
COMPLETENESS IN SEMI-LATTICES 

L. E. WARD, Jr. 

1. Introduction. Let (X, < ) be a partially ordered set, that is, X is a 
set and < is a reflexive, anti-symmetric, transitive, binary relation on X. 
We write 

M(x) = {a:x < a}, L(x) = {a:a < x}, 

for each x G X. If, moreover, 

x A 3> = sup L(x) Pi i ( ^ ) 

exists for each x and 3/ in X, then (X, < ) is said to be a semi-lattice. If (X, < ) 
and (X, > ) are semi-lattices, then (X, < ) is a lattice. 

The lattice (X, < ) is complete if, for each non-empty subset A of X, elements 

(1) A A = supfl {L(a):a 6 4 1 , 
(2) V 4 = inf fl {M(a):a G 4 } 

exist. Lattice-completeness has been characterized in various ways; in par­
ticular Frink (4) showed it equivalent to compactness relative to a natural 
sort of topology, and Anne C. Davis (3) proved it equivalent to an agreeable 
fixed point condition. 

Let us say that a semi-lattice (X, < ) is complete provided (1) exists for 
each non-empty subset A of X. To avoid ambiguity, we shall refer to a struc­
ture (X, < ) as being lattice-complete or semi-lattice-complete whenever it is 
not clear from context whether (X, < ) is to be regarded as a lattice or a 
semi-lattice. In what follows, semi-lattice analogues of theorems on lattices 
due to Frink (4), Tarski (5), and Davis (3), are proved. 

2. Topology in partially ordered sets; Frink's theorem. Let (X, < ) 
be a partially ordered set. The interval topology (2, p. 60) is that topology 
generated by taking all of the sets L(x) and M(x), x G X, as a subbasis for 
the closed sets. An element of X is maximal (minimal) if it has no proper 
successor (predecessor). A zero (unit) of X is an element which precedes 
(succeeds) all other elements of X. 

LEMMA 1. Let A be a non-empty subset of X, where (X, < ) is a semi-lattice. 
If L(a) is compact in the interval topology, for some a £ A, then the set 

L = fl {L(a):a Ç A} 

has a unit. 
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Proof. From (6, Theorem 1) and the semi-lattice ordering of X, it follows 
that X has a zero and hence that L is not empty. Again by (6, Theorem 1) 
L has a maximal element, x\. If there exists x G L — L(xi) then it may be 
shown that M{x) C\ M(xi) is a semi-lattice containing A, and consequently 
that M{x) C\ M(xi) has a zero, x0. It follows that x± < x0 < a for all a G 4 , 
contradicting the maximality of x± in L. Therefore, L C £(#i), which is to 
say that xi is a unit for L. 

THEOREM 1. For the semi-lattice (X, < ) to be complete it is necessary and 
sufficient that, for each x G X, L(x) be compact in the interval topology. 

Proof. Suppose (X, < ) is complete. In view of Alexander's lemma (1) it 
suffices, in order to show L(x) compact, to prove that if {xa: a G A] and 
{x$\ fi G B) are subsets of L(x) such that 

% = {Mixa)'.a eA}U {Lixp):p G B] 

is a non-empty collection with finite intersection property, then gf has a non­
-empty intersection. We consider two alternatives: either B is empty or it is 
not. If B is empty, then x G P S ; if -S is not empty, then by the finite 
intersection property, xa < x$ for each a £ A and £ G -B. Therefore, since 
X is complete, 

xa < A {xp'.p G 5} = xo 

for each a Ç. A. Clearly, x0 G O §• 

Conversely, suppose that L(x) is compact for each x G X and that 4̂ is a 
non-empty subset of X. By Lemma 1, 

L = fl {L(a):a G ,4} 

has a unit, Xi, and it is clear that xi = A A. 

COROLLARY 1.1 (Frink). For the lattice (X, < ) to be complete it is necessary 
and sufficient that X be compact in the interval topology. 

Proof. If (X, < ) is complete as a lattice, then both (X, < ) and (X, > ) 
are complete as semi-lattices. Therefore, X has a unit, Xi, and L(xi) = X is 
compact, by Theorem 1. Conversely, the compactness of X implies the 
completeness of (X, < ) and (X, > ) as semi-lattices, which is equivalent to 
the lattice-completeness of (X, < ) . 

COROLLARY 1.2. For the semi-lattice (X, < ) to be complete it is necessary and 
sufficient that {L{x)y < ) be a complete lattice, for each x G X. 

Proof. The sufficiency is immediate from Corollary 1.1 and Theorem 1. 
To prove the necessity, let x G X where (X, < ) is a complete semi-lattice. 
By Theorem 1, L(x) is compact. If a and b are elements of L(x), then (see 
the argument of Lemma 1) Mia) Pi Mib) has a zero, and that zero is a V b. 
Thus, (L(x), < ) is a compact (and hence complete) lattice. 

https://doi.org/10.4153/CJM-1957-065-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1957-065-3


580 L. E. WARD, JR. 

3. A theorem of Tarski. If A and B are partially ordered sets, a function 
f:A —> B is isotone if a\ < a2 implies f(ai) < / ( a 2 ) . A cAaw of a partially 
ordered set is a simply ordered subset. A chain is maximal if it is properly 
contained in no other chain. 

The following theorem is due to Tarski (5). 

THEOREM T. Let (X, < ) k a complete lattice. If f:X —> X is an isotone 
function then the set P of fixed points of f is non-empty; further, (P, < ) is a 
complete lattice. 

Theorem T fails if the word "lattice" is everywhere replaced by "semi-
lattice" (see §4). However, we have 

THEOREM 2. Let (X, < ) be a semi-lattice and let / : X —> X be an isotone 
function. If X is compact in the interval topology, then the set P of fixed points 
of f is non-empty. If X is a complete semi-lattice and P is non-empty, then 
(P, < ) is a complete semi-lattice. 

Proof. If X is compact, it has a zero which precedes its /-image; thus, the 
set 

U — {x:x < jf(x)} 

is not empty and contains a maximal chain, C. By the compactness of X, 
C has a least upper bound u. Since / is isotone, we have x < f(x) < f(u) for 
all x £ C, and therefore 

If u 9e f(u) then the maximality of C is contradicted, so that P is non-empty. 
Now if X is complete as a semi-lattice (and not necessarily compact) and P 
is non-empty, then by Corollary 1.2, (L(p), < ) is a complete lattice for each 
p e P. Readily f(L(p)) C L(p), so that Theorem T implies that (P C\ L (/>),<) 
is a complete lattice. By Corollary 1.2 the theorem follows at once. 

4. A theorem of Davis. Recently (3) Anne C. Davis proved 

THEOREM D. For a lattice (X, < ) to be complete it is necessary and sufficient 
that every isotone function f:X —-> X have a fixed point. 

There exist complete semi-lattices which do not have the fixed point 
property for isotone functions. The interval 0 < t < 1 of real numbers is a 
simple example. The natural semi-lattice analogue to Theorem D is 

THEOREM 3. For a semi-lattice (X, < ) to be compact in its interval topology it 
is necessary and sufficient that every isotone function f:X —•> X have a fixed point. 

LEMMA 2. / / (X, < ) is a semi-lattice and if every isotone function f:X —> X 
has a fixed point, then, for each x G X, (L(x), < ) is a lattice. 
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Proof. If not, there are elements a, b, and x of X such that a and b precede 
x and M (a) r\ M(b) has no zero. Let C be a maximal chain in the non-empty 
set 

(M(a) O # ) ) U fl {L(z):z G M(a) H M(6)} 

and let 

C" = C - C+. 

Now C+ and C~ are non-empty chains, C+ has no g.l.b., and C~~ has no l.u.b. 
One can show that there exist (generalized) sequences xa in C+ and x$ in C~~ 
such that (a) xa is monotone decreasing and, for each t G C+, there exists 
a{t) such that a: > a(t) implies xa < £, and (b) Xp is monotone increasing and, 
for each t € C~~, there exists /?(/) such that /3 > fi(t) implies x# > J. Define 
JVX —> C as follows: if x Ç H {L(xa)j then 

f(x) = mm {x r̂x^ <|C x}, 

and if x Ç I - P l {L(xa)} then 

/(x) = min {xa:x <|; xa}. 

It is easy to verify that / is well defined and isotone. Further, f(xa) < xa 

and f(xp) > X/3, so that / is without fixed points. This is a contradiction, 
whence we infer that (L(x), < ) is a lattice. 

LEMMA 3. Under the hypotheses of Lemma 2, if x Ç X, then (L(x), < ) is a 
complete lattice. 

Proof. Let f:L(x) —+ L(x) be isotone. T h e n / c a n be extended in an isotone 
manner to f:X —> L (x) where 

f(a) = f(a A x). 

By hypothesis the function / has a fixed point which must also be a fixed 

point of/. By Lemma 2 and Theorem D, (L(x), < ) is a complete lattice. 

LEMMA 4. Under the hypotheses of Lemma 2, every maximal chain of X is a 
complete lattice. 

Proof. Let C be a maximal chain of X, and define f:X —» C by 

/(x) = supL(x) H C. 

By Lemma 3, L(x) is a complete lattice for each x £ X, and since C meets 
each L(x), this mapping is well defined, isotone, and/(x) = x if, and only if, 
x Ç C. Now if C is incomplete as a lattice then by Theorem D there is an 
isotone function g:C -—» C without fixed points. The composition gf:X-+C 
is therefore without fixed points, which is a contradiction. Hence (C, < ) 
is complete as a lattice. 
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Proof of Theorem 3. The necessity was established in Theorem 2. For the 
sufficiency, let (X, < ) be a semi-lattice in which every isotone/VX —» X has a 
fixed point. To prove that X is compact in the interval topology it is sufficient 
(see the argument of Theorem 1) to prove that if % is any non-empty collec­
tion of subbasic closed sets with finite intersection property, then f| % is 
non-empty. Now $ = %i ̂  $2 where 

gi = {M(xa):a £ A}, 
g2 = {Lfe):/3 Ç B). 

If §2 is non-empty then from Lemma 3 and Corollary 1.1 each L(xp) is com­
pact and hence 0 % is non-empty. If g2 is empty, then %i is not and we may 
assume that A = {ah a2, . . . } is well ordered. Let 

and, for y > ai, 

yy = inf fi \M{ya) : a < y} fl M f o ) . 

To see that yy exists, suppose ya is defined for all a < y. Now {ya: a < y} is a 
chain and hence the set 

{za :za = inf ikT(^) Pi M(xy)} 

is a chain. By Lemma 4, s7 = sup{za:a: < 7} exists and by Lemma 3, (Z,(JS 7 ) ,<) 

is a complete lattice so that yy exists. Applying Lemma 4 again, y0 = sup 
{ya: a £ A\ exists and, clearly, y0 £ Pi g. 
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