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Abstract

A theory is developed for the computer control of variable-structure systems, us-
ing periodic zero-order-hold sampling. A simple two-dimensional system is first
analysed, and necessary and sufficient conditions for the occurrence of pseudo-
sliding modes are discussed. The method is then applied to a discrete model of a
cylindrical robot. The theoretical results are illustrated by computer simulations.

1. Introduction

The theory and design of computer-controlled systems has recently become
an active area of research in modern control theory [1]. A common situation
in computer control is that the digital-analogue converter is constructed so
that it holds the analog signal constant until a new conversion is demanded.
It is then natural to choose the sampling instants at the times when the con-
trol changes. This so-called zero-order-hold sampling of a system leads to
mathematical models in the form of difference equations. As is usual, the
sampling is taken to be periodic.

Variable structure control with sliding modes has been used in many dif-
ferent fields of applications, and in recent work [6] a mathematical model
approach to the problem of discrete variable structure control with pseudo-
sliding modes has been developed. It is the main purpose of the present
paper to apply this approach to the computer control of variable-structure
systems using zero-order-hold periodic sampling. A simple essentially-linear
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two-dimensional system is first analysed to illustrate the method. For this
system, the analysis is exact, in the sense that the difference equations of the
model are not just approximations to differential equations, but directly give
the values of the state variables and the outputs at the sampling instants, on
the assumption that the control signal is constant during the sampling inter-
vals. The general method is then applied to a more complicated system—a
discrete mathematical model of a cylindrical robot which has been proposed
by Neuman and Tourassis [4]. The system is an example of a practical highly-
nonlinear system and the difference equations of the model are approxima-
tions to the differential equations. The theoretical results for both systems
are illustrated by computer simulations.

2. Continuous two-dimensional variable-structure system

Consider the variable-structure system given in state-space form as the
ordinary differential equations

xx=x2, (1)
x2= -fx2 + u (2)

with control law given by
u = -yxl (3)

with y/ denned by

a i fx , (cx ,+x 2 )>0 ,
-a ifxl(cxl +x2) <0.

Without loss of generality, the constants a, c are taken to be positive. This
system is a linear system apart from the variable structure giving

5 = s(x) = ex, + x2 = 0 (5)

= <

I

as a possible sliding line.
It is well-known [2] that the necessary and sufficient conditions for s(\) = 0

to be a sliding line, characterised by JC, = — cxx, are

lim s < 0, lim s > 0. (6)
s->+0 s->-0

Since

lim s = x{(cf — c Tfl)> (7)

there exists a stable sliding mode for a > 0 and c> 0 provided that

https://doi.org/10.1017/S0334270000007335 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000007335


[3] Variable-structure systems 3

c2-a<cf<c2 + a. (8)

A necessary and sufficient condition for the sliding line to be reachable [3] is
that | / | <2y/a.

In matrix form, (1) and (2) can be written

x = Ax + bu, (9)

where

MS -/]
and

b = [0 1 ] T . (11)

3. Discrete two-dimensional system

3.1 Computer control. Instead of the continuous system we now consider a
discrete system corresponding to computer control using zero-order-hold pe-
riodic sampling. Let \{k) denote x evaluated at periodic time intervals kh ,
where k is an integer and h is the constant sampling period. It follows from
the zero-order-hold sampling that [1]

1
k = 0,l,..., (12)

since u is constant in the sampling interval.
We now take into account the nonlinear variable structure represented by

(3) and (4). With the usual convention that the control signal is continuous
from the right, the behaviour in the interval (kh, (k + l)h] is governed by
the sampled control u(k) given by

From (10),

W - i ax,(k) i f ; "— • - - " - " — (li)

«*A*)-[J C-p"] (14)
and

J* exp(AT)b</T = [(/*//) + [e-fh - I ) / / 2 (1 - e-fh)/f]J. (15)

Thus
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where

*a[(h/f) + (e-fh-l)/f2] (l-e-fh)/f]

In accord with the variable structure, the appropriate sign to be chosen in
these expressions is decided as follows:

use top sign if xx (k)s(k) > 0, (19)

use bottom sign if x{ (k)s(k) < 0, (20)

where
k). (21)

3.2 Conditions for pseudo-sliding mode. We first determine for the computer
control of the system the discrete analogue of the necessary and sufficient
conditions. A necessary condition for the occurrence of a stable pseudo-
sliding mode is that the trajectories approach the switching line s = 0 from
both sides. This implies [6] that if s(k) = 0 and x{(k) and s(k +1) are of
opposite signs, then the top sign in (18) must be used. On the other hand, if
s(k) = 0 and JC,(/C) and s(k + 1) are of the same sign, then the bottom sign
in (18) must be used.

From (21) it follows that

s(k) = [c l]x(k), (22)

and hence from (16) that

s{k + l) = [c l^ihMk). (23)

For s{k) = 0 , this yields

s{k+l) = [c l l ^ W n -c]T
Xi(k). (24)

With the use of (18), it follows that

s(k+l) = a±(h)Xi(k) (25)

where
a±(h) = ?a{ch/f) + {cfTa)(f - c){\ - <T/A)//2. (26)

A necessary condition for the existence of a stable pseudo-sliding mode,
namely that xx{k) and s(k + 1) are of opposite signs for the top sign in
(18) and of the same sign for the bottom sign, is accordingly

cr+(A)<0, a_(h)>0. (27)
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Since

the inequalities (8) are obtained as a necessary condition. The condition can
be made to mimic a discretisation of (7) by recalling that s{k) = 0 , so that
(25) can be written

[s(k+l)~ s(k)]/h = [(cf -C2TI) + O(h)]xx (k). (29)

The left-hand side of (29) approaches s as h approaches zero, so that in the
limit of the continuous system the condition (8) is correctly obtained.

A sufficient condition can be determined from the following argument. It
is clear that the condition must involve a restriction on the magnitude of h ,
for this controls the sizes of the steps along a trajectory. What is required
is that when a trajectory is being stepped out, a step across the switching
line must be sufficiently small so that region which forces the return in the
direction to the switching line is not over-stepped [6]. This region is bounded
by the switching line s(\) = cxx + x2 = 0 and an asymptote line, which will
be denoted by

r(x) = d(h)xx+x2 = 0. (30)

This line can be determined by considering

xx(k+l) =xx(k)
x2(k+l) x2(k) ( '

which gives, using (16),

c/>tx(h)xx(k) + 4>f2(h)x2(k) _Xl(k)
31 — 7T"\ • \3£)

This leads to the homogeneous quadratic equation

4>f2(h)xl + [<j>fx(h) - 4>%{h)]xxx2 - <t>2x{h)x2
x = 0 , (33)

which simplifies to

x2
2+g±{h)xxx2±ax2

x=0, (34)

where

g±{h) = f*a[h{\-e-fh)- ' - / " ' I . (35)

For the top sign, the quadratic (33) represents two straight lines, two co-
incident lines or the single point, the origin, according as g+(h)2 is greater
than, equal to, or less than 4a.
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For the bottom sign, the quadratic (33) represents two straight lines. The
asymptote of present interest has the equation r = dxx + x2 = 0, where

d = d{h) = 0.5g_(h) + O.5yjg_(h)2 + 4a. (36)

The limiting case occurs when a step is from the switching line to the
asymptote, that is, from s{k) = 0 to r{k + 1) = 0 . As in the derivation of
(23),

which leads to

r[k + 1) - {d{h)[4>+
n{h) - c<t>\2{h)] + <£+(/*) - c0+(*)}*,(*). (38)

If

the return in the direction of the switching line does not occur. The condition
r(k + 1) = 0 places an upper bound H on the value of h given by

[f2 - afH + (a- fc){\ - e~fH)]d{H) = af{\ - e'fH) + cf2e~fH, (40)

where the top sign has been used. If this equation has more than one solution,
the minimum solution is taken as the required upper bound.

4. Cylindrical robot

4.1 Continuous system. The cylindrical robot has three degrees of freedom, a
radial movement signified by the position coordinate r, a rotation signified
by the joint angle coordinate 6, and a vertical movement corresponding to
the position coordinate z . Because the z degree of freedom is uncoupled
from the r and 6 degrees of freedom it can be analysed separately and will
hereafter be ignored. The r and 6 equations of motion of the robot are [4]:

Fr(t) = mv-(\/2)l'(r)co2, (41)

Fg(t) = (d/dt)[I(r)co]. (42)
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In these equations:

Fr — radial component external force, (43)

Fg — external torque, (44)

mR = mass of radial link, (45)

mL = mass of payload at link tip, (46)

m = mR + mL, (47)

/ = length of radial link, (48)

I{r) = moment of inertia column, arm,

= IIc + mRl2/3 + mr2 - mRlr, (49)

v = f, (50)

co = d. (51)

The equations of motion are two second-order coupled differential equations
and, although seemingly simple, afford a good illustration of the complexity
of robotic problems.

4.2 Discrete system. Following Neuman and Tourassis [4], we consider a
discretisation of the system by letting r(k), for example, denote r evaluated
at time kh , where h is a discrete constant time interval. As usual we define
the forward difference operator by

Ar(k) = r(k + 1) - r{k). (52)

The two second-order differential equations of motion (41), (42) are replaced
by the four first-order difference equations [4]

Fr(k) = mAv(k)/h -

x {co(k)w(k + I)}, (53)

(54)

(55)

Ad(k)/h = (l/2)[co(k + 1) + a)(k)]. (56)

The last two equations are 'smoothing formulae' and, assuming the initial val-
ues v(0) and co(0) are known, enable subsequent values for k = 1, 2, 3, . . .
to be calculated from

* - i

w(ik) = (-l)*t;(O)-2(-l)*53(-l)l'Ar(/)/A, (57)
/=o

k-\

j=0
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The important implication of these results is that v(k) is a simple linear
function of r(0), r ( l ) , . . . , r{k) and similarly for co(k). This enables the
whole analysis to be based on position coordinates r and 9 without any use
of velocities.

The fundamental property of this Neuman-Tourassis discretisation is that
for zero-order-hold sampling, conservation of energy is maintained and for
any cyclic or ignorable variable the corresponding impulse equation is satis-
fied.

For our purposes, we write (53)-(56) in matrix form as

Rk+1r(fc + 1) = Rkr(k) + dfc + bhFr(k), (59)

where
1 ~h/2] (61)

-mh<o{k)(o{k +1)/2 m J ' [ '
1 h/2'

M\.t . 1

mh(o(k)(o(k + l)/2 m ' ' ^

lk = [0 - mRlh(o(k)co(k + l)/2] , (63)

b = [0 i f , (64)

k) = [r(k) v(k)]T, (65)
1 -h/2
0 / [ r ( * . . - « i ' ( 6 6 )

0 I[r(k)]\ ' ( 6 7 )

co(k)]T. (68)

4.3 Switching surfaces. In the continuous case, the switching surfaces for VSS
control usually take the form

s = s(t)=x + cx = 0, (69)

where x is a position signal, x a velocity signal, and c is a chosen positive
time constant.

For the discrete model of the cylindrical robot, there will be two switching
surfaces for the VSS control, and these we choose as

sr(k) = cjr(fc) = v(k) + crr{k), (70)

sg(k) = c]d(k) = co(k) + cg9{k), (71)

where

cr = [cr 1]T (72)

ce = [cg 1 ] T . (73)

The time constants cr and cg are positive.
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4.4 Hierarchical zero-order-sampling control. Young [9] has proposed for
multi-dimensional systems hierarchical control schemes consisting of
sequences of two-dimensional controls, and we shall use this concept to de-
velop a hierarchical zero-order-sampling control for the Neuman-Tourassis
discrete model of the cylindrical robot. First, a variable structure control is
used to force the system to chatter close to the switching surface sg(k) - 0
and then a subsequent control to force the chattering close to sr(k) = 0.

The details of this hierarchical control will now be described. Using (59)
and (60) we obtain

As,(A:) = sr(k + 1) -sr(k) = cT
r[r(k + 1) -r(k)} (74)

= C;[(R,->, - I)r(fc) + Rk-;, dfc] + cJ^bhF^k). (75)

and similarly

Asg(k) = c j t e ^ e , - l]6(k) + c]Q-klj>hFe{k). (76)

The control forces are now denned as sums of equivalent and variable control
terms as follows:

Fr(k) = Fr
E(k) + Fr

V(k), (77)

Fg(k) = Fe
E{k) + Fg

V{k). (78)

Here FE(k), Fg{k) are the equivalent control forces chosen as

Fg

in order to obtain

FE(k) = - (AcX^brVKR^.R, - I)r(k) + Rj;, dfc], (79)
Fg

E{k) = - ( A c j e ^ r ' c j i e ^ e * _ i]6(k), (80)

(81)

hcr/2)Fr
v(k)

)h2/4]'m[l-(o(k)(o(k + l)h2/4]'

] l V k ) (83)
v(_ h(l+hcg/2)Fg
v(k)

~ 7[r(* + l)] • ( 8 4 )

The variable structure control terms F^(k), Fg
v(k) are chosen, in gener-

alisation of (13), as
v (-ar(k) ifr(k)s(k)>0,

F (k) — < ~

ag6(k) if e(k)sg(k) < 0,
where ar and ag are taken as suitable positive constants.
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The hierarchical control is established by first taking Fr(k) = F^(k) and
then choosing Fg(k) so that the system chatters close to the switching surface
sg(k) = 0 until the condition

\se(k)\ < eg (87)

is satisfied, where eg is a suitably chosen positive constant. The control is
then changed to Fr(k) = Ff(k) + F^(k) until pseudo-sliding occurs on the
intersection of sg(k) — 0 and sr(k) = 0.

There is, however, a difficulty in calculating the equivalent control terms
Ff(k) and Fg

E{k) because, according to (79) and (80), they require a knowl-
edge of the not yet determined values of r(k + 1) and co(k + 1). The dif-
ficulty is overcome by using an iterative method [5], [8] in which, in accord
with the hierarchical ordering, first r{k + 1) in I[r(k +1)] is replaced by
r(k)+Ar(k- 1). This enables an estimate of B{k +1) and hence of co(k + 1)
to be made and this in turn enables r(k + 1) to be estimated. The estimated
value of r(k + 1) can then be used in I[r(k +1)] and the iteration repeated
until a satisfactory convergence is reached. In practice, two or three iterations
suffice.

4.5 Conditions for pseudo-sliding mode. In general, a necessary (but not suf-
ficient) condition for the existence of a pseudo-sliding mode for a switching
surface s(k) = 0 of a discrete system is that there exists an c > 0 such that,
for all k for which \s(k)\ < e,

s(k)As(k)<0. (88)

In other words, if the switching surface corresponds to a pseudo-sliding mode,
then there is a region close to the surface such that at each point of the
trajectory, the next step is towards the surface.

For the discrete cylindrical robot model, the choices (85) and (86) of the
variable structure control terms ensure that

s(k)Astk) = - a\r(k)s(k)\ h(l + hcr/2) —
r rK ' riy r m[l-(o(k)co(k+l)h2/4] K '

(90)

co(k)co(k + l)h2 < 4, (91)

where use has been made of (82) and (84). With the proviso that

co(k)co(k+ \)h2 < 4 ,

it follows that sr(k)Asr(k) < 0 and sg(k)/\sg(k) < 0 .
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A sufficient condition involving a restriction on the magnitude of h can be
determined from an argument similar to that in Section 3.2. The appropriate
asymptote lines are obtained from

r(k+l) r(k)
v(k)'
0(k)

(92)

(93)
to(k + 1) co(k)'

Substituting (59) and (60) into (92) and (93), we get

r(ifc+l) = U±r(fc), (94)

6{k+l) = V±d(k), (95)

where

U* = R^+l[Rfc " (CrRfe+lb)~lbCJ(Rfc+lRfc " 7) =F flrAbeTl'' (96)

with e = [1 0]T . The elements of these matrices are given by

M± = 1 T Sh2ar/2, (98)

uf2 = dhm(l+n)/2, (99)

M* = T^arA, (100)

k)a(k+l)h2/4], (101)

tfl//[r(fc + l)] , (102)

(103)

k+l)], (104)

« * = - ! / (105)

with

li= \-(l+crh/2)~\crh + co(k)(o(k+l)h2/2), (107)

v = (ceh/2- l)(cgh/2+l)~i. (109)

The homogeneous quadratic forms of interest, and analogous to (33), are
given using the bottom sign by

u-2v\k) + (M- - u22)v{k)r(k) - u2lr
2(k) = 0, (110)

v~2to\k) + («,", - v22)co(k)6(k) - v2X62{k) = 0. ( I l l )
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The required asymptotes have the equations

drr(k) + v(k) = 0, (112)

e co(k) = 0, (113)

where

dr = dr{h) = 0.5(«~ ) " ' [w~ - w

de = dg(h) = 0.5(u~ ) - 1 [«- - u~ + ̂ - - v - ^ + ^ - v - ] . (115)

A sufficient condition for the existence of a pseudo-sliding mode is accord-
ingly that h < H where

H= min{Hr,Hg}, (116)

Hr = min{h > 0: 4 , - cru
+

21 + dr(u
+

n - cru
+

l2) > 0 } , (117)

He = mm{h > 0: v*x - cev+2 + de{v+
n - cdv

+
n) > 0 } . (118)

In evaluating these minima, use is made of the constraints on the magni-
tudes of \r\, \v\, \0\, \(o\.

5. Simulation results

5.1 Two-dimensional system. For the simulation studies for the two-dimen-
sional variable-structure system analysed in Section 2, the following values
of the constants were chosen:

c=\, a = 9, f=-3A9, x(Q) = [0.01 3]T. (119)

The corresponding upper bound of the stepsize is obtained from (40) as
H = 0.0488.

Figure 1 gives the simulation results showing the discrete points on the
trajectories for two values of the stepsize. In both cases, the motion is stable,
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tn -

in -

FIGURE 1. Discrete trajectories for the two-dimensional system. The discrete points repre-
sented by crosses and connected by the dashed lines signify the trajectory for a simpling interval
h = 0.04 which is less than the calculated upper bound H = 0.0488 for the existence of a
pseudo-sliding mode. For h = 0.05, the trajectory is represented by the small circles connected
by the solid lines.

the trajectories converging to the origin. In one case pseudo-sliding occurs,
but not in the other.

For h = 0.04 < H, the discrete points being represented by small crosses
joined by a dashed line, the existence of the pseudo-sliding mode is verified,
with chattering occurring down the switching line x{ + x2 = 0. It is evident
that a condition that the trajectory moves towards the switching line from all
points cannot be a necessary condition for the existence of a pseudo-sliding
mode because the trajectory is seen to first move away before returning and
remaining near the switching line. The fine structure of the trajectory is also
of interest. Once the switching line is crossed, the trajectory returns towards
it. But the extremities of a step crossing the switching line do not on each
side of the line approach the switching line monotonically.

For h = 0.05 > H, pseudo-sliding does not occur, the trajectory alter-
nately chattering along the switching line, and then swinging away from it,
before returning.

Figure 2 (see page 14) illustrates the simulation results with the same data
as for Figure 1 but with a smaller value h = 0.02. Again the existence of the
pseudo-sliding mode is verified.
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14 X. Yu and R. B. Potts [14]

FIGURE 2. Discrete trajectory for the two-dimensional system. The same data as for Figure
1 but with h = 0.02

5.2 Cylindrical robot. For the simulation studies for the cylindrical robot
variable structure system analysed in Section 3, the following values of the
constants were chosen:

= 7, = 10-2r

ar = ae = 20 ,

cr = ce

= 0.01.

In addition, the variables were limited by the constraints

max|w| = 0<6<2n, max|<y| = 1.6.

(120)

(121)

The corresponding upper bound of the stepsize is obtained from (116)—(118)
giving Hr = 0.3080 and He = 0.3850 so that H = 0.3080. The initial
conditions were chosen as

r(0) = [0.8 i f , 0(0) = [0 1]T. (122)

Figures 3 and 4 show the discrete trajectories for 6 and r respectively for
a stepsize h = 0.3, a value just less than the upper bound. The existence of
the pseudo-sliding mode is verified, although the chattering is quite marked.
Figures 5 and 6 (see page 16) give the results for the smaller value h = 0.02 .
Again the existence of the pseudo-sliding mode is verified, but now with much
less chattering.
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0.0 0.1 0.2 0.3 0.4 0.5

FIGURE 3. Discrete trajectory for the cylindrical robot. The trajectory is for the angle variable
with h = 0.3, just less than the upper bound H = 0.3080 .

0.0 0.2 0.4 0.6 0.8 1.0

FIGURE 4. Same as Figure 3 but for the radial variable.
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16 X. Yu and R. B. Potts [16]

0.4 0.5

FIGURE 5. Same as Figure 3 but with h = 0.02 .

2 -

8-

1 .

<? ~

0.0 0.2 0.4 0.6 0.8 1.0

FIGURE 6. Same as Figure 4 but with h = 0.02 .
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6. Discussion

The computer control of variable-structure systems has been analysed us-
ing zero-order-hold periodic sampling. For a simple two-dimensional system,
the resulting discrete system has been solved without approximation, and nec-
essary and sufficient conditions for the existence of a pseudo-sliding mode
derived. The analysis has been illustrated with numerical simulations. The
method has then been applied to the Neuman-Tourassis discrete model of a
cylindrical robot. This model has the advantage of automatically satisfying
energy and angular momentum conservation and has been successfully used
in robot trajectory and path planning problems [7]. By using hierarchical
control of the angle and radius variable in sequence, a sufficient condition
limiting the magnitude of the sampling interval has been derived. The anal-
ysis has again been illustrated by numerical simulations.

The discrete model of the cylindrical robot is of course an approximation
to a continuous model which is itself an approximation to a real world robot.
Although the robustness of the control scheme proposed here has been ver-
ified by some simulation work, it is now planned to apply the method to a
laboratory robot.

Acknowledgement

The authors are indebted to the Australian Research Council for an award.

References

[1] K. J. Astrom and B. Wittenmark, Computer controlled systems: theory and design
(Prentice-Hall, Inglewood Cliffs, 1984).

[2] E. A. Barbashin, Introduction to the theory of stability (Wolters-Noordhoof, Groningen,
1970).

[3] T. A. Bezdovinskaya and E. F. Sabaev, "Study of state space features in variable structure
control systems", Autom. Remote Control 7 (1973) 1105-1108.

[4] C. P. Neuman and V. D. Tourassis, "Discrete dynamic robot models", IEEE Trans.
Syst. Man Cybern. SMC-15 (1985) 193-204.

[5] J. M. Ortega and W. C. Rheinboldt, Iterative solution of nonlinear equations in several
variables (Academic Press, New York, 1970).

[6] R. B. Potts and X. Yu, "Discrete variable structure system with pseudo-sliding mode",
J Austral. Math. Soc. Ser. B 32 (1991) 365-376.

[7] H. H. Tan and R. B. Potts, "A discrete path/trajectory planner for robotic arms", J.
Austral. Math. Soc. Ser. B 31 (1989) 1-28.

[8] V. D. Tourassis and C. P. Neuman, "Inverse dynamics applications of discrete robot
models", IEEE Trans. Syst. Man Cybern. SMC-15 (1985) 798-803.

[9] K-K. D. Young, "Controller design for a manipulator using theory of variable structure
systems", IEEE Trans. Syst. Man Cybern. SMC-8 (1978) 101-109.

https://doi.org/10.1017/S0334270000007335 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000007335

