A REDUCTION THEOREM FOR PERFECT LOCALLY FINITE MINIMAL NON-FC GROUPS

FELIX LEINEN
Fachbereich Mathematik, Universität Mainz, D-55099 Mainz, Germany
e-mail: leinen@mat.mathematik.uni-mainz.de
(Received 19 March, 1997)

A group G is said to be a minimal non-FC group, if G contains an infinite conjugacy class, while every proper subgroup of G merely has finite conjugacy classes. The structure of imperfect minimal non-FC groups is quite well-understood \cite{3} (see also \cite{14}, Section 8). These groups are in particular locally finite. At the other end of the spectrum, a perfect locally finite minimal non-FC group must be a p-group \cite{2}, \cite{9}. And it has been an open question for quite a while now, whether such groups exist or not. In \cite{10}, Theorem 2.4, it was shown that such p-groups have a non-trivial representation as subgroups of the McLain group $\text{M}(Q, F_p)$, that is, as groups of infinite upper unitriangular matrices of order type Q over the field F_p with p elements, in which all but finitely many non-diagonal entries are zero. The purpose of this note is to obtain the following considerable improvement, which should provide a major step in the discussion of existence of perfect minimal non-FC p-groups.

Theorem. Every perfect locally finite minimal non-FC group has a quotient, which acts as a barely transitive p-group of finitary permutations on some infinite set.

Recall, that finitary permutations of the set Ω fix all but finitely many elements in Ω. The structure of groups of finitary permutations has been studied intensely in the seventies and again during the last ten years (see \cite{13} for references). A subgroup of the symmetric group $\text{Sym}(\Omega)$ on an infinite set Ω is said to be barely transitive, if it acts transitively on Ω, while each of its proper subgroups has finite orbits. Barely transitive groups were brought up by B. Hartley \cite{4}, \cite{5} in connection with groups of Heineken-Mohamed type, and have been investigated during the last years mainly by M. Kuzucuoğlu \cite{7}, \cite{8}. Obviously every barely transitive group without proper finite quotients is a minimal non-FC group. In particular, the question about existence of perfect locally finite minimal non-FC p-groups turns out now to be equivalent to the question about existence of perfect barely transitive p-groups, which in addition act finitarily on the underlying set.

Proof of the Theorem. Let G be a perfect locally finite minimal non-FC group. Recall that G is a p-group. Since G is perfect, the centre $\zeta_1(G)$ is the highest term of the upper central series in G. From passing to $G/\zeta_1(G)$ we may assume that G has trivial centre. Consider a non-trivial normal subgroup N of G. The socle S of the FC- and p-group N is an elementary-abelian normal subgroup in G (\cite{14}, p. 10). Consider a fixed non-trivial element $x \in S$, and let $\Omega = \{x^g | g \in G\}$ and $V = \langle \Omega \rangle \leq N$. Since G has no proper finite image and trivial centre, the set Ω must be infinite. Since G is a minimal non-FC group without maximal subgroups, it acts barely transitively on Ω via conjugation. Moreover, G acts finitarily linearly on the F_p-vector space V: For every $g \in G$, the proper subgroup $V(g)$ of G is an FC-group, whence
$|V : C_1(g)| \leq |V(g) : C_{V(g)}(g)| < \infty$. It remains to show, that G acts as a finitary permutation group on Ω.

To this end, we assume that some $g \in G$ has infinite support on Ω. Let $M = \langle g^G \rangle$. Since G is a locally finite p-group, $g \notin M'$, and so $M/M' \neq 1$. Since G is perfect, M is a proper normal subgroup of G. Since G acts barely transitively on Ω, the M-orbits Ω_i ($i \in \omega$) are finite and form a system of imprimitivity. Let $V_i = \langle \Omega_i \rangle \leq N$. Since g has infinite support on Ω, we have $|V_i, g| \neq 1$ for infinitely many $i \in \omega$. However, $|V, g|$ is a finite-dimensional F_ρ-vector space, hence finite. Thus there is a one-dimensional subspace U in $[V, g]$ such that $U \subseteq [V_i, g]$ for infinitely many $i \in \omega$. Let I be the set of all such $i \in \omega$. Fix $i_0 \in I$, and choose $g_i \in G$ ($i \in I$) satisfying $\Omega_i^{g_i} = \Omega_{i_0}$. Since V_{i_0} is finite, there is an infinite set $I_0 \subseteq I$ such that $U^{g_i} = U^{g_j}$ for all $i, j \in I_0$. Consider the normalizer $H = N_G(U)$. Fix $\omega_0 \in \Omega_{i_0}$. Since $g_i g_i^{-1} \in H$ for all $i \in I_0$, the elements $\omega_0 g_i^{-1} (i \in I_0)$ are contained in an infinite H-orbit on Ω. Hence $H = G$, and U is a normal subgroup of order p in G. But then $1 \neq U \subseteq \xi_1(G)$, a contradiction. The proof of the Theorem is complete.

A group G is said to be a minimal non-CC group, if $U/C_1(x^U)$ is a Černikov group for all $x \in U < G$, while this property fails for G in place of U. Obviously, every perfect locally finite minimal non-FC group is a minimal non-CC group. Many results about minimal non-FC groups have been transferred to minimal non-CC groups [12], [6]. The following is an immediate consequence of [6], [1], and of our Theorem above.

Corollary 1. Every locally graded minimal non-CC group has a quotient, which acts as a barely transitive p-group of finitary permutations on some infinite set.

We also obtain a generalization of [12].

Corollary 2. No non-trivial quotient of a locally graded minimal non-CC group lies in a proper variety.

Proof. Let G be a locally graded minimal non-CC group. Every quotient of G is also such a group [12]. Consider $N \triangleleft G$ and assume, that G/N lies in a proper variety. From Corollary 1 we may assume that G/N is a transitive group of finitary permutations of an infinite set Ω. But this contradicts [11, Theorem 1].

REFERENCES

2. V. V. Belyaev, Minimal non-FC groups, in *All Union Symposium on Group Theory* (Kiev 1980), 97–108.