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THE ETA INVARIANT AND EQUIVARIANT SPINC 

BORDISM FOR SPHERICAL SPACE FORM GROUPS 

PETER B. GILKEY 

0. Introduction. A finite group G is a spherical space form group if it 
admits a fixed point free representation r:G —» U(k) for some k\ for the 
remainder of this paper, we assume G is such a group. The eta invariant of 
Atiyah et al [2] defines Q/Z valued invariants of equivariant bordism. In 
[6], we showed the eta invariant completely detects the reduced 
equivariant unitary bordism groups £l*(BG) and completely detects all 
but the 2-primary part of the reduced equivariant Spinc bordism groups 

(BG). The coefficient ring £1* is without torsion; all the torsion 
in 0*pin is of order 2. The prime 2 plays a distinguished role in the dis
cussion of equivariant Spinc bordism and Çl*pm(BG) is quite different 
from Ù^(BG) at the prime 2. Let ker*(T], G) denote the kernel of all eta 
invariants and let ker*(SW, G) denote the kernel of the Z2-equivariant 
Stiefel-Whitney numbers (see Section 1 for details). Then: 

THEOREM 0.1. Let M e &lpinC(BG). If M <= ker*(rj, G) n 
ker*(SW, G), M = 0. 

It is worth explaining the use of the word "equivariant" in this context. 
A G-structure on M is equivalent to a principal G-bundle G i—> P H* M. 
This gives a free G-action on P preserving the Spinc structure. Conversely, 
given such an action of G on P, we can form the quotient M = P/G. The 
eta invariant on M can be computed equivariantly in terms of the G-eta 
invariant on P. 

If A is an Abelian group, let A{ } be the ^-primary part. If p is odd, the 
eta invariant alone completely detects Î2*pin(l?G)( y at the prime 2, 
we also need the equivariant Stiefel-Whitney numbers to detect manifolds 
arising from Tor(fl*pm ). We will prove Theorem 0.1 first for /?-groups and 
then use the transfer and induction maps to derive the general case. The 
/?-Sylow subgroups of G are cyclic for p odd and if p = 2 are either cyclic 
or generalized quaternionic Qv (see [12] ). Theorem 0.1 at odd primes is 
proved in [6] so in this paper we will concentrate on p = 2. 

We can determine the additive structure of the 2-primary part of these 
bordism groups analytically. Let bu*(BG) be the connective A'-theory 
groups. In the fourth section, we will define an embedding of bu*(BG) 
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into U^m{BG) using suitably chosen spherical space forms. Let CPJ be 
complex projective space given the cannonical Spinc structure inherited 
from the natural unitary structure. Then 

{0|pinC(£G)/torsion} 0 Z2 = Z2[CP\ CP2, CP\ . . . , CP2A, ...] 

(see [11]) Cartesian product makes ÛlpmC(BG) into an 0*pmC module. 
Let 

xAk = cp2k _ ( C p l ) ^ 

THEOREM 0.2. Let G be a spherical space form group. Then: 

$?'m\BG){1) = bu*(BG){2) 0 Z[X\ . . . , X4k, . . . ] 0 ker*^, G) 

ker*^, G) = H*(BG, Tor(S2^pinC) ). 

Remark. This analytic splitting is functorial and is preserved by transfer 
and induction. 

A byproduct of our discussion will be an expression for the connective 
AT-theory bu*(BG) in terms of the representation theory. Let R(G) be the 
group representation ring of G and let R0(G) be the augmentation ideal. It 
is well known that 

buu„x(BZn) = R0(Zn)/R0(Zn)
k+l = K(S2k+]/Zn). 

However, if G = Qv, it does not seem as well known: 

THEOREM 0.3. Let I = (T - 2)R(QV) for r:Qv h-> SU(2) fixed point 
free. 

bu4k_5(BQv) = I/Ik and 

bu4k_3(BQv) = R0(QV)/Ik = K(S4k-]S4k'l/T(Qv)). 

In the first section, we discuss the eta invariant and in the second 
section we discuss the Smith homomorphism to establish notation and 
to review various results we shall need. The Enn term of the bordism 
spectral sequence is Hp(BG; £2 p m ' ) . The terms arising from Hodd(BG; 
£2^pm ) can be described by products of spherical space forms 
with appropriate Spinc manifolds. The terms arising from Heyen(BG', 
T o r ( ^ p i n ) ) are more difficult to describe and are the obstacle to using 
standard methods to show the bordism spectral sequence collapses. In the 
third section, we will construct manifolds representing these classes and 
show the bordism spectral sequence collapses. We will then prove 
Theorem 0.1 by induction on the dimension using the Smith homomor
phism. In the fourth section, we will define A*(G) Q £2*pin (BG) as the 
span of suitably chosen spherical space forms; the A*(G) will be invariant 
under transfer and induction and under the Smith homomorphism. We 
will use the pairing provided by the eta invariant to relate the A*(G) to the 
representation theory. We will show 
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ÛlpinC(BG\2) = A*(G) ® Z[X4, X8, . . . ] 0 ker*(ij, G) and 

ker^Ti, G) = H*(BG\ Tox(SlfmC) ). 

In [4], we constructed a topological splitting of S*pin (BG)^2) using the 
Anderson, Brown, and Peterson [1] splitting of the spectrum MSpinc. We 
compare these two formulas to show^^(G) = bu*(BG) and complete the 
proof of Theorems 0.2 and 0.3. 

This paper completes the work begun in [3, 6] on the relationship 
between the eta invariant and equivariant bordism. It is a pleasure to 
acknowledge the contributions of A. Bahri at many points to this work. 

1. The eta invariant. Let Spin(ra) be the universal cover group of the 
special orthogonal group for m > 2; define Spin(ra) in terms of Clifford 
algebras for m = 1,2. Let 

Spinc(m) = Spin(m) X U(l)/Z2 

and let y(g, X) = X2 define a representation in U(\). The forgetful 
homomorphism U(m) I—» SO(2m) lifts to Spinc(2m) and the determinant 
representation lifts to y. Let 

W* = H*(BO; Z2) = Z2[wj] 

be the algebra of Stiefel-Whitney classes. A real vector bundle V has a 
Spinc structure if wx(V) = 0 and if w2(V) lifts to an integral class. M is 
a Spinc manifold if the tangent space T(M) admits a Spinc structure. Let 
£2A

pin be the bordism group of compact smooth /:-dimensional manifolds 
modulo the subgroup which bound; Cartesian product makes Œ^pm into 
a graded ring. Evaluation on T(M) defines a natural pairing 

Wk ® £2fpinC H» Z2. 

Let ker*(SW) Q fi*pinC be the kernel of this pairing; ker*(SW) is also the 
kernel of the forgetful functor from fi^pinC to Q%. 

Let cx(M) be the Chern class of the bundle defined by y over M and let 
pk(M) be the Pontrjagin classes. The characteristic numbers formed from 
the {cj, pk) are the Chern/Pontrjagin numbers of M and are bordism 
invariants. Let A be the complexified exterior representations of SO(m)\ 
extend the A to Spinc(m) using the natural projection. Let 

#(SphO = Z[y, A*] 

be the free polynomial algebra on these variables; i£(Spinc) is not the full 
representation ring of Spinc. If 0 G i?(Spinc) and if M G Q^f, let 
index(0, M) G Z be the index of the Spinc complex over M with coeffi
cients in the virtual bundle defined by 0; set index(0, M) = 0 if M is odd 
dimensional. The index is a bordism invariant vanishing on torsion 
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classes. Let ker^index, Spinc) be the kernel of these invariants. We refer 
to [1] and [11] for the proof of 

THEOREM 1.1. Let P* = Z[CP\ CP 2 , . . . , CP2k,. . . ]. 
(a) £2*pm is a commutative ring. All the torsion has order 2. The Stiefel-

Whitney numbers and rational ChernlPontrjagin numbers completely detect 
0*pinC ' P* embeds in fi*pinC and 

fi^pinC ® Z2 = P* ® Z2 0 Tor(S2^pinC) 

X ker(index, Spinc) n ker(SW) = 0. 

(b) J/index(0, M) = 0(n) V 0 G P(Spin c), rtoi 

M G «fl^pinC + Tor(fi^pinC). 

Remark, (b) is the Hattori-Stong theorem; it shows that modulo torsion, 
all relations among Spinc characteristic classes are given by the index 
theorem. In particular, if M G P*, then 

{M G 2WP*} ** {index(0, M) = 0(2") V 6 G P(Spin c) }. 

Theorem 0.1 of this paper is the generalization of the Hattori-Stong 
theorem to equivariant bordism. 

Let Œ*pin (BG) be the equivariant bordism groups. Decompose 

tilpinC(BG) = S^pinC(PG) 0 fi?inC. 

Cartesian product makes ^pinC(J3G) and Ûlpin\BG) into S2^pinC modules. 
Let 

W*(BG) = H*(BG; Z2) ® H*(BO; Z2) 

be the algebra of G equivariant Stiefel-Whitney classes and let 

ker^SW, G) Q ÛlpinC(BG) 

be the kernel of the natural pairing 

Wm(BG) 0 ÙsfnC(BG) ^ Z2. 

Since Ker*(SW, G) ^ 0 in general, the equivariant Stiefel-Whitney num
bers do not suffice to detect fà*pm (BG) even if G is a 2-group. 

The eta invariant is an analytic invariant of equivariant bordism. Let M 
be a smooth compact Riemannian manifold of dimension m without 
boundary and let D be a self-adjoint elliptic differential operator on M. If 
X G R, let E(D, X) be the eigenspace of D corresponding to X and 
define 

TJO, £>) = {dim E(D, 0) + 2X dim E(D, X) sign(A) |\|~*}/2 

as a measure of the spectral asymmetry of D. The series converges to 
define a holomorphic function of s for Re(s) > 0. It has a meromorphic 
extension to C with isolated simple poles. The value at 0 is regular. Let 
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7](D) = 7](0, D) G R/Z 

be a measure of the spectral asymmetry of D. If M is an odd dimensional 
Spinc manifold, let N = M X [0, oo). Let <2 be the operator of the Spinc 

complex on N and decompose Q = 3/3/ + Z> for / G [0, oo). D is the 
tangential operator of the Spinc complex and is a self-adjoint elliptic first 
order differential operator over M. If 

0 G #0(G) ® #(Spin c) , 

let TJ(#, M) G R/Z be the eta invariant of D with coefficients in the bundle 
defined by 6. Extend -q to be zero if M is even dimensional when the 
operator D is not defined. Since we consider representations of G of 
virtual dimension 0, the local terms in the Atiyah-Patodi-Singer index 
theorem vanish and r] extends to an invariant in bordism; see [2, 8] for 
details: 

LEMMA 1.2. v'Ro(G) ® #(Spin c) ® SllpinC(BG) ^ Q/Z. 

Remark. r)(0, M) = 0 V 0 if M G fi*pinC since the G structure is triv
ial, but as we will be concentrating on the reduced bordism groups 
for the most part, we shall usually restrict TJ to S*pm(2?G) and define 
ker*(rj, G) ç Ûlpin (BG) as the kernel of this pairing. 

The eta invariant has several functorial properties we describe in the 
following three lemmas. First, it behaves nicely with respect to products 
and is closely related to the ordinary index. Let 

s(y) = y ® y and s(Ak) = 2i+j=kA
i ® AJ 

define a coproduct on #(Spin c ) . If 6 G R0(G) ® R(Sp'mc), decompose 

(1 ®s)(0) = ^lai®bl 

for at G R0(G) ® #(Spin c ) and bl G R(Spinc). Then 

0(M X N) = ^fli{M) ® bt(N) 

for M G 0|pinC(£G) and TV G QijîpinC. We refer to [8] for 

LEMMA 1.3. With the notation established above, 

i)(0, M X N) = I,/n(ai9 M) • index(fef., N). 

Let C(G) be the space of complex class functions on G; the map 
p h-> Tr(p) embeds #(G) in C(G) with #(G) 0 C = C(G). If / , 
g G C(G), let 

( / , g ) c = {2JceC /(x)g(x)}/|G| 

define a non-degenerate symmetric associative pairing which is integer 
valued on R(G). If H Q G, then induction and transfer define maps in 
homology, cohomology, and equivariant bordism compatible with the 
bordism spectral sequence (see [5] and [10] ): 
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i*:H*(BH; - ) h+ H*(BG\ - ) t*:H*(BG; - ) h-> #* (£# ; - ) 

i*:H*(BG; - ) i-> # * ( £ # ; - ) t*:H*(BH; - ) h^ #*(5G; - ) 

i:Ùl*inC(BH) H* S|pinC(5G) *:^pinC(£G) H> Û^inC(BH). 

Let restriction r:R(G) h-> i?(i/) make £ ( / / ) into an #(G) module and let 
i nd :# (# ) i-> £(G) and ind: C(i/) H+ C(G) be the #(G) module 
morphism 

( ' ( / ) , * ) * = (/, ind(g) ) c V / e C(G) V g e C(tf ) 

given by Frobenius reciprocity. With respect to the pairing defined by the 
eta invariant, ind is the dual of t and r is the dual of /'; with respect to 
the pairing defining the equivariant Stiefel-Whitney numbers, /'* is the 
dual of /* and t* is the dual of t*. 

LEMMA 1.4. Let H c G. Then: 
(a) If M G të/m\BH\ 0 G JR0(G) ® #(Spin c) , and x G W*(£G), 

il(0, /(M) ) = T]( (r ® l)(fl), M) fl/id 

(JC, *(M) ) = ( (/* ® 1)(JC), M). 

(b) If M G fi^pinC(5G), 0 G £ 0 ( # ) 0 #(Spin c) , aw/ x G W*(BH\ 
then 

TJ(0, /(M) ) = TJ( (ind ® 1)(0), M) and 

(x,t(M)) = ( ( / * © l)(x), M). 

(c) nker^SJT, H) n ker*(r), # ) i-> ker*(SPr, G) n ker*(îj, G) and 

t±er*(SW, G) n ker*(ï), G) h-> ker*(SJ^, i / ) n ker*(Tj, H). 

Proof. The assertions concerning equivariant Stiefel-Whitney classes 
follow by duality; we refer to [6] for the assertions regarding TJ; (C) follows 
from (a, b). 

If M is a compact Riemannian manifold of constant curvature 1, then M 
is a spherical space form. If T:G I—> £/(&) is a fixed point free repre
sentation of G, let 

N(G,r) = S2k~~l/r(G) 

be the resulting spherical space form; if k > 1 then 

7T!(iV(G, T) ) = G. 

All odd dimensional spherical space forms arise in this way; the only even 
dimensional spherical space forms are the sphere S2k and real projec
tive space RP2k. iV(G, T) inherits a natural stable unitary and Spinc 
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structure. Since N(G, T) is odd dimensional, it bounds in £2* and hence in 

SllpmC so 

N(G, T) G S|p i n C(BG). 

The eta invariant for spherical space forms is given by Dedekind sums. 
If r:G h-> U(k) is a fixed point free, define a, j8 (= C(G) by 

a(r) - det(r - 7) /de t ( r ) G R0(G) 

J8(T)(1) - 0 and JB(T)(JC) = « ( T ) ( X ) _ 1 for JC * 1; 

a and /? are multiplicative with respect to direct sums. If 0 G R0(G), 
a/36 = 6. It follows from the arguments of Atiyah et al [2, see II-2.9] 
that 

L E M M A 1.5. If T:G H-> U(k) is fixed point free and 6 G R0(G), then 

1,(0, 7V(G, T) ) = (0, )8(T) ) c G R / Z . 

Remark. If M = JV(G, r) and 0 G # 0 ( G ) ® # ( S p i n c ) , we can find 
^ G R0(G) with 0(M) = i//(M). Therefore TJ(0, M) = TJ(I//, M) is given 
by Dedekind sums. Let S*(G) be the ̂ p i n C submodule of Q;Jp i n(5G) gen
erated by {iN(H, r) } as H ranges over the subgroups of G and r ranges 
over the fixed point free representations of H. S*(G) contains the image of 
&*(BG) under the forgetful homomorphism. The Atiyah-Singer index 
theorem and Lemmas 1.3, 1.4, and 1.5 enable us to compute 17 on S*(G) 
combinatorially. 

There is a close relationship between the eta and A^-theory which we will 
need in the proof of Theorem 0.2. We refer to [7] for 

L E M M A 1.6. Let T : G 1—» U(k) be fixed point free and let I = a(r)R(G). 
(a) If 0 G J R 0 ( G ) , then 0 G / if and only if 

ri(p0, N(G, T) ) = 0 V p G R0(G). 

(b) K(N(G, T) ) = RQ(G)/I. K(N(G, T , ) ) = K(N(G, r2) ) if d im(r , ) = 
dim(r2) . 

Remark. If 0 G R0(Qv), then the map 

p M> ^(Op, N(G, T) ) 

extends to a map 

£ ( # ( G , T ) ) = R0(QV)/1 ^ Q / Z 

and conversely all maps 

K(N(G, T) ) h-> Q / Z 

arise in this way. This gives a perfect pairing 
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y.KiNiG, T) ) 0 K(N(G, T) ) M> Q/Z. 

2. The Smith homomorphism. If G is a spherical space form group, then 
G has periodic homology and the H*(BG; Z) are all finite groups. The 
E2

pq term in the bordism spectral sequence is Hp(BG; iïq
pm ). Con

sequently 

LEMMA 2.1. If G is a spherical space form group, then \Çlnf
m (BG) \ di-

vides \®p+^mHp{BG;ti?mC)\. 

Remark. In fact the bordism spectral sequence degenerates so this 
estimate is sharp as we shall see in Section 3. 

Let T:G H^ U(k) be fixed point free. Embed N(G; jr) in N(G; (j + 1)T) 
using the first jk complex coordinates. The classifying space BG is the 
limit of the N(G\ jr) under these inclusions. Let M <= Ûlfm\BG) and let 
f\M i—> N(G; jr) be the classifying map for j large. Make / transverse to 
N(g; (j - 1)T) and let 

A(M) =f-\N(G;(j - l )r)) ; 

A depends of course on the particular T chosen. The normal bundle of 
A(M) in M corresponds to the complex representation T and inherits a 
natural Spinc structure. A extends as a map in bordism from Qlpin\BG) to 
the unreduced bordism group Ql^

n
2k(BG). This is the crucial difference 

between unitary and Spinc bordism. Although M bounds, A(M) need not 
bound. Since fà*pin (BG) is a finite group, A takes values in 

iïlpln2k(BG) 0 Tor(fi^n
2

C,) 

and is an 12^pin module morphism. We extend A as zero on the direct 
summand 

fi^pinC ç Ql*inC(BG) 

since the G structure is trivial. Let [M] G Hm(M\ Z) be the fundamental 
class and let 

KM) = MM] G Hm(BG\ Z). 

jit commutes with transfer and induction; /x(AM) is given by cap product 
by the Euler class ck(r) with ju(M). We refer to [5, 6] for: 

LEMMA 2.2. Let rf:G M» U(k) be fixed point free define A,. 

(a) If H Q G, then A7 commutes with induction and transfer. 
(b) A,(tf(G, T, 0 T2) ) = N(G, T2). 
(c) If A3 corresponds to r} © T2, then A3 = A]A2 = ^2^1-

The equivariant Stiefel-Whitney classes are well behaved with respect to 
the Smith homomorphism. 

https://doi.org/10.4153/CJM-1988-016-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1988-016-8


400 PETER B. GILKEY 

LEMMA 2.3. Let r:G I—> U(k) be fixed point free and let M <E 

ÙlpinC(BG). Let N = A(M) ÛAK/ to j:N ^ M be the inclusion. 
(a) / / « e H*~2k(M; Z2), /Ae/i (0 • C * ( T ) ) ( M ) = (j*0)(N). 
(b) A(ker*(SJ^, G)) ç k e r * _ 2 ^ ( S ^ G) c fi^(^G). 

Proof (a) is true since TV is the Poincaré dual of the Euler class ck(r). If 
x e W*~2k(BG\ let 

0 = x(M) G H*~2k(M; Z2). 

The normal bundle of TV in M is given by T SO y*(w(M) ) = W(N)C(T). 

Let 

j ( l 0 H>) = 22 y +^= /c /(r) 0 vtfc and s(x 0 1) = JC 0 1 

define an algebra isomorphism of W*(BG). Then y*(x) = (s(x) )(TV) so 

(*(*) )(N) = (x • C,(T) )(M) = 0 

by (a). Since s is an isomorphism, all the equivariant Stiefel-Whitney 
numbers of TV vanish. Since TV is a torsion class, all the ordinary 
Chern/Pontrjagin numbers of TV vanish so TV bounds in fi*pin by Theo
rem 1.1 and hence 

N e &l»in2k(BG). 

Let p:G i—> Z2 be a real representation. If M e Ûfpm (BG), we use p to 
give M a Z2 structure. Let fp\M \-> RPJ be the classifying map. Make fp 

transverse to RP^~ and let 

AP(M) =f;\RpJ~2) 

with the inherited G-structure and Spinc structure to define an auxiliary 
Smith homomorphism 

kp:ÙlpinC(BG) H* ÛlPl{(BG) 0 T o r ( f i ^ f ). 

LEMMA 2.4. Le/ r:G H-> £/(&) be fixed point free and let p:G H-> Z2. 
(a) A and Ap commute. 
(b) / / M e ker^SJF, G), rfa?/i 

Ap(M) G ker,_2(SIF, G) ç 0^ f ( i ?G) . 

Proof. Let / : M I—» TV(G, y>) be the classifying map. Let 

g:TV(G, jr) H> #PV 

be the classifying map for the Z2 structure defined by p. Make g transverse 
to RPV~2 and let 

X = g-\RPv-2). 

Choose the embedding of TV(G, (j — 1)T) in TV(G, jr) transverse to X 
and let 
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Y= XH N(G, (j - 1)T). 

Make / transverse to X, Y9 and N(G, (j — 1)T). Then 

A(M) =r\N{G,u- my 

gf-A(M) M> RPV is transverse to RPV~2 so 

ApA(M) = ( g / ) ~ ' ( ^ v ~ 2 ) n A(M) = / " ' ( F ) . 

Similarly 

AP(M) = / - ' W 

and /(Ap(M) ) is transverse to A^G, (7— 1)T) SO 

A A p ( M ) = / _ , ( y ) 

which proves (a). The proof of (b) is the same as that given for Lemma 2.3 
and is omitted. 

We now specialize to 2-groups. Identify 

Z„ = {X e C:X" = 1} 

and let ps(X) = Xn be the irreducible representations of Zn where s is 
defined mod n. If n is even, pn/2:Zn \—» Z2 is a real representation. The 
following is well known. 

LEMMA 2.5. Let n = 2W. 

(a) H2fBZn\ Z) = 0. If r:Z„ h-> £/(*:) is fixed point free, then ii(N(Zn; r) ) 
spans H2k_x(BZn;Z) = ZB. 

(b) w^p^/2) 5/7a«5 Hl(BZn; Z2) = Z2 <wi</ q ^ ) .y/www H2(BZn\ Z2) = 
Z2 

(c) Cw/7 product by Ci(pj) w an isomorphism from HJ(BZn\ Z2) to 
HJ+2(BZn; Z2). 

We summarize the properties of H / i n (2?Zn) which we need and refer to 
[3, Lemmas 3.3 and 3.4] for the proof. 

LEMMA 2.6. Le/ « = 2W and let àx correspond to px. Let N = àx(M). 
(a) Define an algebra isomorphism t of RQ(ZH) ® R(Sp'mc) by 

t(6)(N) = d(M) \N. 

Then 

n(t(9), N) = V(0 ® «(P l), M). 

(b) IfXe Tor(i2|pin2
C^) and k > 0, ?/ien 

3 M G ker,(n, Z„) c 0|pinC(5Z„) 

TO 2M == 0 and Ak(M) = X. 
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lu 

We define the generalized quaternionic groups following [12]: 

Qv = (x, y:xlu = y\ yxy~] = x~\ y4 = 1> 

for u = 2V~ and v ^ 2. 

Qv is a finite group with Su = 2V+1 elements; for example Q2 = { ± 1 , =*=/, 
±7, zbA:}. <2V has 2w + 3 conjugacy classes represented by {1, x, . . . 
7, xy}. There are four 1-dimensional representations of Qv defined by: 

Po(x) = 1, Px(x) = 1, pv(x) = - 1 , pxy(x) = - 1 

Po(>0 = h Px(y) = - 1 , P / j ) = 1, Px/jO = - 1 . 

The 2-dimensional representations of Qv are given by: 

0 1 i / A f ° 
2mj/4u\ and Tj(y) = L j y 

T / X ) = 

[ Inrij/Au 

0 e" 

and T2W = p. px . The irreducible inequivalent unitary To = Po ® 
representations of Qv are the 2w + 3 representations (p0, pv, pv„ pvv, 
T,, . . . , T2U-\). If y is odd, T- is fixed point free. Let T = Tj and let A 
correspond to T. If z e gv, let Hz be the cyclic subgroup generated by z. 
The 3 maximal Abelian subgroups of Qv up to conjugation are Hx9 //v, and 
i / and have orders 4w, 4, and 4. 

LEMMA 2.7. (a) H2j(BQv; Z) = 0. Lef 

r z :# z h-> U(2k - 1) fl/irf T^g, i-> £7(2*:) 

be fixed point free. {^i(izN(Hz; rz) ) } 2 = = > w ^OAW 

H4k_3(BQv; Z) = Z2 0 Z2 

#«<i [i(N(G, T ) ) .spura 

H4k~\(BQv> z ) = z i e j -

(b) {w,(p ), w,(p ) } .sp r̂as 

Z* /r(*Ôv; Z2) = Z2 

{^l(Py). ^l(Pjcy) } SPanS 

H\BQV; Z2) = Z2 

and c2(r) spa «s 

H\BQV; Z2) = Z2. 

H\BQV\ Z2) = Z2 a«J izH
3(BQv- Z2) - 0 /« H3(BHZ; Z2). 

(c) Cw/7 product by c2(jx) is an isomorphism from HJ(BQV; Z2) to 
Hj+\BG\ Z2). 

Proof. The structure of the cohomology and homology groups is well 
known and is an easy exercise in characteristic classes and in the Gysin 

z2, 
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sequence so we omit details. To show 

iz:H\BQv; Z2) ^ H3(BHZ; Z2) 

is the zero map, we may assume Hz is maximal Abelian so z = x, y9 or xy. 
We use Poincaré duality with Z2 coefficients on the 3-dimensional 
skeleton N(QV, T) to choose 

e2 e H2(BQV; Z2) 

so wi(p2)02 is the generator of H3(BQV; Z2). Since i*(wx(pz) ) = 0, 

i*(H\BQv; Z2) ) = 0. 

We will use the following lemma to reduce questions about representa
tions of Qv to similar questions about the cyclic groups. Let indz be 
induction from Hz to Qv. 

LEMMA 2.8. R0(QV) = ind, R0(HX) + ind^ R0(Hy) + ind^ R0(Hxy). 

Proof. Let 

Teven = ^>0<s<2u,s = 0(2) Ts a n d Todd = ^>0<s<2u,s== 1(2) Ts' 

Then 

indx ps = r5 

ind^ p0 = reven + p0 + py ind^ p0 - reven + p0 + p ^ 

ind^ P l = rodd ind^ px = rodd 

ind^ p2 = reven -f p^ + pxy indxy p2 = Teven + px + p y 

Po ~ P* = indxy(Po ~ Pi) - indy(P2 - P 0 

Py ~ Px = i nd
7(P0 - Pi) " 20^y<2M,7=0(2) indx(P/ - P/+l) 

Pxy ~ Px = i n d * y ( P o - Pi ) - 2 o ^ < 2 W , y = 0(2) i n d * ( P / ~ P / + l ) 

Ty ~ 2 P * = i n d x ( P / ~ Po) + (PO ~ Px)-

We conclude this section by studying the behavior of the eta invariant 
with respect to the Smith homomorphism. 

LEMMA 2.9. Let G be a 2-group. Let r:G I—> U(k) be fixed point free. 

(a) A:ker*(T7, G) h-> ker^ij, G) 0 Tor(^p i n C) . 

(b) If M e Œ;>PinC W 1/ 2M - 0, then 

ri(0, A |G|M) = 0 V » e #0(G) ® #(Spin c) . 

Proof If suffices to prove (a) if r is irreducible. By composing with an 
outer automorphism, we can convert any r to the standard choice. If G is 
cyclic, then (a) follows from Lemma 2.6 since t is an isomorphism. Let 
M G ker*(TJ, Q ) . By Lemma 1.4, 
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r]( (indz 0 1)(0), M) = T](6, tz(M) ) = 0 

V 0 e R0(HZ) ® i?(Spinc) 

for z = x, y, xy. Since 

(/z o A)(M) = (A o O ( M ) e ker„,(ij, Hz) 0 Tor(fi^pinC), 

we use the cyclic case to compute 

T]( (indz ® 1)0, A(M) ) = ri(69 tzAM) = T\(0, AtzM) = 0 

V « G R0(HZ) ® ^(Spin c ) . 

We apply Lemma 2.8 to see 

ri(09 A(M) ) = 0 V f l G R0(Qv) ® £(SpinO 

which proves (a). This argument also shows that to prove (b), it suffices to 
consider G = Zn and r = pY. We compute 

«(p,)" = (Po - P- i ) " = 2osiS„(")p-,- e 2«0(Z„) 

so (b) follows by Lemma 2.6. 

3. The bordism spectral sequence. We first study the Sylow 2-subgroups. 
If G = Z„, let 

JV»(Z„) = iV(Z„, p,) X fi^inC ç 0|pinC(BZ„). 

The proof of the following lemma is the same as the proof we shall give 
shortly for the corresponding lemma concerning Qv so we omit details. 

LEMMA 3.1. Let n = 2W. 

(a) N(Zn, p,) spans Ù?inC(BZ„) = Z„. 

(b) If M G 0fpinC(5Z„) a«Jî}(6>, M) = 0 V 6 G /?0(Z„), ?/ZÉ>H M = 0. 

(c) JVM(Z„) « //,(5Z„; fi^f), 

iVm(Z„) n kerm(7,, Z„) ç N(Z„, p,) X Tor(^ p i n C ) , on</ 

JVm(Z„) n k e r m ( S ^ , Z„) n kerm(7}, Z„) = 0. 

The homology of Qv is more complicated. Let 

P\(y) = Pi(xy) = e2m/4 

be a fixed point free representation of H and H not extending to Qv. 
Let 

A/r = iyNWy, p,), M ^ = / ^ ( t f ^ , p,), M, = JV(ev, T) 

N*(Qv) = My X fiSPinc
 + 3 ^ x fiSpin^ 

+ M ? X Supine g 0^pinC(fiOv)-
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LEMMA 3.2. (a) {My, Mxy) generates Ù^pinC(BQv) = Z2 0 Z2 and 

{My X CP1, MXJ X CP], Mq) 

generates 

o3
SpinC(5(3v) = z 2 e z 2 e z,Gy|. 

(b) / / M e 0|P inC(5ôv) for * = 1, 3 a«J i,(p, M) = 0 V p e P0(ÔV), 
M = 0. 

(c) A ^ a ) « ^,(5Ô»; « S " ) © H3(BQV; 8 ^ ) , 

#m(Ôv) n kerm(7}, gv) G 2 Mz X Tor(^p i n C) , and 

Nm(Qv) n ktxm(SW, Qv) n kerm(7,, Ôv) = 0. 

Proof. We use the Anderson-Brown-Peterson computations to see 

Tor(fi^pinC) = 0 for * < 9 

so 

$Spi°C(BQv) | S 22 and |0fPinC(2?Ôv) | ê 22 |gv | 

by Theorem 1.1 and Lemmas 2.1 and 2.7. By Lemmas 1.3, 1.4, and 1.5: 

rtPxy ~ P0< My) = 1/2, y(pxy ~ Po. Mxy) = 0 

^(Pj ~ PO' M>>) = °> ViPy ~ Po> ̂ xy) = 1 / 2 

TKP^, - Po, My X CP1) = 1/2, v(pxy - po, M^ X CP1) = 0, 

l(Py - Po, My X CP1) = 0, v(py - Po, M,v, X CPV) = 1/2, 

T,(T - 2p0, My X CP1) = 0, T,(T - 2p0, Mxy X CP1) = 0, 

•niPxy - Po> M
? ) = * 

"ViPxy - PfrMq) = * 

T , ( T - 2p0,M1?) = - 2 " 1 0 - 1 , 

which proves (a, b). 
Let 

M = 2 ^ ^ X Nz G kerfo, &,)• 

Since &tpm (BQV) is a 2-group, we can assume 

Nz = Sz + Tz for Sz e P* = Z[CP l, CP2, . . . , CP2/c, . . . ] and 

rz <= Tor(S^pinC). 

The comultiplication in Lemma 1.3 was defined so that if 

(1 ® s)(0) = SÛ,. ® ft,., 

then 
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0(MX X Nx) = 2a;(M,) ® &,(#,). 

We observe: 

(A' - A ' - ' xAg = A'((r(M?) e i) ® o 

= A'(T © r)(Mq) and y(Mq) = 1. 

(A' - A,_1)(MZ) = A'( (T(MZ) 0 1) ® C) 

= A'(Pl + pf)(Mz) = A'(T)(MZ) and 

T(MZ) = px ® \ ÎOT z = y, xy. 

We define algebra isomorphisms tz of R0(QV) ® /?(Spinc) by 

?(?(1 0 (A* - A*" 1)) = 2/+y_fcA'"(2T) ® AA 

^(1 0 T) = 1 ® T, and f?(p ® 1) = p ® 1. 

/z(l ® (A* - A*- 1 ) ) = 2,+y=ytA'(T) ® AJ, 

tz(\ ® T) = px ® T, and ?z(p ® 1) = rz(p ® 1) for z = y, xy. 

Let 0 G iî0(ôv) ® /{(Spin0), and decompose 

tz{0) = 2,a,.z ® bif. 

Then 

0(MZ X JVZ) = 2A ; z (M z ) ® ^( iV z ) 

so Lemma 1.3 implies 

0 = n(0, M) = 2ifZ7i(aifZ9 Mz) • index(if>, iVz). 

Since 7̂  is a torsion class, index( —, Tz) = 0 so 

index(Z)-ziVz) = index(6zzSz). 

Let $ e #(Spin c) . Choose 0X so ^(0,) - 1 ® i// and let 6 = (r - 2)0, so 
^(0) = (T - 2) ® i//. Then fz(0) is divisible by (T - 2) for all z. 
Therefore 

rz(tz{6) ) e a(r) • R(HZ) = * 0 ( t f z ) 2 for z = 7 , xy 

so 0 has zero eta invariant on M and M by Lemma 1.6. This shows 

0 = T](T - 2, M^) • indexa, ^ ) V ^ G £(Spin c ) 

so 

indexa, S^) = 0 mod|<2v| V ^ G i?(Spinc). 

Therefore Sq GE |gv |P* by Theorem 1.1 and Mq X Sq = 0 by Lemma 3.1. 
We argue similarly using (p^ — p0) ® i// and (pxy — p0) ® \p to show 
^ Z G 2 - 12^pinC for z = y, xy. This shows 
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M = 22MZ X Tz for T2 e Tor(fi|pinC). 

Suppose in addition M G ker^SW, Qv). Let x G W* and let a be the 
generator of H3(BQV; Z2) = Z2. Then 

0 = (ax)(2zMz X Tz) = (ax)(Mq X 7g) = x(Tq) 

so T G ker(SW) and 71 = 0 by Theorem 1.1. Similarly by evaluating 
wx(py)x or Wj(p )x we show 7J, = rx>, = 0 so M = 0. If M = 0, then 

M G kerfo, Ôv) H ker(S^, Qv) 

so ^ G 2Pm_„ Sxy G 2Pm_„ 5, G IGV|PM_3, and r , = 7 ^ = Tq = 0. 
This gives the additive structure of N*(QV). 

We now study the manifolds related to 

Heven(BQv; Tor(S4pinC) ) 

in the bordism spectral sequence. Let 

Az:Ù
srC(BQv) H» 0 ^ 5 Ô „ ) © Tor(fis/nC) 

correspond to the representation pz. We generalize Lemma 2.6: 

LEMMA 3.3. Let v ^ 2 W TV G Tor(fi^pinC). For A: ^ 0, 3 Mx(k) G 

a*Pin
4

C^Ôv) andM2(kl M3(k) G î 2 ^ + 2 ( f l Ô v ) *> ' ^ ' 

(a) AkMx(k) = AyA
kM2(k) = AxA

kM3(k) = N, 

AxA
kM2(k) = AyA

kM3(k) = 0, and 2Mt(k) = 0. 

(b) AkMt{k) = Mt(k - j) for k^ j and i = 1, 2, 3. 

(c) 7i(09 Mt(k) ) = 0 V « E R0(Qv) ® iî(SpinC). 

Remark. We will construct ^ ( / c ) satisfying (a). Az and A commute. For 
fixed k and 7 < /c, Ak~JMt(k) also satisfies (a). Since the bordism groups 
are finite, the pigeon hole principal shows we may do this consistently for 
all k which proves (b). We can then use Lemma 2.9 to see the Mt(k) satisfy 
(c); since the Mt(k) need not belong to the reduced bordism groups, they 
need not belong to 

ker*(îj, G) Q ÙlpinC(BG). 

Proof. If k = 0, let A = N. Otherwise use Lemma 2.6(b) to choose 
A G ^l^k(BZ2) so that 1A = 0 and AkA = N. Fix k and set Mx = i(A) 
with the induced Qv structure; 2MX = 0 and AkA = i(N). Since the Z2 

structure on N is trivial, i(N) = N and Mx satisfies (a). 
The construction of M2 is more complicated and lies at the heart of our 

investigation of ûlpinC(BQv). Identify R4 = C2 = H and let 

(xx, x2, x3, x4) = (z, w) = P 
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in this representation. Let u = 2V . Then T = rx is given by: 

T(X)(P) = {emilluz, e~milluw) --= (COS(TT/2U) + sin(77/2w)i) • P 

r(y)(P) = ( - w , z ) = 'rP. 

Since 1A = 0, let B be a compact Z2-Spinc manifold so dB = 2/4. Let C be 
the non-orientable manifold obtained by glueing A X [0, 277] to B along 
the boundary. Let LA be the real line bundle over A corresponding to the 
given Z2 structure; LA extends to a bundle Lc over C by hypothesis. Let v 
be the orientation line bundle of C. v is trivial over yl X [0, 2m\ and over 5; 
we choose local sections to agree over A X {0} and differ by sign over 
A X {27r}. Let M2 be the unit circle bundle of the 2-plane bundle 
v © 1. Since v is the orientation bundle of C, v © 1 is orientable and in
herits a Spinc structure from the Pinc structure on C. Let <JDZ G [0, 2m\ be 
local periodic angular parameters over A X [0, ITT] and 5 which are 
identified so 

<P! = <p2 over X X {0} and 

qpi = 277 — qp2 ° v e r ^ * {277}. 

We give M2 a <2V structure as follows. For r large, let 

p:S4r-l^S4r~l/Qv = N(Qv,rr) 

be the covering projection and let g:C I—> RPr~x be the classifying map for 
Lc with g(x9 0) = g(x) independent of 0 over X X [0, 2TT]. Embed Rr Q Hr 

as the totally real subspace. Let 

d(t) = cos(t/4u) + sin(f/4w) • i and 

e(t) = cos(7/4) + sin(>/4) • j 

define representations from R I—> SU(2) = SP(l) with d(27r) = r(x) and 
^(2T7) = r(y). Let G be a local lift of g from RPr~l to Sr~l Q Rr Q Hr 

and define: 

h(a, 0, V l) = p{d(<f>x)e(0) • G(a) } and 

*(*,V2) = P{rf(v2)-G(6)}-

Since Z2 is in the center of SP(l), h is independent of the local choice of G. 
We check h extends to M2 by verifying: 

h(a, 0, V l + 277) = p{T(x)d{<cx)e(0) • G (a) } 

= /^{rf(viMfl)-G(fl)} - h(a,0,<px) 

h(b, <p2 + 277) = p{T(x)d(<p2) . G(6) } = /?{</(<P2) ' G(A) } 

= h(b, <p2) 
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h(a, 277, 2ir — cpj) = p{d{2ir — qp,) • j • G(a) } 

= P{}' d(<P\ ~ 2^) ' G(a)} 

= p{i-T(xyld(^)'G(a)} = * ( f l , 0 , V l ) . 

The boundary of M2 X [0, 1] is M2 U — M2 where — M2 is given 
the reversed orientation and inherited Spinc and Qv structures. Let 
^:<p H-> 277 — <p define a Spinc isometry from M2 to — M2. We show ^ pre
serves the Qv structure by showing h(c, 2m — <p) and /z(c, <p) are homotopic 
maps from M2 to JV(<2V>

 rTY 

h(a9 0, 2T7 - V l) = /?{J(2T7 - Vl)e(0) • G(a) } 

= ^{J_1^(<Pi " 2m)e(6)\-G{a)} 

= p{d(Vl)em'G(a)} 

h(b, 277 - <p2) = P{d(27T - <p2) • G(b) } 

= p{}~ld(<P2 ~ 2m)'} -G(b)} 

= p{d(<p2)j'G(b)}. 

Since SU(2) is connected, g ( j ) and j • g(y) are homotopic maps 
from C —> RP4r~] so /z(c, <p) and /*(<:, 277 — <p) are homotopic. Thus 
^ : M 2 M> — M2 is a Qv — Spinc isomorphism and 2M2 = 0. 

We complete the construction of M2 by computing Az. Define: 

SX(P) = 2 a Rc(zawz, \zf - \wf) e R2 

§,,(/>) = 2a(zfl)
2" + K ) 2 " G C = R2 

and check 

Ô , ( T ( ^ ) P ) = pz{q)K(n 

Since 5Z is equivariant with respect to pz, we can let Sz be the first two 
coordinates of the classifying map. The transversality condition will be 
satisfied so AZ(M2) is given by setting Sz(m2) = 0. Because g was chosen to 
be totally real, 

2 a ( | zJ 2 - k / ) = 0 
implies 6 = 77 so 

2 A w
f l

 = 1 /2-

This shows ^/z(w2) ^ 0 so Ax(Af2) - 0. Similarly Sv(h(m2)) = 0 
corresponds to 6 = 77 and <p = 77 so 

AV(M2) = A X {77} X {77}. 

Since the normal bundle of A in M2 is trivial, A inherits the original Spinc 

structure. The Q structure on A is given by p(d (m)e(m) • G) which is 
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homotopic topG. Thus A (M2) = i(A) has the induced Qv structure. Since 
A (A) = N, M2 has the desired properties. If v = 2, there is an outer 
automorphism of Qv interchanging the roles of x and y we use to construct 
My For v > 2, we include Q2 in Qv to give M3 a Qv structure. Since the 
restriction of px from Qv to Q2 is px and since the restriction of py from £>v 

to Q2 is p0, M3 has the desired properties. 

Let G be a 2-group so G = Zn for n = 2W or G = Qv. The E2
pq term 

in the bordism spectral sequence is H (BG; fij?pm ). Let 

E^n(m, G) = ®p+q=m,p=m)Hp(BG; O f n C ) 

£odd(m, (?) = © , + , _ „ , , _ 1 (2)#„(5G; O f n C ) 

decompose the bordism spectral sequence. By Lemma 2.7 and the 
Universal coefficient theorem, 

£even(*, Z„) = e , a 0 { T o r ( 0 ^ _ 2 ) } and 

*even(*> &,) = © ^ { T o r ^ S ^ - z ) © T o i ( Q | ^ _ 2 ) 

e T o r ( Q 5 p l l - 4 ) } 
is the direct sum Z2 factors. Let 

7r:ÙlpinC(BG) 0 Tor(fi|pinC) h-> Tor(S2^pinC) 

be projection on the second factor. Let Aj correspond to px for Zn and let 
A correspond to r for Qv. Define Q*pm module morphisms 

H = ®k^{^\+{}:&rC(BZn) ^ EeveB(m, Z„) and 

n = ®kmi^kK © **% © vrA*+l}:n^ inC(5Ôv) 

l - > £even(w> ô v ) -

LEMMA 3.4. Le/ G be a 2-group. 

(a) Ker*(S*f, G) C ker,(II). 
(b) ri:0^pm(JSG) i-> Eeven(m, G) is surjective and split. We may choose 

the splitting 

n~\E^Jm9G)) Q ker^ij, G). 

Proof. First let G = Qv. Since A, Az, and TT are fi*pm morphisms, II is 
an Q^mC morphism. If M G ker*(W, 0V), then 

{A*(M), A*AZ(M) } Q ker*(SW, Qv) Q tilpinC(BQv) 

by Lemmas 2.3 and 2.4 so U(M) = 0 which proves (a). Since A and Az are 
zero on £2*pin , we can extend the domain of II to the full bordism group 
and then project to H*pin (BQV) at the end if necessary in proving (b). The 
fact II is split surjective follows from Lemma 3.3 if we use induction on 
the grading of Eeyen(m, Qv) defined by the dimension. If we fix m, then 
7T o A7' o I I~ is a splitting for II in dimension m — 4/; we use the pigeon 
hole principal to choose 
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U-lEe^n(m - 4/, Qv) = n o A'" o Ii~x Etvtn(m, Qv) V m, j . 

If 2M = 0, then 

TTAI(2VIM e ker(7j, Qv) 

by Lemma 2.9 so 

n - ^ e v e n ( m , g v) ç ker*(i|, 6V). 

The argument is the same for Zn if we use Lemma 2.6 (b) instead of 
Lemma 3.3 so we omit details. 

Let G be a 2-group and let [iN(H., a ) } be the collection of spherical 
space forms described in Lemmas 2.5 and 2.7 which is invariant with 
respect to the appropriate Smith homomorphism and which is a basis for 
Hodà{BG; Z2). Let 

Sm(G) = 2jiN(Hj, oj) X fi^pinC ç ùlpinC(BG). 

Since ÙlpinC(BG) is a 2-group, 

Sm(G) = yN(Hp oj) X (i>„ + Tor(fi|pinC) ). 

Let F be the forgetful functor from unitary to Spinc bordism. Since 
{iN(Hj, Oj) } spans as an fi^ module (see for example [6] ), 

S*(G) = F(Ù"(BG) ) X fi^pinC 

which gives an invariant description. Since the collection is invariant 
under the Smith homomorphism, 

Ax:S*(Zn)^S*_2(Zn)^0 and A:S*(Ôv) «-* S*_4(Qv) ^ 0. 

If G = Qv, the A2 can also be defined in unitary bordism so FAZ = AZF. 
Since £2^ is without torsion, 

TT^(BG) = 0 

so 

7rkzF(Û"(BG) X Tor(fi^pinC) ) = 0. 

Therefore S*(G) Q ker(n). 

LEMMA 3.5. Let G be a 2-group. 
(a) The bordism spectral sequence for 0*pm (BG) collapses; i.e., all the 

differentials are zero. 
(b) II defines a split short exact sequence: 

0 h-* Sm(G) !-> n^ i nC(£G) £ £even(m, G) H+ 0, 

(c) A tf«<i A! define short exact sequences: 

0 H+ Nm(Qv) H* sm (g v ) i-> Sm_4(ôv) "-» 0. 

0 H-> iVm(Z„) H* 5m(Z„) A Sm_ 2(ZJ i-> 0. 
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Proof. We give the argument for Qv as the argument for Zn is the same. 
Since N*(QV) Q S*(QV), we have a short exact sequence: 

0 ^ ker(A) n Sm(Qv) ^ Sm(Qv) ^ Sm_4(Qv) H> 0. 

We use Lemma 3.2 to estimate: 

\Sm(Qv) I = \Sm-4(Qv) I • |ker(A) n Sm(Ôv) I 

^ l^m-4(ôv) I • Wm{Qv) I 

è | ^ _ 4 ( ô v ) I • \HX(BQV; 8 f [ ) | • |/y3(2?ôv; Q ^ ) I 

which implies \Sm(Qv) \ i= \Eodd(m, Qv) |. Since Sm(Ôv) £ ker(n), this 
implies 

\®%inC(BQv) | = |ker(IIm) | • |£even(m, Qv) \ 

^ \Sm(Qv) I ' |£even(™> Qv) I 

^ |£odd(m, Qv) | • |£even(m, gv) |. 

Since the reverse inequality is provided by Lemma 2.1, all these 
inequalities must be equalities. 

We derive the following 

COROLLARY 3.6. Let G be a spherical space form group. 
(a) The bordism spectral sequence of G collapses. 
(b) Let H be a p-Sylow subgroup of G. Then i o t is an isomorphism of 

&r\BGXp). 

Proof At odd primes, this was checked in [6] so we may assume p = 2 
and H = Zn or Qv. Induction and transfer are maps of spectral se
quences (see [10]). The composition / o / is multiplication by \G:H\ 
on H(BGV\ $lq

pm ) and induces a map which is an isomorphism of 
Epq(BGv)(2y The bordism spectral sequence for Zn and Qv collapses by 
Lemma 3.5 and consequently all the differentials of the bordism spectral 
sequence for BG at the prime 2 collapse as well. This proves (a). We 
use the 5-Lemma and (a) to derive (b) i o / is an isomorphism on 
H*(BG; ~\py 

We can now complete the proof of Theorem 0.1. Let G be a spherical 
space form group. The odd primary part of Theorem 0.1 was proved in [6] 
so it suffices to study the 2-primary part. Let H be the Sylow 2-subgroup 
of G. By Lemma 1.4, 

t±eT*(SW, G) n ker*0], G) h-> ke r* (W, H) n ker#(i?, H). 

Since t is injective on bordism (2) by Corollary 3.6, it suffices to prove 
Theorem 0.1 for H. We suppose H = Qv as the cyclic case is similar. 

Let 
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M G Ùlpin\BH) n ker*(7î, H) n ker*(S1V, H). 

We proceed by induction on * to show M = 0; the cases * = 1, 3 follow 
from Lemma 3.2. We use Lemma 2.1 to see 

Ùl*mC(BH) = 0 for * = 0.2. 

By Lemma 3.4, M G ker^SW, i / ) implies M G ker(IT) = S*(i/). By 
Lemmas 2.4 and 2.9, 

A(M) G ker*_4(Tj, 7/) n ker *_4(SW, H) = 0. 

Consequently by Lemma 3.3, 

A(M) G N*(H) n ker*(rj, / / ) n ker*(SW, H) 

and this is zero by Lemma 3.2. 

4. The additive structure of Ùlpin\BG\2) and bu*(BG\2y In this sec
tion, we will construct an analytic splitting 

ÙlpinC(BG\2) = A+{G) ® Z[X\ . . . , XA\ . . . ] 0 ker„fo, G) 

ker*(r,, G) = H*{BG\ Tor(fi|pinC) ). 

We will identify the groups A*(G) with bu*(G)(2) later and this will lead to 
the proof of Theorems 0.2 and 0.3. 

We must describe one additional piece of structure on G. A r-structure 
for G is an assignment H I—> TH to each 2-subgroup H oî G of & fixed point 
free representation rH:H f—» S£/(2) so the assignment is invariant under 
restriction and conjugation; i.e., up to unitary equivalence 

(i) UE Q H, then rE(e) = rH(e) V e G E. 
(ii) If E = gHg-\ then rH(h) = rE(ghg-1) V h G // . 

LEMMA 4.1. (a) Le/ H be a 2-subgroup of G and let r:H I—> SU(2) be fixed 
point free. If g G E, let E = H n g~ # g tf«d /e/ T£(e) = r(geg~ ). 
TTze/? 

Tr(r £(e)) = Tr(r(e)) V e e £. 

(b) If r:G2 f—» SU(2) is a fixed point free representation of a Sylow 
2-subgroup of G, then 3 W-structure on G so r' — rG . 

Proof We suppose (a) is false and argue for a contradiction, T and r £ 

both define fixed point free SU(2) representations of E. Choose e G E so 
rE(e) and r(e) have eigenvalues {/i, n~l} and {À, X - *} where /x ^ X^1. If e 
has order l, 2 or 4, 

{),, I.-1} = {X, X"1} e { {1, 1}, { - 1 , - 1 } , {/, - ,•} }. 

Therefore order(e) > 4. Let N be the subgroup of H generated by 
all elements of order > 4 . If H ^ Zn, then N Q Zn. If H = Qv, then 
7/ = /fx. Therefore TV is a cyclic normal subgroup of H. Since 
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ord(e) = ord(geg l) > 4, 

e G N and geg"1 e TV. Since JV is cyclic, geg - 1 = e* for k odd. Since 
JU ^ À±1, geg~l ¥= e~x. By replacing g by an odd power of g if necessary, 
we can preserve these relations and assume in addition the order of g is 
a power of 2. Let o:G i—> £/(*) be fixed point free and let a = o~\— 1); 
« is the unique element of G which has order 2; # is in the centre of G 
since a is faithful. If g2 e {#, 1} then geg~l = e±l. Since this is false, 
order(g) > 4. Let X = (g, e) be a 2-subgroup of G. X contains two 
elements which don't commute and which have order greater than 4. 
Thus X is neither cyclic nor generalized quaternionic. This contradiction 
proves (a). 

We use (a) to prove (b). Let G2 be a Sylow 2-subgroup of G and 
let T:G \-^> SU(2) be fixed point free. If H is a 2-group, 3 g <= G so 
gHg~1 c G2. If G has a T-structure, then 

K(TH(h)) = Tr(T'(g/*g-1)) 

is uniquely specified by T\ TO show the existence of a T-structure, we must 
show TH = r'(ghg~l) is independent of the choice of g up to unitary 
equivalence since then the assignment H I—> rH will be invariant under 
restriction and conjugation. Since this question is invariant under conju
gation, we suppose without loss of generality that H Q G2. Let 

E = G2 H gxG2g. 

Since gHg~x Q G2, H Ç £. Thus by (a), Tv(r(ghg~l) ) = Tr(r'(/0 ) is 
independent of g. 

If Is c G, the restriction of a T-structure on G to £ defines a T-structure 
on E. We fix henceforth a T-structure on G and hence one on all the 
subgroups. We say (//, a) is admissible if H is a 2-subgroup of G and if 
o + o* = krH for /: = dim(a). This implies a is fixed point free. If k is 
odd, then H must be cyclic. 

Inequivalent Spinc structures on N(H, o) differ by a complex line 
bundle or equivalently by a representation p:H M> £/(l); let iV(i/, a, p) 
be iV(i/, a) where the Spinc structure has been twisted by p. Since 
the rational Chern/Pontrjagin numbers and Stiefel-Whitney numbers of 
N(H9 a) and N(H, a, p) agree, N(H, a, p) = 0 in fi^pinC so 

iV(i/, a p) G Ù^pinC(5G). 

Let 

AJfi) = spanz{/(7V(//, a, p) ) } ç fi^pinC(5G) 

for (//, a) admissible and p:H \-+ U(l). 

LEMMA 4.2. (a) If E Q G, then 
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i(A*(E)) Q A*(G) and t(A*(G)) Q A*(E). 

(b) If E is a Sylow 2-subgroup of G, i o / is an isomorphism ofA^(G). 

Proof If C Q D, let i(C, D) and t(C, D) be the induction and transfer 
maps. Let (//, a) be admissible with respect to E, then (H, o) is also 
admissible with respect to G. Since induction is functorial, 

i(H, G)i(E, H)N(H, a, p) - i(E, G)N{H, a, p) 

so i(A*(E) ) ç A*(G). To study transfer, let E Q G and H Q G and let 

X = t(E, G)i(H9 G)N(H, a, p) 

for admissible (H, a). We must show X e A #(E) to complete the proof. 
Since we can change the orientation and Spinc structure arbitrarily, we 
ignore p for the moment. We compute the induction and transfer maps as 
follows. Let m = 2 dim(a)— 1 and let H M> Sm H* N(H, O) be the principal 
left H bundle defining 

N(H, o) G Ùlpin\BH). 

Then 

G ^ G X HSm i-> N(H, o) 

is the principal left G bundle defining the induced G-structure on 
i(H, G)N(H, a). Let G/H be the right coset space and let {gt} be coset 
representatives. If g e G, let 

g'gi = gi(g) • hi(g) 

give the left action of G on G/H. Define a left action of G on G/H X Sm 

by 

g(gl X z) = & ( g ) X oih^g))'!. 

Then G// / X Sm and G X / /S
,m are isomorphic left principal G-bundles. 

The transfer homomorphism is defined by restricting this bundle to E 
so 

E H* G/H X Sm
 H-> £ \ { (G/7/ X Sm) } = X 

defines the E structure on X. Decompose the left action of E on G/H into 
orbits y , then X- = E\(Y. X Sm) are the connected components of X. 
Choose g- e Yj and let 

Ej = EH gjHg-1 = {e G EiegjH = gjH) 

be the isotropy subgroup. Let 

<jj(e) = oigf^gj) and Tj(e) = r(g~]egj). 

Then T is the representation corresponding to Ej. Since 
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oj + Oj = d i m O ^ , 

(Ej, Oj) is admissible. Then Ej M> Sm i—> N(Ej, a-) is isomorphic to gy X Sm 

as a principal £• bundle. Furthermore (E/Ej) X Sm is isomorphic to 
Yj X Sm as a principal £ bundle so 

£ H ^ . X S m h » E \ ( ^ . X Sm) 

is /(Ey, E)N(Ej9 Oj) which proves (a). Since ^4*(G) is a 2-group, Corollary 
3.6 shows z o fis an isomorphism. 

We restrict for the moment to 2-groups. Let A correspond to 
T:G I—> SU(2). Let (//, o) be admissible. If H is not cyclic, then 
T\H = T*\H is irreducible so 

o = k • rH = k • T\H for k = dim(a)/2. 

If H is cyclic, then r\H = px ® p* decomposes as the sum of two 
1-dimensional representations. Consequently o and dim(a) • px are 
equivalent as representations of H to 0(2/) . This shows N(H, o) and 
N(H, dim(a) • px) differ at most by the orientation chosen and by 
the Spinc structure chosen. Since we allow arbitrary changes of orien
tation and Spinc structure in defining A*(G), we may choose o = kr or 
a = kr 4- px depending on the parity. Therefore: 

A4k_l(G) = spanz{/7V(//, kr, p) } and 
A4k+\(G) = spanz{iN(H, kr 0 p„ p) } 

where H ranges over all subgroups of G in dimension 4k — 1 and the 
cyclic subgroups of G in dimension 4k+\. Since 

AiN(H, o + r, p) = iN(H, a, p), 

this collection is A invariant so 

A:A*(G)h^A*_4(G)\-^0. 

If G is cyclic, A*(G) = spa.nz{iN(H, kph p) } is Aj invariant so 

A i :^+(ZJ^^*_2(ZJi^0. 
Let a = <X(T) = T - 2 and let J = a#(G). If G = Z„, then / = R0(Zn)

2. 
Let 

8:R0(G)/Ik+l H» R0(G)/Ik and 8:I/Ik+X i-> / / / A 

be the natural projections. We use Lemma 1.6 to relate ^4*(G) to the 
representation theory of G as follows: 

LEMMA 4.3. Le/ G be a 2-group. 

(a) 3 ^ . ^ . . ( G ) H> / / / * + I h - 0 anrf 

3 !/4* + i^4*+i(G) ^ W ) " * + 1 "-» 0 
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SO 

7,(8, M) = 7,(0 • f4k±x(M), N(G, (k + 1)T) ) V M 

G A4k±x(G) V 0 G *0(G). 

(b) {f4k+l(M) = 0} ^ {7,(0, M) = 0 V 0 G *0(G) }. 

(C) / 4 * ± l - 4 o i = S°f4k±l-

Proof. The tangential operator of the Spinc complex for N(H, a, p) is 
the tangential operator of the Spinc complex for N(H, a) with coefficients 
in p so by Lemma 1.5, 

7,(0, N(H, a, p) ) = (0 • p, 0(a) ) H . 

Let A'4k±l(G) be the free Z-group on symbols {iN(H, a, p) } for a = kr or 
kr © p, and let 

m:A'4k±x(G)^A4k±x(G)^0 

be the natural projection. By Lemmas 1.3, 1.4, and 1.5: 

7,(0, iN(H, kr, p) ) = (r(0)p, p(kr) )H = (r(0)pa, (1( (k + 1)T) )H 

= (0a • ind(p), /?( (* + 1)T) ) G 

= 7,(0a • ind(p), N(G, (k + 1)T) ). 

7,(0, iN(H, kr © p„ p) ) = (r(0)p, H(kr © p,) )„ 

= (r(0)pa(p_,),jS((A:+ 1)T) )„ 

= (0ind(pa(p_ , ) ) , £ ( ( * + l ) r ) ) G 

= 7,(0 ind(pa(p_,) ), N(G, (k + 1)T) ). 

Let 

f4k~x(iN(H, kr, p) ) = a • i nd (pM^_ , (G) H+ I and 

f4k+x(iN(H, kr © p„ p) ) = ind(a (px)p):A'4k+x(G) H» *0(G) 

so 

7,(0, W(M)) = V(0 • f4k±x(M), N(G(k + 1)T) V 0 e R0(QV). 

By Lemma 1.6, 

{0, G /*+ ' } «* {7,(00,, JV(G(fc + 1)T) ) = 0 V 0 G R0(QV) } 

soAk±\ extends uniquely to a map 

f4k±vA4k±i(G)^Ro(G)/Ik+l 

with the desired properties. If G = Qv, let 
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Then using Lemma 2.8, 

r a n g e ^ . ^ ^ Z J ) ) 3 s p a n ^ . ^ G , 2£r, p) ) } 

= spanz{a(T)p} = I 

r a n g e ( / 4 A + 1 ( ^ - i ( ^ ) ) ) 2 s p a n z { ^ + 1(JV(G, 2/CT + p„ p) ) } 

- spanz{a(Pl)p} = R0(Zn) 

r a n g e ( ^ _ 1 ( ^ 4 ^ _ 1 ( ô v ) ) ) 

3 spanz{f4k_x(i(N(Hx, *T, ps) ) ), f4k-X(N(Qv9 kr, pz) ) } 

= spanz{« • rs, a - pz} = I 

range(^A + 1(yl4A. + 1 ( g v ) ) ) 

2 spanz{/4A + 1(/(iV(//z, /cr 0 p„ p,) ) ) } 

= spanz{ind2(p,«(Pi))} = spanz{indz(#0(//2) ) } = R0(QV). 

(c) follows from the definition of f4k±] since 

A(i(N(Hy a 0 T, p) ) ) = /W(if, a, p). 

We use Theorem 0.1 to show /* is an isomorphism. 

LEMMA 4.4. L<?/ G be a 2-group. 

(a) / / M e ^ ( G ) aw*/ TJ(0, M) = 0 V » G #0(G)> ^ ^ M = 0. 
( b ) ^ ^ ! defines isomorphisms 

fu-tiGYA^iG) = / / / * + l and ^ + 1 ( G ) S tf0(G)//A + l. 

Proof. Since _/j, is surjective and 

{/*(M) = 0} ** {i,(0, M ) = O V 0 G «0(G) }, 

(a) and (b) are equivalent. Suppose first G is cyclic. Then only the parity 
mod 2 is relevant since 

A2/_](G) = spmz{i(N(H, jpx, p) ) }. 

Let 

F2j_,(i(N(H, j P l , p) ) ) = a(p,)ind(p) 

define F ^ . , : ^ . . , ^ ) t-> /^(G) H» 0 so 

7,(0, TT(M) ) = 7,(0 • F ^ r f M ) , 7V(G(7 + l)p,) 

V 0 G R0(G)V M G ^ - _ , ( G ) . 

Extend 

F2,-_, ̂ . ( G ) H^ *0(G)/f l0(G) ' H» 0. 

Then 
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{F2j^(M) = 0}^ wo, M) = o v e G R0(G) } 

so we must show F2-_ x is injective. We proceed by induction on j ; the case 
j = 1 follows from Lemma 3.1. Let F2j_x{M) = 0. We use Theorem 0.1 to 
show M = 0 by showing 

M G ker2j_x(SW, G) n k e r ^ j t o , G). 

Let Aj be the Smith homomorphism corresponding to px. If 

8x:R0(G)/R0(Gy+l h-> # 0 (G)/# 0 (Gy 

is the natural projection, then 

«! o F ^ _ ! = F2j_3obl 

so Aj(M) = 0 by induction. Since w(M) = c(px)
j(M), the equivariant 

Stiefel-Whitney classes on A2-X(G) are given by the representation 
theory. If 

JC G Hlj"\BG\ Z2) for j > 1, 

then 

JC = c1(p1)j> for j ; G H2j~\BG; Z2). 

Since A(M) is the Poincaré dual of Cj(p]) in M, 

*(M) = jv(A(M)) - 0 and M G k e r ^ ^ S W , G). 

Since 

A'((r(M) e i) ® c) = A'OP, e ;>_,), 

we can express 0(M) in terms of the representation theory for 6 G 
R0(G) ® Z[AZ], so the difficulty arises from y; we must show 

r)(0 ® y", M) = 0 V w G Z, V 0 G R0(G). 

The determinant representation y involves a square when the Spinc 

structure is changed so 

y(i(N(H,jP],p))) = p / . 

Define F2j-\,w on A'2j_l(G)by 

F2j^hw(i(N(H, kpx, p ) ) ) = md(p2w+i) • a(p2w+l) e tf0(G); 

F2 „ | 0 = F2j-\. By Lemmas 1.3, 1.4, and 1.5, 

7,(0 • Y", W(*) ) = 10 • Pj • Fy_ujLX), N(G, kPx 0 p2w+x) ) 

V X G A2j_i(G). Let TT(M') = M so 

F27_,(M') G *0(Gy+ 1 . 

We show TJ(0 • yw, M) = 0 by showing 
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Let Tw(g) = g2vv+1 define an outer automorphism of H Q G. Dually, Tw 

defines an algebra isomorphism of R(H) preserving RQ(H) commuting 
with transfer and induction. Since 

7 > ( P l ) = a(p2 w + 1) and rw(ind(p) ) = ind(p2M;+1), 

Fy-UM) = Tw(F2j_x(M)) G * o ( G y + 1 

which proves the lemma if G is cyclic. 
Next let G = Qv\ the case * = 1, 3 follows from Lemma 3.2. We 

proceed by induction on the dimension. Let f^±\{M) = 0 for k > 1; 
we must show 

M G ker4Jkdtl(S»r, G) n ker4*±1(Tj, G). 

Since 5 / = /A, 

/ 4„± 1_ 4 (A(M)) = 0 

so A(M) = 0 by induction. In dimension 4k — 1, 

r(Af) © 1 = fcr(M) 

so w(M) = C(T) and the equivariant Stiefel-Whitney numbers are given 
by the representation theory on A4k_l(G). If x G H4k~\BG; Z2), 
decompose 

x = y • C2(T) for j G H4k~5(BG; Z2). 

Then JC(M) = j>(A(M) ) = 0 so M G k e r ^ . ^ S W , G). In dimension 
4k -h 1, 

r(Af) © 1 = (kr © P!)(Af) 

so w(M) = C(T)*(1 4- CjCp,)). Since 

^i(Pi)2 = C2(T) m o d 2, 

we can express x(M) for JC G ^ 4 ^ + 1 ( 5 G ) in the form 

x(M) = (xx +x 2 c 1 (p 1 ) ) (M) 

for the JC,- G H*(BG; Z2). We decompose 

*i = ci(T)2ky\ and x2 = c2(r)2k~ly3 

for >>, G HX{BG\ Z2) and j 3 G H3(BG; Z2). By Lemma 2.7, j>3 vanishes on 
cyclic subgroups and hence on AAk+x(G) so 

X(M) = c2{r)lkyx{M) = c2(rfk~xyx^M) = 0 and 

M G ker4£+1(SJr, G). 

Let z = x, y, or jcy. By Lemma 4.2, /2(M) G A4k±l(H). By Lemma 
1.4, 
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ij(0, tz(M) ) = T](indz 0, M) = 0 V 0 e R 0 (7 / Z ) 

S O 7 4 ^ ± I ( ^ Z ( M ) ) = 0 and /2(M) = 0 since we have proved Lemma 4.3 in 
the cyclic case. Therefore 

1,(0, M) = 0 V 0 e indz R0(HZ) 0 #(Spin c) . 

Since these span R0(G) ® P(Spin c) by Lemma 2.8, this shows 

M e ker4^±1(Tj, G). 

It is convenient to introduce different generators for 

P* = Z[CP\ CP2, . . . , CP2k, . . . ] 

analogous to the Hazewinkle generators Q*. Let X4i = CP2t - (CP])1 

have arithmetic genus zero and let Q* = Z[X41] so P* = Q*[CP1]. If 
TV = 2 ^ - X (CP1)1 for N; e g* having positive degree, then 

index(l, N) = 0. 

Let Mi e 85p i n(5G) be the spherical space forms discussed in Lemmas 
2.5 and 2.7 so {KM) } is a basis for Hodd(BG; Z2) and so {M,} is A or A, 
invariant. We assume {Mt} includes the manifolds of Lemmas 3.1 and 3.2. 
Let 

£/*(G) = Am(G) • Q* Q ÙlpinC(BG) and 

V*(G) = 2,Af, • Tor(i2^pinC) ç ÙlpmC(BG). 

LEMMA 4.5. Let G be a 2-group. 

(a) A*(G) = ÙlpiaC(BG) for * = 1, 3. 

(b) | (A.(G) ® Ô*)J ^ \®P + q=m^H2) Hp(BG; QS/QC/torsion) |. 

(c) \Vm(G) | ^ !©„ + ,=„,,,„ 1(2) /*,(*<?; Tor(S2s/nC) |. 

Proof, (c) is immediate. In [7, see 4.2 and 5.4], we studied the AT-theory 
groups of spherical space forms and showed: 

\R0(Zn)/R0(Zn)
k+]\ = nk and \R0(Qv)/I

k+l\ = 4 ' (4IÔVI )*• 

This implies 

|/(fiv)//(Gv)*+1l = (4IÔVD*. 

We use Lemma 4.4 to see 

U2y_,(Z„) | = nk, H4*-i(fiv) I = (4lfivl )*. 

\A4k+i(Qv)\ = 4(4\Qy\)
k 

or equivalently by Lemmas 2.5 and 2.7 that 

\A2j_,(G)\ = \®p^H2p_x{BG;Z)\. 
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This implies 

MU(G) I = |8*pinC(#G) | for * = 1, 3 

and proves (a). Finally, 

\®a+b=JA2a_y(G)®Q2b\ 

= \®c+h&JH2c_x{BG;Z)®Q2b\ 

= \®c+b^H2c-X{BG;Q2h)\ 

= \®cH2c^{BG;®b^-cQ2h)\ 

= \®cH2c_x(BG;P2(j^c))\ 

= \®c H2c_^(BG; fi|pin
2
C

c/torsion) |. 

We can now begin to construct the splitting of Theorem 0.2: 

LEMMA 4.6. Let G be a 2-group. Cartesian product gives an injective 
map 

A AG) ®Q*^ ÙlpinC(BG). 

Then 

ÙlpinC(BG) S A*(G) ® g* © ker*(7,, G) and 

ker*(T,, G) = V*(G) ® WlEevea(*, G) = H*(BG; Tor(fi^pinC) ). 

Proof. We first assume G = Qv. The first step is to show 

JV*(QV) £ t4(G,) + K(QV) 

where 

N*(QV) = 2 z M z x fi^inf 

is as defined in Lemma 3.2. Since 

2ZMZ X Tor(^ p i n C ) £ Vm(Qv) 

by construction and since U*(QV) is a <2* module, we must show 

2ZMZ X (CPl)J Q U*(QV) + K(QV). 

Since Mz e ^4*(<2V) by construction, we must show 

0fpinC(i»Gv) X (CPxy e £/%.+3(ev) + Vy+3(Qv). 

Since £/*((?v) = H*pinC(^Ov)
 f o r * = 1, 3 by Lemma 4.5, we proceed by 

induction and take j > 0. Let 

M e Û^inC(BQv) 

and let JC = f3(M) e / / / 2 . Decompose 3 + 2/ = 4A: ± 1 for A: > 1 and 
choose Mj G A3 + 2j{Qv)

 s o 
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If e G R0(QV), then: 

7,(0, M,) = r,(0 • x • ak~\ N(QV, (k + 1)T) ) 

= T0 • x, N(QV, 2T) ) = 7,(0, M). 

Since 

/ ^ ( A M , ) = * • « * - ' e / * , 

f2j-\(&Ml) = 0 so AMj = 0 by Lemma 4.4. Since 

Af, G ^2/- + 3(Ôv) £ 52y. + 3(ôv) , 

-^1 e
 N2J+T,(QV) by Lemma 3.2. Let 

M, = A/, X (ay(CP])J+i + By + Ty) 

+ Mxy X {axy(CPx)i+x + Bxy + Txy) 

+ Mq X (a,(C/»V' + Bq + Tq) 

where Tz e Tor(fi*pm ) and where Bz are polynomials of lower degree in 
(CPl) with coefficients of positive degree from Q*. Since the generators of 
<2* all have degree at least 4, (CPl) appears to a power at most 7 — 1 in Bz. 
Therefore by induction, 

22MZ X (Bz + Tz) e U2j+3(QV) + V2J+3(QV). 

By Lemma 1.3 and by the choice of the generators for g*, 

7,(0, \MZ X (B2 + Tz) ) 

= 2ZT,(0, Mz) • index(l, Bz + r z ) = 0 V « e *0(<2V). 

If 

M2 = ayMy X CP1 + a^Mg, X CPX + Mq, 

then 

M2 X (CP 'y = M - 22JV/2 X (2?z + Tz) G t/2/ + 3 ( a ) 

+ F2,.+3(ev) and 

7,(0, M) = i,(0, M,) = 7,(0, M2 X (CP])j 

= T,(0, M2) V 0 e ^ ( Ô J . 

Thus / 3 (M - Af2) = 0 and M = M2 so 

M X (C/»y G U3 + 2j(Qv) + V3+2j(Qv). 

This shows 

N*(QV) Q U*(QV) + K(QV). 
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We note 

A:I/„(Ôv) •"* t/*-4(Ôv) ^ 0 a n d &-K(Qv) ^ K*_4(ev) H* 0. 

For * = 1, 3, 

£4(G) + F*(G) = ÛlpinC(BQv) 

so S*(G) = 14(G) + K*(G). Since 

iV*(ôv) £ f4(Ôv) + n ( Ô , ) S S*(ÔV), 

the exact sequence of Lemma 3.5 

0 •-> # , ( & ) ^ S*(ôv) I-» 5,_ 4(0V) »"» 0 

shows U*(QV) + K*(6V) = S*(G,)- We count orders: 

= |5W(GV)I = \Um(Qv)+ Vm(Qv)\ 

^ |t/m(£v) I • Wm(Qv) I S I (A, ® £*)J • |^(g v) I 

â l e ^ ^ ^ ^ , ^ /* , (50 v ; P , 0 Tor(S2fnC) ) | 

= \Eodd(m, Qv) |. 

Since the inequalities are inequalities, 

s„(G,) = um(Qv) e ^ ( G V ) , t4(G») = A*(Qv) ® 0* a n d 

^pi"C(BÔv) = I/w(Gv) © ^ (Qv) © n - ' £ e v e n ( m , Qv). 

Vm(Qv) 0 n - ' ^ ^ m , Qv) S {//*(££„, Tor(fi|pinC) ) }m . 

By Lemma 1.3, 

^ (Gv) £ ker/w(iy, e v ) 

and by construction 

n - ^ e v e n ( m , 6V) ^ kerm(T], Qv\ 

Let 

M e kerm(7,, Qv) n ^ ( g , ) . 

We complete the proof by showing M = 0. We proceed by induction so 

A(M) <= kerm_4(r,, Qv) n I/„,_4(0V) = 0-

By Lemma 3.1, 

M e 2M2 X Tor(S2^pinC) ç ^ ( g v ) . 

Since £/m(£?v) n Ki(Qv) = 0, Af = 0. The argument is the same if G is 
cyclic so we omit details. 
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It is useful to have a more concrete isomorphism 

ker*(rj, G) = #*(G; fl*pinC). 

Let {Nam} be a basis for the Z2 vector space Tor(fim
pm ) and let 

{wa m} G Wm be a dual basis with respect to the pairing 

Wm(BG) Q Tor(fi^pinC) H> Z2. 

L e t {°i,m} b e a b asis for Hm(BG; Z2). 

LEMMA 4.7. Let G be a 2-group. The {6t wa } + m give a dual basis for 
kerm(r), G) in the pairing 

Wm(BG) ® Ùsfn\BG) H» Z2. 

Proof. Suppose G is cyclic. Fix m and let 

{N(a,2p) = n-\Na,m_2p)} 

be a Z2 basis for II - 1(iie v e n(m, G) ) and 

{#(«, 2p - 1) = 7V(G, /> • P l ) X A^m+1_2/7} 

be a Z2 basis for Vm(G). 

The {#(#, p) } form a Z2 basis for kerw(îj, G). Let 

°\ = w\(Pn/2) and #2 = C\(P\) 

so { 0 ^ , 02
 + 1 } ^ o

 i s a basis for /J*(5G; Z2). We compute: 

w • ^ ( t f f o 2/7) ) = w • 0x0
k
2-

p(Nam_2p) = 0 for 2£ + 1 > 2/7 

w • «*(#(*, 2/i) ) = iv- ^(N^^) = 0 for 2k > 2/7 

w • 0^V(a, 2/7) ) = w(Na^m_2p) for 2/: = 2p 

w • 0x6
k
2-\N{a, 2/7-1)) = w • 02*^(AU-f i - 2,) = 0 

for 2£ - 1 > 2/7 - 1 

w • 0x0
k
2-\N(a, 2/7-1)) = w ( ^ m + 1 _ 2 / ? ) for 2k - 1 = 2/7 - 1 

W • «£(#(<!, 2/7-1)) = W • ̂ " / ?(A^,m + 1-2 / ?) = 0 

for 2k > 2p - 1. 

We use the index /7 of {0ipwam_x} and the index q of {JV(a, g) } to define 
a partial ordering; the pairing yields an upper triangular matrix with 
non-zero entries on the diagonal and so is non-singular. The proof if 
G = Qv is slightly more messy owing to the more complicated structure of 
the cohomology ring but essentially the same. We omit details in the 
interests of brevity. 
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We can now complete the proof of Theorem 0.2. Let / and / denote 
induction and transfer corresponding to G2 Q G. Since / is surjective by 
Corollary 3.6, 

ÙlpinC(BG)(2) = i{A*(G2) - Q* 0 ker*^, G2) } 

= ^*(G) ' Ô* + ker^r?, G). 

If there is a non-trivial relation 2 / ^-ôz- + N = 0 in this decomposition, 
we apply the injective map t to get a non-trivial relation in fà*pin (5G2) 
which would contradict Lemma 4.6. Therefore 

&fm\BG\2) = A*(G) ® <2* 0 ker*(Tj, G). 

Since |G:G2| is odd, /* o £* = 1 on H*(BG; Z2) so 

0* ® 1) o (i* ® 1) = 1 on W*(BG). 

Since WK*(̂ G) completely detects ker*(Tj, G), i o t = 1 on ker*(7j, G). Let 
{#/>*,<;} be a basis for H*(BG; Z2) and let {0jm±} be a basis for ker(7*) 
in ff*(BG2; Z2). Then {i*0imG, 0Jm±} is a basis for H*(BG2; Z2). Let 
X e kerm(rj, G), then: 

= 0 V /, j , a, p + q = m} 

« {'*'"**/,,,g ' w^(X) = 0 V /, j,a, p + q = m) 

** {°i,P,g ' wa^x) = 0 V i,j9a,p + q = m] 

so these cohomology classes form a dual basis to ker*(f), G) and show 

ker*(î), G) = it*(BG9 Tor(fi^pinC) ). 

This proves 

ÙlpinC(BG)(2) = A*(G) ® 6* © #*(#G); Tor(S2^inC) ). 

In [4] we showed 

n? i nC(£G) (2 ) = bu*(BG\2) ® Ô* © #*(*<?; Tor(fl? inC) ). 

We compare these two isomorphisms to see 

^ ( G ) = bu*(BG\2) 

which proves Theorem 0.2. Since all the isomorphisms are preserved 
by transfer and induction, this isomorphism is functorial with respect to 
transfer and induction. Theorem 0.3 follows from the isomorphism of 
Lemma 4.4. 

We conclude this paper by expressing bu^(BG) in terms of the 
representation theory. We clear the previous notation. Let r(G):G 1—> U(v) 
be a fixed point free representation of G; if r is irreducible, then v is 
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independent of the particular T(G) chosen (see [12] ). Suppose first the 
Sylow subgroup G2 is cyclic. Since 

a(v • P0R(G2) = a(r)R(G2l 

we can choose to G R(G2) so 

a(v • P l ) = co • a(r(G2) ) 

and so that multiplication by to is an isomorphism on R0(G2). Let j = 
v-l + afor0^a<v and let 

vfiRoiG) \^R0(G)/a(r)l+lR(G). 

Define 

F2J_}(N(G2, j • p l9 p) ) = ind(to • p • a((v - a) • px)) 

so 

iK0, TT(M) ) = V(6 • F^-.^Af), tf(G,(/ + 1)T) ) V 0 G #0(G) and 

^ 2 , - 1 = F^^A^.iG)^ R0(G)/a(r)l+lR(G) 

so 

{^• -^M) = 0} <=> { ^ M ) = 0 V « G *0(G) }. 

Let M G v42y_1(G) so t(M) G ^2y._1(G2). Then 

{F2j_x(M) = 0} 

=» {iy(0, M) = 0 V « E *0(G) } 

=* {TJ(0, M) = 0 V (9 G ind #0(G) } 

=> {TJ(0, / M ) = 0 V « E ind #0(G2) } 

=» {/(M) = 0} =* {M = 0} 

=> {itffi, M) = 0 V 0 G #0(G) } => { ^ ( M ) = 0}. 

Thus F2j-i is an isomorphism from A*(G) to its image 

indOR0(G2;rû) G R0(G)/a(r)lR(G)). 

The analysis is similar if G2 = Qv which proves 

THEOREM 4.8. Adopt the notation given above. 
(a) If G2 is cyclic, decompose j = I • v + a for 0 ^ a < v. Then 

bu2j_{(BG\2) = W/{ind R0(G2r
a}. 

(b) If G2 is generalized quaternonic, v — 2\i is even. Decompose k 
JU - I -f a for 0 ^ a < JU. Le/ l y ^ I—» SU(2) be fixed point free. 
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6«4*_,(5G)(2) = 77/{ind{a(T,),-0/?(G2) } } 

buAk+x(BG\2) = ^l{md{a(TlY-a-lR0(G2) } }. 

Remark. This isomorphism is functorial with respect to transfer and 
induction; 

bu2j„_3(BG)(2) S K(S2J"-{/G)(2). 

m The /7-Sylow subgroup at odd primes is cyclic and the formula given in 
(a) for p = 2 is true at odd primes as well. The bordism spectral sequence 
for BP*(BG) (see [9] ) collapses. Since this sequence factors through a 
bordism spectral sequence for bu*, the bordism spectral sequence for 
bu*(BG) degenerates so / o / = 1 on bu*(BG). We omit details since the 
techniques are not analytic in nature. 
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