ON PARTITIONS OF N POINTS

by DONALD WATSON (Received 16th April 1968)

In a paper (1) by Harding there is a tacit invitation to seek the connection between the following two problems:

- (i) Find the number, $\eta_k(N)$, of regions into which a k-dimensional space is partitioned by a set of N(k-1)-dimensional hyperplanes.
- (ii) Find the number, $v_k(N)$, of distinct partitions of a given set of N points in a k-dimensional space E that can be induced by (k-1)-dimensional hyperplanes.

Schläfli (2) solved the first problem and Harding (1) solved the second. I wish to show that the first problem can be expressed as a dual of the second and thus provide an alternative derivation of Harding's result.

First, form the dual \overline{E} , of E in the following way. Let the dual of a point u in E be the half-space

$$\overline{U} = \{r \mid u \, . \, r \leq 1\}$$

of \overline{E} ; in particular let the dual of the origin of E be all of \overline{E} . Let the dual of the half-space

$$V = \{r \mid \bar{v} \, . \, r \leq 1\}$$

of *E* be the point \overline{v} of \overline{E} . Note that

$$u \in V \Rightarrow \overline{v} \cdot u \leq 1 \Rightarrow \overline{v} \in \overline{U},$$

so incidence properties of points and half-spaces are preserved in the transformation.

Now consider N points in E and place the origin at one of the points. The dual of the N points will be (N-1) half-spaces and the whole space of \overline{E} , dividing \overline{E} into $\eta_k(N-1)$ regions, each expressible as an intersection \overline{I} of some of the half-spaces and the complements of the remaining half-spaces.

Let a (k-1)-dimensional hyperplane in E separate the N points into two parts—a set P containing the origin and another set P'. Let \mathcal{P} denote the family of all half-spaces that contain P and are disjoint with P'. The dual of \mathcal{P} is a set $\overline{\mathcal{P}}$ of points \overline{E} ; and each point of $\overline{\mathcal{P}}$ will belong to the intersection \overline{I}_P of the half-spaces which are duals of points of P and the complements of the half-spaces which are duals of points of P'. Conversely any point of \overline{I}_P will be the dual of a half-space containing P but disjoint with P' and so must belong to $\overline{\mathcal{P}}$. It follows that \overline{I}_P is identical with $\overline{\mathcal{P}}$.

We have therefore established a one-to-one correspondence between the partitions of the N points and the regions defined by (N-1) half-spaces in \overline{E} . It follows that

$$v_k(N) = \eta_k(N-1).$$

D. WATSON

REFERENCES

(1) E. F. HARDING, The number of partitions of a set of N points in k dimensions by hyperplanes, *Proc. Edinburgh Math. Soc.* (2) 15 (1967), 285-289.

(2) L. SCHLÄFLI, Theorie der vielfachen Kontinuität (Berne (1852); Ges. Math. Abh. I (Basel, 1950), p. 209).

RAAF Academy Point Cook Australia

264