COMPLETENESS IN SEMI-LATTICES

L. E. WARD, Jr.

1. Introduction. Let (X, \leq) be a partially ordered set, that is, X is a set and \leq is a reflexive, anti-symmetric, transitive, binary relation on X. We write

$$M(x) = \{a : x \le a\}, \quad L(x) = \{a : a \le x\},\$$

for each $x \in X$. If, moreover,

$$x \wedge y = \sup L(x) \cap L(y)$$

exists for each x and y in X, then (X, \leq) is said to be a *semi-lattice*. If (X, \leq) and (X, \geq) are semi-lattices, then (X, \leq) is a *lattice*.

The lattice (X, \leq) is *complete* if, for each non-empty subset A of X, elements

(1)
$$\wedge A = \sup \bigcap \{L(a): a \in A\},\$$

(2)
$$\vee A = \inf \bigcap \{M(a) : a \in A\}$$

exist. Lattice-completeness has been characterized in various ways; in particular Frink (4) showed it equivalent to compactness relative to a natural sort of topology, and Anne C. Davis (3) proved it equivalent to an agreeable fixed point condition.

Let us say that a semi-lattice (X, \leq) is *complete* provided (1) exists for each non-empty subset A of X. To avoid ambiguity, we shall refer to a structure (X, \leq) as being *lattice-complete* or *semi-lattice-complete* whenever it is not clear from context whether (X, \leq) is to be regarded as a lattice or a semi-lattice. In what follows, semi-lattice analogues of theorems on lattices due to Frink (4), Tarski (5), and Davis (3), are proved.

2. Topology in partially ordered sets; Frink's theorem. Let (X, \leq) be a partially ordered set. The *interval topology* (2, p. 60) is that topology generated by taking all of the sets L(x) and M(x), $x \in X$, as a subbasis for the closed sets. An element of X is maximal (minimal) if it has no proper successor (predecessor). A zero (unit) of X is an element which precedes (succeeds) all other elements of X.

LEMMA 1. Let A be a non-empty subset of X, where (X, \leq) is a semi-lattice. If L(a) is compact in the interval topology, for some $a \in A$, then the set

$$L = \bigcap \{L(a) : a \in A\}$$

has a unit.

Received February 19, 1957. Presented to the American Mathematical Society April 20, 1957.

Proof. From (6, Theorem 1) and the semi-lattice ordering of X, it follows that X has a zero and hence that L is not empty. Again by (6, Theorem 1) L has a maximal element, x_1 . If there exists $x \in L - L(x_1)$ then it may be shown that $M(x) \cap M(x_1)$ is a semi-lattice containing A, and consequently that $M(x) \cap M(x_1)$ has a zero, x_0 . It follows that $x_1 < x_0 \leq a$ for all $a \in A$, contradicting the maximality of x_1 in L. Therefore, $L \subset L(x_1)$, which is to say that x_1 is a unit for L.

THEOREM 1. For the semi-lattice (X, \leq) to be complete it is necessary and sufficient that, for each $x \in X$, L(x) be compact in the interval topology.

Proof. Suppose (X, \leq) is complete. In view of Alexander's lemma (1) it suffices, in order to show L(x) compact, to prove that if $\{x_{\alpha}: \alpha \in A\}$ and $\{x_{\beta}: \beta \in B\}$ are subsets of L(x) such that

$$\mathfrak{F} = \{ M(x_{\alpha}) : \alpha \in A \} \cup \{ L(x_{\beta}) : \beta \in B \}$$

is a non-empty collection with finite intersection property, then \mathfrak{F} has a nonempty intersection. We consider two alternatives: either *B* is empty or it is not. If *B* is empty, then $x \in \bigcap \mathfrak{F}$; if *B* is not empty, then by the finite intersection property, $x_{\alpha} \leq x_{\beta}$ for each $\alpha \in A$ and $\beta \in B$. Therefore, since *X* is complete,

$$x_{\alpha} \leqslant \wedge \{x_{\beta}: \beta \in B\} = x_0$$

for each $\alpha \in A$. Clearly, $x_0 \in \cap \mathfrak{F}$.

Conversely, suppose that L(x) is compact for each $x \in X$ and that A is a non-empty subset of X. By Lemma 1,

$$L = \bigcap \{L(a) : a \in A\}$$

has a unit, x_1 , and it is clear that $x_1 = \wedge A$.

COROLLARY 1.1 (Frink). For the lattice (X, \leq) to be complete it is necessary and sufficient that X be compact in the interval topology.

Proof. If (X, \leq) is complete as a lattice, then both (X, \leq) and (X, \geq) are complete as semi-lattices. Therefore, X has a unit, x_1 , and $L(x_1) = X$ is compact, by Theorem 1. Conversely, the compactness of X implies the completeness of (X, \leq) and (X, \geq) as semi-lattices, which is equivalent to the lattice-completeness of (X, \leq) .

COROLLARY 1.2. For the semi-lattice (X, \leq) to be complete it is necessary and sufficient that $(L(x), \leq)$ be a complete lattice, for each $x \in X$.

Proof. The sufficiency is immediate from Corollary 1.1 and Theorem 1. To prove the necessity, let $x \in X$ where (X, \leq) is a complete semi-lattice. By Theorem 1, L(x) is compact. If a and b are elements of L(x), then (see the argument of Lemma 1) $M(a) \cap M(b)$ has a zero, and that zero is $a \vee b$. Thus, $(L(x), \leq)$ is a compact (and hence complete) lattice.

L. E. WARD, JR.

3. A theorem of Tarski. If A and B are partially ordered sets, a function $f:A \to B$ is *isotone* if $a_1 \leq a_2$ implies $f(a_1) \leq f(a_2)$. A *chain* of a partially ordered set is a simply ordered subset. A chain is *maximal* if it is properly contained in no other chain.

The following theorem is due to Tarski (5).

THEOREM T. Let (X, \leq) be a complete lattice. If $f: X \to X$ is an isotone function then the set P of fixed points of f is non-empty; further, (P, \leq) is a complete lattice.

Theorem T fails if the word "lattice" is everywhere replaced by "semilattice" (see §4). However, we have

THEOREM 2. Let (X, \leq) be a semi-lattice and let $f: X \to X$ be an isotone function. If X is compact in the interval topology, then the set P of fixed points of f is non-empty. If X is a complete semi-lattice and P is non-empty, then (P, \leq) is a complete semi-lattice.

Proof. If X is compact, it has a zero which precedes its f-image; thus, the set

$$U = \{x : x \leq f(x)\}$$

is not empty and contains a maximal chain, C. By the compactness of X, C has a least upper bound u. Since f is isotone, we have $x \leq f(x) \leq f(u)$ for all $x \in C$, and therefore

$$u \leq f(u) \leq f(f(u)) \leq \ldots$$

If $u \neq f(u)$ then the maximality of *C* is contradicted, so that *P* is non-empty. Now if *X* is complete as a semi-lattice (and not necessarily compact) and *P* is non-empty, then by Corollary 1.2, $(L(p), \leqslant)$ is a complete lattice for each $p \in P$. Readily $f(L(p)) \subset L(p)$, so that Theorem T implies that $(P \cap L(p), \leqslant)$ is a complete lattice. By Corollary 1.2 the theorem follows at once.

4. A theorem of Davis. Recently (3) Anne C. Davis proved

THEOREM D. For a lattice (X, \leq) to be complete it is necessary and sufficient that every isotone function $f: X \to X$ have a fixed point.

There exist complete semi-lattices which do not have the fixed point property for isotone functions. The interval $0 \le t < 1$ of real numbers is a simple example. The natural semi-lattice analogue to Theorem D is

THEOREM 3. For a semi-lattice (X, \leq) to be compact in its interval topology it is necessary and sufficient that every isotone function $f: X \to X$ have a fixed point.

LEMMA 2. If (X, \leq) is a semi-lattice and if every isotone function $f: X \to X$ has a fixed point, then, for each $x \in X$, $(L(x), \leq)$ is a lattice.

580

Proof. If not, there are elements a, b, and x of X such that a and b precede x and $M(a) \cap M(b)$ has no zero. Let C be a maximal chain in the non-empty set

$$(M(a) \cap M(b)) \cup \bigcap \{L(z) : z \in M(a) \cap M(b)\}$$

and let

$$C^+ = C \cap M(a) \cap M(b),$$

$$C^- = C - C^+.$$

Now C⁺ and C⁻ are non-empty chains, C⁺ has no g.l.b., and C⁻ has no l.u.b. One can show that there exist (generalized) sequences x_{α} in C⁺ and x_{β} in C⁻ such that (a) x_{α} is monotone decreasing and, for each $t \in C^+$, there exists $\alpha(t)$ such that $\alpha > \alpha(t)$ implies $x_{\alpha} \leq t$, and (b) x_{β} is monotone increasing and, for each $t \in C^-$, there exists $\beta(t)$ such that $\beta > \beta(t)$ implies $x_{\beta} \ge t$. Define $f:X \to C$ as follows: if $x \in \bigcap \{L(x_{\alpha})\}$ then

$$f(x) = \min \{ x_{\beta} : x_{\beta} \leq x \},\$$

and if $x \in X - \cap \{L(x_{\alpha})\}$ then

$$f(x) = \min \{x_{\alpha} : x \leq x_{\alpha}\}.$$

It is easy to verify that f is well defined and isotone. Further, $f(x_{\alpha}) < x_{\alpha}$ and $f(x_{\beta}) > x_{\beta}$, so that f is without fixed points. This is a contradiction, whence we infer that $(L(x), \leq)$ is a lattice.

LEMMA 3. Under the hypotheses of Lemma 2, if $x \in X$, then $(L(x), \leq)$ is a complete lattice.

Proof. Let $f:L(x) \to L(x)$ be isotone. Then f can be extended in an isotone manner to $\overline{f}: X \to L(x)$ where

$$f(a) = f(a \land x).$$

By hypothesis the function \overline{f} has a fixed point which must also be a fixed point of f. By Lemma 2 and Theorem D, $(L(x), \leq)$ is a complete lattice.

LEMMA 4. Under the hypotheses of Lemma 2, every maximal chain of X is a complete lattice.

Proof. Let C be a maximal chain of X, and define $f: X \to C$ by

$$f(x) = \sup L(x) \cap C.$$

By Lemma 3, L(x) is a complete lattice for each $x \in X$, and since C meets each L(x), this mapping is well defined, isotone, and f(x) = x if, and only if, $x \in C$. Now if C is incomplete as a lattice then by Theorem D there is an isotone function $g: C \to C$ without fixed points. The composition $gf: X \to C$ is therefore without fixed points, which is a contradiction. Hence (C, \leq) is complete as a lattice. *Proof of Theorem* 3. The necessity was established in Theorem 2. For the sufficiency, let (X, \leq) be a semi-lattice in which every isotone $f: X \to X$ has a fixed point. To prove that X is compact in the interval topology it is sufficient (see the argument of Theorem 1) to prove that if \mathfrak{F} is any non-empty collection of subbasic closed sets with finite intersection property, then $\mathbf{\Omega}$ \mathfrak{F} is non-empty. Now $\mathfrak{F} = \mathfrak{F}_1 \cup \mathfrak{F}_2$ where

$$\mathfrak{F}_1 = \{M(x_{lpha}) : lpha \in A\},\ \mathfrak{F}_2 = \{L(x_{eta}) : eta \in B\}.$$

If \mathfrak{F}_2 is non-empty then from Lemma 3 and Corollary 1.1 each $L(x_\beta)$ is compact and hence \mathbf{n} \mathfrak{F} is non-empty. If \mathfrak{F}_2 is empty, then \mathfrak{F}_1 is not and we may assume that $A = \{\alpha_1, \alpha_2, \ldots\}$ is well ordered. Let

$$y_{\alpha_1} = x_{\alpha_1}$$

and, for $\gamma > \alpha_1$,

$$y_{\gamma} = \inf \bigcap \{M(y_{\alpha}) : \alpha < \gamma\} \cap M(x_{\gamma})$$

To see that y_{γ} exists, suppose y_{α} is defined for all $\alpha < \gamma$. Now $\{y_{\alpha} : \alpha < \gamma\}$ is a chain and hence the set

$$\{z_{\alpha}: z_{\alpha} = \inf M(y_{\alpha}) \cap M(x_{\gamma})\}$$

is a chain. By Lemma 4, $z_{\gamma} = \sup \{z_{\alpha} : \alpha < \gamma\}$ exists and by Lemma 3, $(L(z_{\gamma}), \leq)$ is a complete lattice so that y_{γ} exists. Applying Lemma 4 again, $y_0 = \sup \{y_{\alpha} : \alpha \in A\}$ exists and, clearly, $y_0 \in \bigcap \mathfrak{F}$.

References

- J. W. Alexander, Ordered sets, complexes, and the problem of bicompactification, Proc. Nat. Acad. Sci., 25 (1939), 296-298.
- 2. Garrett Birkhoff, Lattice Theory (rev. ed., New York, 1948).
- 3. Anne C. Davis, A characterization of complete lattices, Pacific J. of Math., 5 (1955), 311-319.
- 4. O. Frink, Topology in lattices, Trans. Amer. Math. Soc. 51 (1942), 569-582.
- Alfred Tarski, A lattice-theoretical fixpoint theorem and its applications, Pacific J. of Math., 5 (1955), 285–309.
- 6. L. E. Ward, Jr., Partially ordered topological spaces, Proc. Amer. Math. Soc. 5 (1954), 144-161.

U.S. Naval Ordnance Test Station China Lake, California