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To Professor H. S. M. Coxeter on his sixtieth birthday 

1. Introduction. This paper deals with the algebraic classification of 
non-euclidean plane crystallographic groups (NEC groups, for short) with 
compact quotient space. The groups considered are the discrete groups of 
motions of the Lobatschewsky or hyperbolic plane, including those which 
contain orientation-reversing reflections and glide-reflections. The corre­
sponding problem for Fuchsian groups, which contain only orientable trans­
formations, is essentially solved in the work of Fricke and Klein (6). However, 
it is difficult to find an explicit formulation and proof of the result in the 
printed literature, and for this reason an account is given here (§2), partly also 
to prepare the way for the more complicated discussion which follows. Particu­
lar NEC groups with reflections and glide-reflections, such as Dyck's groups, 
are well known and are dealt with, for instance, in Coxeter and Moser (4), 
where presentations for the 17 euclidean plane groups can also be found. A 
fairly complete theory of NEC groups was recently developed by Wilkie (9), 
who showed that every NEC group has a presentation of a certain type. 
While Wilkie was able to exhibit a number of isomorphisms between groups 
defined by formally different presentations in his scheme, he did not succeed 
in determining necessary and sufficient conditions for two of his standard 
presentations to define isomorphic groups. The aim of this paper is to supply 
the missing conditions, and we shall see that the list of isomorphisms given by 
Wilkie is incomplete, but can be completed by the addition of a fifth class of 
isomorphisms to the four classes found by him. 

I am particularly happy to include this work in an issue celebrating Professor 
Coxeter's birthday, not only because it adds something to the subject of 
discrete groups, which his work has so enriched, but also because a key role is 
played by the lemma that every isomorphism can be realized geometrically. 
The classic interaction between geometry and algebra, which motivates so 
much of Coxeter's own work, plays its part here too. 

2. Fuchsian groups. As a preparation for what follows, we deal first with 
the solution of the corresponding problem for Fuchsian groups. The discussion 
is taken from the author's cyclostyled lecture notes, and has not appeared in 
print before. 
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Klein associated a "signature"—really an ordered set of non-negative 
integers—with a Fuchsian group. One of the integers describes the genus of the 
quotient space. One, which is redundant and will be omitted by us, is the 
number of periods. The others are the periods written in order. (As we shall 
see, it does not matter what order.) Klein allowed infinite values for the periods, 
but we shall restrict ourselves here, as in the rest of the paper, to groups with 
compact quotient space, in which infinite periods cannot occur. The periods 
must be integers not less than two, whereas the genus may take any non-
negative integral value. 

Thus we are led to define an F-signature as an ordered set of integers 

(g; wi, . . . , mr) 

where g > 0 and the periods m i , . . . , m r > 2 . The integer r may be zero and 
the set of periods empty. The same integer may be repeated any number of 
times in the set of periods. The number of times an integer occurs in the set of 
periods is called the multiplicity of the period. 

With the ^-signature (g; mx, . . . , mr) we associate the following group 
presentation: 

Generators: xi, . . . , xr; a,\, bi, . . . , ag, bg. 
Relations: 

XI x>2. . . xr ai b\ a\~lbi~l . . . agbg ag~
lbg~

x = 1. 

I t is well known that every Fuchsian group has such a presentation, and, 
conversely, that if 

2g-2 + i ; ( i - — ) >o, 

then there is a Fuchsian group with the presentation of signature (g; m i , . . . , m r). 
In the group T defined by the presentation (1) it is known that every element of 
finite order is contained in a maximal finite cyclic subgroup which is conjugate 
to one of the cyclic groups {xi}, . . . , {xT}, of which no two are conjugate. 
Thus the numbers mi, . . . , mr, and the multiplicities with which they occur, 
though not their order, correspond to the conjugacy classes of maximal finite 
cyclic subgroups and are algebraic invariants of the group. The genus g is also 
an algebraic invariant, being the rank of the commutator factor group of T. 
We deduce: 

If the group T of F-signature (g; mi, . . . , mr) is isomorphic to the group V 
of F-signature {gf\mi, . . . , m / ) , then g = g',r = rf, and there is a permutation <j> 
of the set (1, 2 , . . . , r) such that ml = m ^ ) (i = 1, 2 , . . . , r). 

The converse is also true. If 0 is a permutation of (1, 2, . . . , r), then the 
group T of signature (g; mi, . . . , mr) is isomorphic to the group V of signature 
(g; tffy(i)> • • • » %(;)• To prove this, it is enough to show, since every permuta­
tion can be achieved by a succession of transpositions of neighbours, that the 
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group r is isomorphic to the group V of signature (g; mh . . . , W M , ^H+h m>u 
rni+2, • • • , Mr)- Here only the ith and (i + l ) th periods are interchanged, the rest 
being unaltered. Then T has the presentation (1) while r" has the presentation 

x*,w* = 1 (k*i,i + 1), 

x'i+i"1»" = 1, x'im*+i = 1, 

*i' . . . x / a i ' & i V - V - 1 . . . a/b/a/^b/-1 = 1. 

The desired isomorphism/: r —> r" is defined by assigning the following images 
to the generators of T: 

/(**) = **' (& ^ i,i+ I), 

f(xt) = x(x '• i+1 %i » 

J \Xi+l) Xi y 

f(at) = a/, f(bt) = b(. 

Thus, while the order in which the periods are written affects the presentation 
of the group, it makes no difference to the isomorphism class. This depends only 
on the periods as an unordered set, where, however, the multiplicity is impor­
tant. This recalls the partition of numbers—a partition of n is an unordered set 
of integers, with repetitions allowed, whose sum is n. For this reason one talks 
of the period partition of a Fuchsian group and the isomorphism theorem may be 
expressed : 

Two Fuchsian groups with compact quotient space are isomorphic if and only 
if their quotient spaces have the same genus and their period partitions are the 
same. 

Geometrically the result is plausible when we consider the action of T on 
the hyperbolic plane which, now and later in the paper, we denote by D. Let p 
denote the quotient map p: D —» D/T which maps every point of D on the 
point of the quotient space D/ T represented by the orbit to which it belongs. 
At most points of D/T the map p is a smooth covering, but there are r points 
in D/T over which the covering is branched. At the ith point the sheets come 
together in groups of mt. One does not expect the ordering of the branch points 
to be significant, since there is a homeomorphism of the surface D/T which will 
permute them according to any permutation given in advance. 

3. Wilkie's signatures. We now define two kinds of NEC signature. One, 
denoted by a plus sign and used for NEC groups with orientable quotient 
space, will be called orientable. The other, denoted by a minus sign and used for 
NEC groups with non-orientable quotient space, will be called non-orient able. 
In addition to having an ordered set of periods, it includes an ordered set of 
period-cycles, each period-cycle being a further ordered set of periods. We shall 
first give the bare definition, describing the associated geometry and algebra 
later. 
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Definition. A NEC signature consists of a sign ± and a sequence of integers 
with certain subsequences bracketed together in the following manner: 

(0) a sign ± (plus for orientable, minus for non-orientable), 
(1) an integer g > 0, 
(2) an ordered set of integers mi, . . . , mT (mt > 2), called the proper periods 

of the signature, 
(3) an ordered set of period-cycles: 

G = (wn, . . . , nlsi),.. . , Ck = (nkh . . . , nksk) (ni3- > 2). 

The signature just defined will be written 

(g, =b, [mi, . . . , mr] {Ci, C2, . . . , Ck}), 

the proper periods being enclosed in square brackets and the cycles in curly 
brackets. More explicitly, the signature can be written in full as follows: 

(g, ± , [wi, ... ,mr] {(«H, . . . , nUl), . . . , (nkl, . . . , »*,*)}), 

the cycle periods being enclosed in round brackets. 
Just as in the case of F-signatures, the set of periods may be empty. Not 

only this, but also individual period-cycles may be empty of periods, and the 
whole set of period-cycles may be empty. In such cases, the signature will be 
written with the brackets inserted, but with no symbols between them. Thus 
the signature 

(«,+,[ ] f i) 
has no proper periods and no period-cycle. As a further example, the signature 

(g,+,[m] {( ) ( )}) 

has one proper period m and two empty period-cycles. 
So far we have defined only a numerical-combinatorial structure which, of 

itself, would seem to have minimal interest. To each NEC signature, how­
ever, we shall assign a marked polygon, a marked surface, and a group presenta­
tion. The marked polygon and the marked surface derived from it will be 
described in the next section. 

4. The marked polygon and marked surface of a NEC signature. 
By a marked polygon we mean a plane polygon in which certain pairs of sides 

are related by homeomorphisms. If the first side has vertices P , Q in order as we 
describe the perimeter of the polygon anticlockwise, and the second has vertices 
R, S, also in order anticlockwise, then the pairing homeomorphism can pair 
the edges orientably, mapping P on 5 and Q on R, or non-orientably, mapping 
P on R and Q on 5. Two sides paired orientably will be indicated by the same 
letter and a prime, say £, £'. Two sides paired non-orientably will be indicated 
by the same letter and an asterisk, as a, a*. If we label all the edges of a marked 
polygon according to this scheme, and then write them in order as they occur 
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round the polygon anticlockwise, we obtain the surface symbol of the marked 
polygon, which determines it apart from homeomorphism. As we are dealing 
with a surface with boundary, some of our edges will be unpaired, and the 
letters corresponding to these will occur only once, and without a prime or an 
asterisk. 

The marked polygon of the signature 

(2) (g, + , [wi, . . . , mr] {(nlh . . . , nlsi), . . . , (nkll . . . , nkSk)}) 

is denned by the surface symbol 

f 1 h ' h il' • • • ?r £ / e i 7 l 0 Ti l • • • Tlsi €i'€2 720 - . • 72S2 €2
; . . . €* 7*0 • • • 

7kSk tkOLl PlCLlfil . . . CLg fig'cLg'fig. 

The marked polygon is determined merely by the number of periods and the 
number and length of the period-cycles, the actual values of the periods playing 
no part. However, it is desirable to think of the periods as being associated 
with certain vertices of the marked polygon. The proper period m* is attached 
to the vertex Mt common to the two sides £*,£/. The cycle period n^ is associ­
ated with the vertex Ntj common to the edges 7i,j~i and ytj. 

The marked polygon associated with the signature 

(3) (g, - , N i , . . . ,mT] { («H, . . . ,nlsi), . . . , (»*!, . . . , nkSk)}) 

is given by the surface symbol 

£ l • • • £ / «I 710 • • • e /ûJ i CXi*û!2 « 2 * • • • OLg « p * , 

which differs from the preceding one only in the last part. This last part 
represents the surface symbol of a closed non-orientable surface in case (3) 
while it represents the surface symbol of a closed orientable surface in case (2). 
In case (3) the proper and improper periods are assigned to vertices of the 
marked polygon, just as in case (2). 

If we identify corresponding points on the related edges of the marked poly­
gon, we obtain from it a surface with boundary. In the orientable case the 
surface will be a sphere with k disks removed and g handles added. In the non-
orientable case it will be a sphere with k disks removed and g cross-caps added. 
On this surface, the edges a (in the non-orientable case) and the edges a, ft 
(in the orientable case) determine a canonical system of cross-cuts meeting at a 
base-point Q, say. There are certain distinguished points Mi in the interior of 
the surface and certain distinguished points Nu, . . . , NiSi on the ith boundary 
component. The lines £ join the base-point to the points M and the line et 

joins the base-point to a point on the ith boundary component between NiSi 

and Na. Thus we have a marked surface in a sense very similar to that used 
in the theory of Teichmuller spaces (1,2). 

5. The presentation associated with a NEC signature. Suppose that P 
is a fundamental polygon for a NEC group r . Then certain pairs of its edges 
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correspond under transformations of T. Some edges, corresponding to boundary 
components of the quotient space, are segments of axes of reflections, and are 
not paired with other edges. Some of the paired edges are paried orientably and 
some non-orientably. Thus , with this pairing, the fundamental region is a 
marked polygon. 

In order to derive presentations for N E C groups, Wilkie proved the following 
result. 

Let Y be a N E C group. Then there is a fundamental polygon P for Y which is the 
marked polygon of a NEC signature, such that the stabilizer of the vertex Mt is a 
cyclic group of rotations of order miy the stabilizer of a vertex Ntj is dihedral of 
order 2ntj (containing a cyclic rotation subgroup of index 2) , and the stabilizer of a 
point, other than Nijf NiJ+1 of ytj is a reflection group Z2 . No other points of P 
are fixed points for Y. 

From this result, Wilkie deduces a presentation for T by s tandard methods. 
This presentation is completely determined by the integers mt, n^ and will be 
called the presentation of the signature. T h e generators, and to some extent also 
the relations between them, divide natural ly into subsets associated with the 
different par ts of the signature. T h u s with each period is associated a generator 
of finite order and with a cycle of length s is associated a "connecting generator" 
and a number of generators of order two of which successive pairs define dihedral 
groups. Finally, there are generators given, essentially, by the system of cross­
cuts on the surface. For this reason we give the presentation in the form of a 
table, the first column listing the appropriate pa r t of the signature, the second 
column giving the generators, and the third column the relations. First , the 
orientable signature is 

(2) (g, + , [mi, . . . ,mr][ O n , . . . , nUl), . . . , (wn , . . . , nKsk)}). 

Signature element Generator (s) Relation (s) 

Period m% x% Xim% = 1 

Cycle d ei (connecting a8i = e^Cioet 
= (tin,..., nisi) gen.) c,-„-_i2 = a? = (c»„-_i ca)nn = 1 

CiO, CH, . . . , Cis{ 

g + flii bi,..., aB, b0 xi %i... xr ei... e& a\ bi a\~l b\~l.. ,agbg ag~
l bg~

l = 1 

T h e table for the non-orientable signature (3) obtained from (2) by changing 
only the sign is exactly the same as the above except for the last row, which 
now reads 

g — ai, 02 , . . . , <Za xi X2... xr e\ e%... e& a^a^ ... ag
2 = 1 

6. G e o m e t r i c a l propert ies . T h e transformations a, b, . . . , x, . . . in the 
presentation are those which carry the fundamental polygon across the sides 
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a, j3, . . . , £ , . . . denoted by the corresponding Greek letters. The cyclic group 
{Xi} is the stabilizer of the vertex we have called Mt and the dihedral group of 
order 2w^ generated by the two reflections cUi-\ and ctj is the stabilizer of Ntj. 
We now show that: 

An element of finite order in T is conjugate to one of the following: 
(i) a power of some Xi (1 < i < r), 

(ii) a power of some citj-i Ctj (1 < j < s*; 1 < i < &), 
(iii) someCij (0 < j < s*; 1 < i < &). 

Proof. An element £ of finite order is either a rotation or a reflection. In either 
case it has a fixed point in D which we may call x. Since P is a fundamental 
polygon, it contains a point which is a T-image of x, say 3> = gx Ç P , g £ T. 
Then g^g"1 y = y, and the conjugate transformation g^g-1 is in the stabilizer 
of y. However, the only points of P with non-trivial stabilizer are Mu Nijy and 
the points of ytj. Thus gtg~l belongs to the stabilizer of one of these points. 
These stabilizers constitute the transformations listed under (i), (ii), (iii) 
above, so our assertion is proved. 

7. Geometrical isomorphism. Two NEC groups r , V are called geometri­
cally isomorphic if there is a homeomorphism x —» xf of D and a group isomorph­
ism g —» g' of T on r ' such that y = gx if and only if 3/ = g'x'. If we denote the 
homeomorphism by t, the condition becomes tgx = g'tx, for all x, so that 

g' = tgt~\ 
Thus the groups T, Tr are geometrically isomorphic if and only if they are 
conjugate in the group of all homeomorphisms of D. If an isomorphism (in the 
algebraic sense) of V onto V can be derived from a geometrical isomorphism— 
in other words, if there is a homeomorphism t of D such that the image of g 
under the isomorphism is tgt~l for all g G T, then we say that the isomorphism 
can be realized geometrically and we refer to the homeomorphism t as a geo­
metrical realization of the given isomorphism. We do not require t to be an 
isometry, or, indeed, to have any particular relationship to the geometry of the 
hyperbolic plane. 

A geometrical isomorphism maps rotations on rotations, since these are 
geometrically characterized by the property of having precisely one fixed point 
in D. Similarly it maps reflections, which have an infinite fixed point set, into 
reflections, and it maps translations or glide-reflections, which are without 
fixed points, into translations or glide-reflections. Moreover, the translations 
are distinguished from the glide-reflections by the topological property of being 
orientable mappings, so a geometrical isomorphism cannot map one on the 
other. 

A geometrical isomorphism t maps the T-orbit of x on the T'-orbit of tx, 
since 

t(Tx) = tTt~l(tx) = T'(tx). 

Thus it induces a homeomorphism between the quotient spaces D/T, D/Yf. 
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We denote this homeomorphism by /*. Since all points of the same T-orbit have 
geometrically isomorphic stabilizers, we may talk, slightly illogically, of the 
stabilizer of a point of the quotient space, meaning the isomorphism class to 
which the stabilizer of any point in the orbit belongs. 

The map /*: S—> S' will map points of S on points of S' with geometrically 
isomorphic stabilizer. Identifying S and Sf with the marked surfaces of their 
appropriate signatures, we see, in the notation of §4, that t*(Mi), like Mu has a 
stabilizer which is a cyclic rotation group of order mz. Similarly, the stabilizer 
of t*(Nij) will be dihedral of order 2n{u. Thus the map t* induces a (1-1) 
mapping of the proper periods of T on the proper periods of Tr, and also a 
(1-1) mapping of the cycle periods of T on those of V. 

For a fixed value of i, the points Ntj are all on the same boundary com­
ponent of 6*. Thus their /*-images all lie on a single boundary component of Sf. 
Thus their images, which are points N' vy on Sr, must all have the same initial 
suffix i', and each cycle of the signature of T corresponds to a cycle of the same 
length in the signature of r ' , and with the same periods. Within the cycle, the 
order in which the Ntj have been taken round the it\\ boundary component of S 
may be the same (cyclically) as the iVVr» o r ^ m a Y De the reverse. The choice 
of initial point Na has no geometrical significance, so cyclic interchanges are 
possible. To be quite precise, we require the following definitions: 

Definitions. Let C, C be two period-cycles, C = (wi, . . . , ns), C — (n\, . . . , 
n'8>). Then C and C are called directly equivalent if one is a cyclic permutation 
of the other, that is, if 5 = s' and there is an integer k such that 

ni = n i+jç, 

suffixes being read modulo s. C, C are called inversely equivalent if one is a 
cyclic permutation of the other reversed, that is, if 5 = s' and there is an integer 
k such that 

tit = n'k-i, 

where the suffixes are again reduced modulo s. 
We can now state 

THEOREM la. If the NEC group Y of signature 

(g, + , [mu . . . , mr] {Ci, C2, . . . , Ck}) 

is geometrically isomorphic to the NEC group V of signature 

(g,+, N ' i » V ] { C , i , . . . C V | ) , 

then r = r\ k = k\ the proper periods \m'\ are a permutation of the proper 
periods [m], and there is a permutation <j> of (1, 2, . . . , & ) such that either (i) 
for each i, Ci is directly equivalent to Q«), or (ii) for each i, Ct is inversely 
equivalent to C^a). 

THEOREM 2a. If the NEC group Y of signature 

(g, - , [wi, . . . , w r] {Ci, . . . , Ck}) 

https://doi.org/10.4153/CJM-1967-108-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1967-108-5


1200 A. M. MACBEATH 

is geometrically isomorphic to the NEC group V of signature 

(g, - , [m'i, . . . , m'A [C\, . . . CV})i 

then r = r', fe = k', the proper periods [mf] are a permutation of the proper periods 
[m], and there is a permutation <j> of 1, . . . , k such that, for each i, C\ is either 
directly or inversely equivalent to C^i). 

Note. In the orientable case, corresponding pairs of cycles are all paired in the 
same way—either all directly or all inversely. In the non-orientable case, some 
may be paired directly and some inversely. 

Proof of the theorems. Theorem 2a has practically been proved in the dis­
cussion preceding the definitions. If we use [Ct] to denote the component of dS 
which contains the points Ntj corresponding to periods in the cycle Cu then 0 
is defined by the relation 

[Ci] = t*[C<i>(i)]). 

The cycles C u C^a) are directly or inversely equivalent according as /* maps 
the oriented 1-sphere [C^col on the oriented 1-sphere [Ci] with degree + 1 
o r - 1 . 

To prove Theorem la, we remark that in this case S, S' are orientable and the 
1-spheres [Ci], [C3] are oriented with the induced orientation of the boundary. 
If t* maps 5 on S' with degree + 1 , then it maps each [ C ^ ] on the corresponding 
[Ci] with degree + 1 , and all pairs of corresponding period-cycles are directly 
equivalent. The only other possibility is that t* should map 5 on S' with degree 
— 1, in which case all pairs of cycles are inversely equivalent. This completes 
the proof. 

8. Geometrical realization of isomorphisms. It is by no means necessary 
that an isomorphism of a group of transformations be realized geometrically. 
Examples could be multiplied, but, as one particularly simple example, the 
map 

t->t2 

yields an automorphism of the cyclic rotation group of order 5 which cannot be 
realized geometrically. 

However, in the case of plane groups with compact quotient space, every 
isomorphism of the algebraic group structure can be realized geometrically. 
For automorphisms of Fuchsian groups without periods, this is a celebrated 
theorem of Nielsen (8), and for automorphisms of NEC groups without 
reflections it was proved by Zieschang (10). For automorphisms of general NEC 
groups, it was proved by the author, being deduced from Nielsen's theorem by 
an application of the theory of quasi-conformal mappings. Practically the 
same proof applies to isomorphisms of one group on another, but as the proof 
is short, we repeat it here with appropriate modifications. Efforts to find a proof 
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independent of quasi-con formal theory, as are Nielsen's and Zieschang's 
proofs, have not yet met with success. 

THEOREM 3. Let <j>\ Y —» r" be an isomorphism (of the groups structure only) 
between two NEC groups. Then <f> can be realized geometrically, that is, there is a 
homeomorphism t: D —> D such that, for all g £ r , <j>(g) = tgir1. 

Proof. The set of all orientable mappings in T is a Fuchsian group of index 1 
or 2, which, by a theorem of Fox (3; 5), contains a subgroup of finite index 
with no periods, which in turn contains a subgroup N of finite index which is 
normal in T. Since N has no periods, it is the fundamental group of a compact 
orientable surface. Then N' = cj>(N) is also the fundamental group of a com­
pact orientable surface, and, since two compact surfaces with isomorphic funda­
mental group are homeomorphic, there is a geometrical isomorphism of N 
with N' (not necessarily inducing <j>). If r: D —* D is the homeomorphism which 
realizes this geometrical isomorphism, let us define ^: N —•> Nf by \p(n) = mr'1. 
Then <j>\p~l is an automorphism of N. By Nielsen's theorem, <j>\}/~1 can be realized 
geometrically, and hence ((jyif/-1)^ = <j> can be realized geometrically. Among 
the set of homeomorphisms t: D —* D such that 

(4) 4>(n) = tnr1 for all n Ç N, 

which we now know to be non-empty, there is, by the theory of Teichmuller 
spaces (1; 2) a unique extremal quasi-conformal homeomorphism. Suppose t 
to be this unique map. Let now g be any element of V. Consider the map 
t'\ D -> D defined by 

(5) t' = <t>(g)tg-\ 

Since g -1, 4>(g) Ç V are conformai, the maximal dilation of t' is the same as 
that of t. Further, /' satisfies the relation (4), since 

t'nlf-1 = (t>(g)t(g-1ng)r1cl>(g-1) 

= 4>(g)<t>(g~1ng)(t>(g-1)1 by (4) since g~lng 6 Nf 

= <t>(gg~lngg~l) = <j>{n). 

By the uniqueness theorem, t = i', that is, from (5) 

tgir1 = *fe). 

This being true for all g Ç F, t is a geometrical realization of <£, not only on the 
normal subgroup N, but on the whole of T. This proves Theorem 3. 

9. Main results. We can now state and complete the proof of the two 
main theorems. 

THEOREM 1. The conditions given in Theorem la as necessary for geometrical 
isomorphism are necessary and sufficient for (not necessarily geometrical) iso­
morphism. 
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THEOREM 2. The conditions given in Theorem 2a for geometrical isomorphism 
are necessary and sufficient for (not necessarily geometrical) isomorphism. 

By Theorem 3, every isomorphism can be taken as geometrical, so the necessity 
of the conditions has already been proved. The converse part asserts that two 
groups with the same genus and orientability of quotient space are isomorphic 
if the signature of one can be derived from the other by a succession of opera­
tions of certain types—permuting the periods, permuting the cycles, cyclically 
permuting the periods within a cycle, or reversing the order of the periods in 
some or all of the cycles. To prove this it is naturally better to deal with each 
type of operation separately. Our result thus follows from the succession of 
lemmas below. The proofs of all are similar, and Lemmas 1, 2, 3, 4 are proved in 
Wilkie's paper (9). Only Lemma 5, which escaped Wilkie's notice, is proved 
here. 

LEMMA 1. Groups T, T' which are defined by signatures which are the same 
except for a permutation of the proper periods are isomorphic. (See also §2.) 

LEMMA 2. If $ is a permutation ofT, 2 , . . . ,k, the group Y of signature 

(g, dz, [mi, . . . , mr] {Ci, . . . , CJC}) 

is isomorphic to the group V of signature 

(g, ± , [mu • • • ,mr] {Q,(1), . . . , CM)}) 

LEMMA 3. The group V of signature 

(g, zfc, [mi, . . . , mr] {Ci, . . . , Ck)) 

is isomorphic to the group V of signature 

(g, ± , [mi, . . . , mr] {Ci, . . . , CV-i, Cj, Cj+lj . . . , Ck)) 

where C'j is a cyclic permutation of Cjy the signatures being otherwise identical. 

LEMMA 4. If, for any period-cycle C, the same set of periods written in reverse 
order is denoted by C*, then the group T of signature 

(g, db, [mi, . . . ,m r ] {Ci, . . . , Ck}) 

is isomorphic to the group Yf of signature 

(g, ± , [mi, . . . , mr] {Ci*, . . . , C**}). 

These lemmas are all proved in Wilkie (9), as the last part of his Theorem 3. 
Finally we state and prove the only new lemma, which is also the only one 
differentiating between groups with orientable quotient space and those with 
non-orientable quotient space. I t gives algebraic expression to the geometrical 
fact that one reverses the orientation of a boundary component of a non-
orientable surface by continuous variation round a suitable path back to its 
original position. 

LEMMA 5. The group T of signature 

(g, - , [mi, . . . , mr] {Ci, . . . , Cu . . . , Ck} ) 
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is isomorphic to the group T' of signature 

(g, —i [wi, . . . , mf\ {Ci, . . . , C*t, . . . , Ck}) 

only the ith cycle being reversed, the signatures being otherwise identical. 

Proof. By Lemma 2 we can permute the cycles arbitrarily in both groups 
without altering the isomorphism class, so there is no loss in assuming that 
i = k. Then T is defined by generators X) e, c, a with appropriate suffixes and 
relations which include: 

Cksk = ek CkO eki 

Ctj-x2 = ck
2 = (cktj-ick0)

nki = 1, 

xi %2. . . xr ei e2. . . ek ai2a2
2. . . aQ

2 — 1, 

while Yf is defined by generators x', e', cf, af with appropriate suffixes and 
relations which include 

C ksk = ek ~ CkQ &k 

c\,^2 = ck/
2 = (c ,*,^i^/)n*.«*+i"i = 1, 

Xi . . . ek'ai2a2'
2 . . . aj2 = 1. 

Apart from the relations we have written, all the relations for V correspond in 
an exact manner to those for r ; . 

An isomorphism between T, V is given by the following assignment of images 
for the generators. First, the generators not associated with the &th cycle 
and the surface generators apart from a,\ are all mapped on the corresponding 
generators in Yf: 

4>(xt) = Xt, <t>{ei) = et', 4>(ctj) = ct/ (i = 1, . . . , k — 1), 
4>{at) = a- (i = 2, . . . , n). 

Only for ek, ckj (j = 1, . . . , sk), and for a\ are the images different. For these 
we put, writing d for eka\\ 

4>(ek) = dek~
ld-1, 4>(ckj) = dcf

k,Sk+1^jd-1, 

0(«i) = ekai. 

It is easily checked that the images assigned to these generators satisfy all the 
appropriate relations, so that $ defines an isomorphism of Y on Yf and our 
proof of Theorems 1 and 2 is complete. 

Finally we remark that the genus and the orientability of the signature, 
being geometrical invariants of the quotient space, are also algebraic invariants 
of the groups. Thus two isomorphic groups must have the same g and the same 
orientability character. It is interesting to notice that here, too, it is necessary 
to invoke the geometrical realization Theorem 3, since for general NEC 
groups the simple characterization of g as the rank of the commutator factor 
group is not valid. 
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10. The 17 plane groups of euclidean crystallography. Finally one 
must confess that the name "NEC signature," emphasizing the non-euclidean, 
is not really appropriate. Perhaps ' 'plane crystallographic signature" would be 
a better name. Just as there are certain F-signatures which do not define 
Fuchsian groups, but are realized as groups of isometries of the 2-sphere or the 
euclidean plane, so there are NEC signatures which define groups of isometries 
of the sphere and plane crystallographic groups. One well-known example is the 
icosahedral group defined by the ^-presentation (0; 2, 3, 5), or, what is the 
same thing, the NEC presentation (0, + , [2, 3, 5] { } ). 

So much has been written about 17 euclidean space groups that one hesitates 
to add another notation to those already proposed. As a matter of interest, 
though, and perhaps also to illustrate and motivate what has gone before, we 
list the NEC signatures for the euclidean groups (!). We do not give presenta­
tions, because, in all cases, these follow automatically as explained in §5, and 
nearly always contain redundant generators and sometimes redundant relations 
too. In fact, it is the device of redundant generators preserving symmetry that 
enabled Wilkie to bring all the NEC groups into a unified scheme. However, 
an obvious elimination of redundant generators leads, in each case, to the 
presentation listed in Coxeter and Moser's book. As one example, let us take 
the group p3ml. The NEC presentation of the signature listed in Table I is: 

Generators: Xi, ei, c0, C\. 

TABLE I 

The 17 euclidean groups and their signatures 

Symbol 
(Coxeter-
Moser) Signature Quotient space 

p\ (!,+.[ 1 i Î) Torus 
p2 ( 0 , + , [ 2 , 2 , 2 , 2 ] ! !) Sphere 
pm ( 0 , + , [ ] ( ( ) ( )!) Annulus = sphere with two holes 

Pg ( 2 , - , [ ]{ 1) Klein bottle 
cm ( ! . - . [ ] { ( ) } ) Môbius strip 
pmm ( 0 , + , [ ] {(2,2,2,2))) Disk = sphere with one hole 
pmg (0, + , [ 2 , 2 ] ( ( ))) Disk 

Pgg (1, - , [ 2 , 2 ] f 1) Projective plane 
cmm ( 0 , + , [2] {(2, 2))) Disk 
PA ( 0 , + , [2, 4, 4] { )) Sphere 
p\m (0, + , [ ] ((2,4,4)}) Disk 
p4g ( 0 , + , [4] |(2)1) Disk 

pz (0, + , [3, 3, 3] { 1) Sphere 
pZm\ (0. + , [ 3 ] j(3)() Disk 
pSlm ( 0 , + , [ ] | (3 , 3, 3)1) Disk 
pQ ( 0 , + , [2, 3, 6] 1 1) Sphere 
p6m ( 0 , + , [ ] {(2,3,6)}) Disk 
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Relations: Xi3 = 1, Ci = ei~lc§ e\, 

Co2 = d2 = (Cod)3 = 1, Xid = 1. 

Eliminating c\ and ei by means of the second and last relations and dropping 
the redundant relation c\2 = 1, we derive 

XiZ = Co2 = (CoXiCoXr1)2 = 1 

as in Coxeter and Moser (4, p. 514). 
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