COMPLETENESS IN SEMI-LATTICES
L. E. WARD, Jr.

1. Introduction. Let (X, <) be a partially ordered set, that is, X is a
set and < is a reflexive, anti-symmetric, transitive, binary relation on X.
We write

Mx) = {ax < a}, L) = {aa < x},

for each x € X. If, moreover,
x Ay =sup L(x) N L(y)

exists for each x and y in X, then (X, <) is said to be a semz-lattice. If (X, <)
and (X, >) are semi-lattices, then (X, <) is a lattice.
The lattice (X, <) is complete if, for each non-empty subset 4 of X, elements

1) ANA=supN {L(a)a € 4},
@) VA4=inf N {M@)a € 4}

exist. Lattice-completeness has been characterized in various ways; in par-
ticular Frink (4) showed it equivalent to compactness relative to a natural
sort of topology, and Anne C. Davis (3) proved it equivalent to an agreeable
fixed point condition.

Let us say that a semi-lattice (X, <) is complete provided (1) exists for
each non-empty subset 4 of X. To avoid ambiguity, we shall refer to a struc-
ture (X, <) as being lattice-complete or semi-lattice-complete whenever it is
not clear from context whether (X, <) is to be regarded as a lattice or a
semi-lattice. In what follows, semi-lattice analogues of theorems on lattices
due to Frink (4), Tarski (5), and Davis (3), are proved.

Il

2. Topology in partially ordered sets; Frink’s theorem. Let (X, <)
be a partially ordered set. The interval topology (2, p. 60) is that topology
generated by taking all of the sets L(x) and M (x), x € X, as a subbasis for
the closed sets. An element of X is maximal (minimal) if it has no proper
successor (predecessor). A zero (unit) of X is an element which precedes
(succeeds) all other elements of X.

LEMMA 1. Let A be a non-empty subset of X, where (X, <) is a semi-lattice.
If L(a) is compact in the interval topology, for some a € A, then the set

L=MN {L@)::a € 4}
has a unit.
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Proof. From (6, Theorem 1) and the semi-lattice ordering of X, it follows
that X has a zero and hence that L is not empty. Again by (6, Theorem 1)
L has a maximal element, x;. If there exists x € L — L(x;) then it may be
shown that M (x) M M(x,) is a semi-lattice containing A, and consequently
that M (x) M M (x;) has a zero, x¢. It follows that x; < xo < a foralla € 4,
contradicting the maximality of x; in L. Therefore, L C L(xi), which is to
say that x; is a unit for L.

THEOREM 1. For the semi-lattice (X, <) to be complete it is necessary and
sufficient that, for each x € X, L(x) be compact in the interval topology.

Proof. Suppose (X, <) is complete. In view of Alexander’s lemma (1) it
suffices, in order to show L(x) compact, to prove that if {x,:a € 4} and
{xg: 8 € B} are subsets of L(x) such that

F = {Mx):x € A} U {L(x5):8 € B}
is a non-empty collection with finite intersection property, then § has a non-
empty intersection. We consider two alternatives: either B is empty or it is
not. If B is empty, then x € N §; if B is not empty, then by the finite
intersection property, x. < %3 for each « € 4 and 8 € B. Therefore, since
X is complete,
xe < A {x5:8 € B} =0
for each a € 4. Clearly, xo € N §.

Conversely, suppose that L(x) is compact for each x € X and that 4 is a
non-empty subset of X. By Lemma 1,

L=0N {La)a € 4}

has a unit, x;, and it is clear that x; = A 4.

CoroLLARY 1.1 (Frink). For the lattice (X, <) to be complete 1t is necessary
and sufficient that X be compact in the interval topology.

Proof. 1f (X, <) is complete as a lattice, then both (X, <) and (X, >)
are complete as semi-lattices. Therefore, X has a unit, x;, and L(x;) = X is
compact, by Theorem 1. Conversely, the compactness of X implies the
completeness of (X, <) and (X, >) as semi-lattices, which is equivalent to
the lattice-completeness of (X, <).

COROLLARY 1.2. For the semi-lattice (X, <) to be complete it is necessary and
sufficient that (L(x), <) be a complete latiice, for each x € X.

Proof. The sufficiency is immediate from Corollary 1.1 and Theorem 1.
To prove the necessity, let x € X where (X, <) is a complete semi-lattice.
By Theorem 1, L(x) is compact. If ¢ and & are elements of L(x), then (see
the argument of Lemma 1) M (a) M M (d) has a zero, and that zero is a V b.
Thus, (L(x), <) is a compact (and hence complete) lattice.
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3. A theorem of Tarski. If 4 and B are partially ordered sets, a function
f:A — B is isotone if a1 < as implies f(a:) < f(az). A chain of a partially
ordered set is a simply ordered subset. A chain is maxwmal if it is properly
contained in no other chain.

The following theorem is due to Tarski (5).

TreEOREM T. Let (X, <) be a complete lattice. If f:X — X 1is an isotone
function then the set P of fixed points of f is non-empty; further, (P, <) is a
complete lattice.

Theorem T fails if the word ‘“‘lattice’” is everywhere replaced by ‘‘semi-
lattice” (see §4). However, we have

TaEOREM 2. Let (X, <) be a semi-lattice and let f:X — X be an isotone
Sfunction. If X is compact in the interval topology, then the set P of fixed points
of f is non-empty. If X 1s a complete semi-lattice and P is non-empty, then
(P, <) is a complete semi-lattice.

Proof. If X is compact, it has a zero which precedes its f-image; thus, the
set

U= {xx < fx)}
is not empty and contains a maximal chain, C. By the compactness of X,

C has a least upper bound u. Since f is isotone, we have x < f(x) < f(u) for
all x € C, and therefore

u<flw) <f(fw) <....

If u 5 f(u) then the maximality of C is contradicted, so that P is non-empty.
Now if X is complete as a semi-lattice (and not necessarily compact) and P
is non-empty, then by Corollary 1.2, (L(p), <) is a complete lattice for each
p € P.Readily f(L(p)) C L(p), sothat Theorem T implies that (P M L(p),<)
is a complete lattice. By Corollary 1.2 the theorem follows at once.

4. A theorem of Davis. Recently (3) Anne C. Davis proved

THEOREM D. For a lattice (X, <) to be complete it is necessary and sufficient
that every isotone function f:X — X have a fixed point.

There exist complete semi-lattices which do not have the fixed point
property for isotone functions. The interval 0 < ¢ < 1 of real numbers is a
simple example. The natural semi-lattice analogue to Theorem D is

THEOREM 3. For a semi-lattice (X, <) to be compact in its interval topology it
s necessary and sufficient that every isotone function f:X — X have a fixed point.

Lemma 2. If (X, <) is a semi-lattice and if every isotone function f:X — X
has a fixed point, then, for each x € X, (L(x), <) is a lattice.
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Proof. If not, there are elements a, b, and x of X such that ¢ and b precede
x and M(a) M M(b) has no zero. Let C be a maximal chain in the non-empty
set
(M) N M©®))UN {L(z):z € M(a) N\ M(b)}

and let

Ct=CN M) N M®),

C=C-C"
Now C+ and C~ are non-empty chains, C* has no g.l.b., and C~ has no l.u.b.
‘One can show that there exist (generalized) sequences x, in C*+ and x5 in C~
such that (a) x. is monotone decreasing and, for each ¢t € Ct, there exists
a(f) such that a > «(¢) implies x, < ¢, and (b) xg is monotone increasing and,
for each ¢t € C—, there exists B(f) such that 8 > B(f) implies x5 > ¢. Define
f:X — C as follows: if x € N {L(x,)} then

f(x) = mun {xg:x5 <K x},
and if x € X — M {L(x)} then
f(x) = min {xex << xa}.

It is easy to verify that f is well defined and isotone. Further, f(x,) < %4
and f(xg) > xs, so that f is without fixed points. This is a contradiction,
whence we infer that (L(x), <) is a lattice.

LeEmMA 3. Under the hypotheses of Lemma 2, if x € X, then (L(x), <) is a
complete lattice.

Proof. Let f:L(x) — L(x) be isotone. Then f can be extended in an isotone
manner to f:X — L(x) where

f@) = fla A ).

By hypothesis the function f has a fixed point which must also be a fixed
point of f. By Lemma 2 and Theorem D, (L(x), <) is a complete lattice.

LemMA 4. Under the hypotheses of Lemma 2, every maximal chain of X is a
complete lattice.

Proof. Let C be a maximal chain of X, and define f:X — C by
f(x) =sup L(x) N C.

By Lemma 3, L(x) is a complete lattice for each x € X, and since C meets
each L(x), this mapping is well defined, isotone, and f(x) = x if, and only if,
x € C. Now if C is incomplete as a lattice then by Theorem D there is an
isotone function g:C — C without fixed points. The composition gf:X — C
is therefore without fixed points, which is a contradiction. Hence (C, <)
is complete as a lattice.
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Proof of Theorem 3. The necessity was established in Theorem 2. For the
sufficiency, let (X, <) be a semi-lattice in which every isotone f:X — X has a
fixed point. To prove that X is compact in the interval topology it is sufficient
(see the argument of Theorem 1) to prove that if § is any non-empty collec-
tion of subbasic closed sets with finite intersection property, then fl § is
non-empty. Now § = §:1 U 2 where

&1 = {M(xa):e € A},
§2 = {L(xs):8 € BY.
If §. is non-empty then from Lemma 3 and Corollary 1.1 each L(x) is com-
pact and hence 1 § is non-empty. If &, is empty, then §, is not and we may
assume that 4 = {ay, as, ...} is well ordered. Let
Yay = Xay

and, for v > aj,
Yy = inf N (M) a0 < v} N M(x,).

To see that y, exists, suppose y, is defined for all &« < y. Now {y,:a < v} isa
chain and hence the set

{2a 120 = inf M(ya) N M(x,)}

is a chain. By Lemma 4, z, = sup {z.: @ < v} exists and by Lemma 3, (L(z,),<)
is a complete lattice so that vy, exists. Applying Lemma 4 again, y, = sup
{Va:a € A} exists and, clearly, yo € N F.
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