction in the
value of the cost functional. Clearly,

or, equivalently,

fa = 0, ke IN_, (4.12)

are necessary conditions for optimality. In the sequel any control which satisfies
(4.12) will be referred to as a desirable control or desirable point. (Note that if
fik = 0 for k e lN_x is not satisfied, /(«) can be further reduced by the LQRE

https://doi.org/10.1017/S0334270000004409 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000004409
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algorithm.) In Section 5, we shall show that the above condition is equivalent to
the first order necessary condition 9 /4 /3" = 0, A: e IN_V

REMARK 4.1. Using similar arguments to those in [6], page 877, it can easily be
shown that the discrete-time LQRE algorithm converges in one step on the
linear-quadratic problem defined in [1], page 42.

REMARK 4.2. Similarly, it can be shown that the discrete-time LQRE algorithm
exhibits one step convergence on the problem with the system dynamics and cost
functional given by

xk + l ~ ^kXk + BkUk "*" ak> * e ^N-l' X0 = X0>

N-l
J(u) = E [\xT

kQkxk + uT
kPkxk + huT

kRkuk + b\xk + c[uk + dk)
/t = 0

+ 2XNQNXN + PNXN + SN>

where Ak, Bk, Qk > 0, Pk, Rk > 0, QN> 0, ak, bk, ck, dk, pN and sN are con-
stants (independent of xk and uk) of appropriate dimensions.

5. Criterion for optimality

For convenience "bars" above symbols will be dropped in this section. The

control M,

- [«0"l M A f - l J ~ l M 0 M 0 " l " l UN-l UN-l\

and the state of the system x,

— [XX r i _ r I . . . v n v i . . . v « . . . Y i . . . Y " 1

N\ — [Xo -*o-M -*1 XN XN\
X —

can be considered as points in R^N-^m and RN". From the equation

Xk = fk-\\Xk-\> Uk-l) = fk-l\fk-2\Xk-2> Uk-2J' Uk-\)

~ fk-lfk-2\-•• >uk-2' uk-l)

and from the assumptions concerning the differentiability of fk, k e IN-V it
follows then that xk is differentiate with respect to uo,ul,...,uk_l which, in
turn, implies that xk and x are differentiable in u. (Here 3^^+1/3«, = 0, A: < / <
N - 1.)

Thus, J given by (2.2) is differentiable in u e RNm and, consequently, in the
discrete-time case the Gateaux and Frechet differentials coincide with ordinary
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differentials. Therefore, the first order necessary condition for optimality of
discrete-time systems can be stated as dJ{u)/du = 0 or in an equivalent form
(dHk/du)(xk, uk, \k+l) = 0, where Hk(X, a, \k+l) = Lk(X, «) + K+Jkix, w)
and Xk is the solution of the difference equation \T

k = (dHk/dx)(xk, uk, \k+1),
k e IN_X, XT

N = dF(xN)/dx (c/. [1], page 67).

Let vk be the solution of the difference equation

' [ - • I + ^ + ^ l , kelN_liPr-*<M. (5.1)

As Sxk is the solution of (4.4), from the identity

N-l

v£8x0 - vl8xN + £ {f>I+18xk+l - vT
k8xk) = 0,

it follows that
i V - l r

-v'N8xN + } - , vk
it = 0 1-

Adding this to the expression (4.3) for 8J, gives
N-1 r 3 / "I w-i

A: = 0 L " M J k = 0

or

N-l

k = 0

where
£7-4,7 M + ^ r ^ T y

ow

and

Since lim|M^0 \ak(zk)\/\8u\ = 0 (c/. (4.2), (4.3) and (4.4)) and the expansion

(correct to the first order of 8u) is unique. It follows that

T _ dHk(xk, uk, Xk+l)
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THEOREM 1. For the discrete-time control problem defined in Section 2, the
optimality criterion flk = 0 is equivalent to the criterion

PROOF. AS Vk > 0,

* k k *+1 du k k

yields

V'! "*" ^*+i~^ ~*~ r
kVk ~ 0 (5-2)

with hk defined by (3.2). From (5.2),

-Tk
TWk = ̂ lVk

xWk + hl+1 — Vk
1Wk

which imphes that (3.2) can be written in the form

Comparing this with (5.1), we see that in this case hk = vk and, consequently,
dHk/9u = 0 follows from (5.2). On the other hand if dHk/du = pl+ldfk/du + tf
+ r[Vk = 0 is satisfied, rkWk = -vT

k+lWk/U)Vk-'Wk - VkVk
lWk and (5.1) can

be written in the form

Comparing this with (3.2), it follows (by inspection) that in this case vk — hk.
Thus (5.2) follows from dHk/du = 0. Since we have proved that both (ik = 0,
k e IN_r implies dHk/du = 0, k e IN_X and dHk/du = 0, k e IN_1 implies
Pk = 0, k e IN-i, the two criteria are equivalent.

6. Proof of convergence

The LQRE algorithm for discrete-time systems utilizes the search function a:
£/-» U defined by

uT(i + 1) = «^(u(/)) = [af(«0(i)) • • • «J |- i(«*-i(0)]

where / denotes the iteration number and

Define x° as the solution of

4 + i =4 + Lk(xk, uk) + F(fk(xk, uk)) - F(xk), k e IN_ltxl = F(xo),
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and let

= 4
XO =

, uk) + F{fk(xk, uk)) - F{xk), k

Then on the assumption that the increment of the control is in the form (4.7), it
follows that

z. / ( ^ Ti eft J/'^Vf? S\Y- \ Ir (= J • V = V
A r i l — J k \ A t , u k *Hk k k k J ' »v v— * N — 1 > 0 A O '

With the above definitions, the convergence proof for the discrete case is a
verbatim repetition of the convergence analysis for continuous time systems in
Appendix III of [6], provided that

(i) U = &«,[<),1] and Win [6] are formally replaced with RNm,
™[0,1] is replaced with

<n[0,1] is replaced with
(iv)C[0,1] with/?*"1"1,
(v) || Noo with IJ,
(vii) R, B7^, /?! are replaced with Vk,Wk,Pk,

and, in general, the value v(t) of any function v is replaced with its discrete-time
counterpart vk.

Note also that all the Frechet derivatives referred to in Appendix III of [6],
reduce to ordinary derivatives in the discrete case.

Thus, Theorem 1 in [6] holds for the discrete-time problem and the sequence
{«(/)} constructed by the discrete-time LQRE algorithm is either finite and its
last element is desirable or else it is infinite and any accumulation pont of {«(/)}
is desirable. Under the assumption

(HI) If (u(/)} is any sequence of admissible controls and |M(Q| -» oo, then
•/(«('")) - oo
the sequence {«(/)} generated by the algorithm is bounded. Suppose that the
opposite is true, i.e. that the generated sequence {«(/)} is not bounded. Then
there exists a subsequence {u(ik)} of {«(/)} such that |«(/^)| -» oo and, by virtue
of (HI), J(u(ik)) -» oo which contradicts the fact that {/(«(/))} is a monotone
decreasing sequence as shown in Section 4. Thus, the generated sequence {«(/)}
must be bounded and there exists a closed bounded subset fl of U = RNm such
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that «(/) e ft for all /. Since the set fi is sequentially compact, the existence of
accumulation points of the infinite sequence {«(/)} is guaranteed and, conse-
quently, the convergence of the algorithm is proved.

7. Problems with constraints

Consider the problem defined in Section 2, i.e.

N-l

minimise J(u) = £ [Lk(xk, uk) + F(xN)},

xk + \ ~ fk\Xk> Uk> Uk)> * G • ' /V-l ' x0 = Xo>

subject to the constraint

<?*(**, u J - 0 , keIN_lt (7.2)

where Gk: R" X Rm -* Rp is continuously differentiable in both arguments. It is
assumed that an optimal solution exists. The problem can be solved by adding the
penalty function %J?£,%~Q Gk(xk, uk)Gk(xk, uk) to the cost functional and solv-
ing progressively the unconstrained approximating problem

minimiseJa(u, Kt) = £ {Lk(xk,
 uk) + \^fiT

k{xk, uk)Gk(xk, uk)} + F(xN),
k = 0

xk+i=fk(xk>uk)> kGlN-i> ^o = Xo- (7-3)

for a sequence of positive scalars {J^} which tends to infinity. By (5.1) Ja(u,
can be considered as a function of u e RmN and Jft only and, consequently, the
results on convergence of penality function methods in [5] are directly applicable
in this case.

In theory at least, then, any globally convergent method for unconstrained
optimization of discrete-time systems could be used for solving the approximating
problem (7.3). However, for many algorithms that might be applied, the structure
of (7.3) becomes increasingly unfavourable as Jtt is increased which is reflected in
a poor convergence rate. In implementation of the penality function method it is,
therefore, very important to select an efficient algorithm for unconstrained
problems when the cost functional contains a penality term.

We shall now examine how the LQRE algorithm is affected when constraint
(7.2) is linear by the addition of the penalty term to the cost functional. Linear
constraints are extremely important from a practical viewpoint and they are also
simplest to analyse. Assume first that the unconstrained problem (7.1) has been
solved by means of the LQRE algorithm. Then, in order to solve the constrained
problem by the LQRE and penalty function method, we write the cost functional
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qk(xk, uk)}

, uk)Gk(xk, uk)} + F(xN) (7.4)

(cf. 2.4) where Qk > 0, Rk > 0 denote the matrices used for solving the uncon-
strained problem. (It is assumed that Dk = Rk; cf. (3.4) and Remark 3.1.) As the
constraints are linear, we have
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in (7.3) in the form

yf) =
N

i

A:

Nikola B. Nedelj

- l

= 0

1 v 4- i/^P v
k k k k k

thus

/v-i

«/ *. \ 1* , txt : I / . I 2 ^ U \ V^ t 1̂  * " i*- It *• It I ^ Ir ' " It \ * t l~ * " ; 1 1 L 1 J, I ^ L
ti ^ i / ^ " ^ ^ ^ /\ \ ^ ^ ft ( f t / l / f t K \ / v I K l\ / K

k = 0

where Tk e R"Xp, Tlk e RmXP and yk e i?^ are constant matrices and vectors,
respectively and

Since r/T^ > 0 and n [ n f c > 0 for arbitrary Tk and n^., it follows that Qk +
JTiTk

TTk > 0 and A^ + J^n^n* > 0. Thus instead of Qk and At which were used
for solving the unconstrained problem (7.1), to solve the approximating problem
(7.3) one may use Q'k = Qk + J^r/T^ and R'k = Rk + XiUlUk. Consequently,
since the difference between q'k(xk, uk) and qk(xk, uk) is only in the linear terms
(with regard to the LQRE algorithm), the structure of the cost functional in (7.3)
is as suitable as that of the cost functional in (7.1). Furthermore, if the problem
(7.1) is linear-quadratic and constraint (7.2) linear, LQRE solves the approximat-
ing problem in one iteration (cf. Remark 4.2).
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