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Abstract

We describe a system that supports source-level integration of ML-like functional language

code with ANSI C or Ada83 code. The system works by translating the functional code into

type-correct, ‘vanilla’ C or Ada; it offers simple, efficient, type-safe inter-operation between

new functional code components and ‘legacy’ third-generation-language components. Our

translator represents a novel synthesis of techniques including user-parameterized specification

of primitive types and operators; removal of polymorphism by code specialization; removal of

higher-order functions using closure datatypes and interpretation; and aggressive optimization

of the resulting first-order code, which can be viewed as encoding the result of a closure

analysis. Programs remain fully typed at every stage of the translation process, using only

simple, standard type systems. Target code runs at speeds comparable to the output of current

optimizing ML compilers, even though handicapped by a conservative garbage collector.

Capsule Review

This paper describes a translator from an ML-like language, RML, to imperative languages,

specifically C and Ada. The translator makes it possible to interface RML code with C

and Ada in a type-safe way, even when the RML code uses higher-order functions and

recursive datatypes. It is interesting to see that compilation from RML to C or Ada can

be accomplished with relatively simple means while achieving fairly good results. The paper

is also valuable in that it spells out some ideas that have been around only as folklore

(for example the details of making a polymorphic program monomorphic). The paper also

discusses methods for sequentialization, higher-order function removal, tail-recursion removal,

conversion to imperative style, and code generation.
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1 Introduction

Functional Languages (FLs) such as ML and Haskell provide powerful and high-

level control mechanisms and symbolic data types that are not available in traditional

‘third-generation’ languages (3GLs) such as C, Ada or Modula. For example, it is

easier to define and iterate over a list in ML than in C. These high-level features

make FLs well-suited for rapid prototyping and standalone applications. But many

real-world applications need to take advantage of an existing base of ‘legacy’ code

written in imperative 3GLs. Thus a reasonable aim is to enable programmers to use

an FL to write ‘glue’ code that combines existing 3GL code components, or to write

FL components that can be integrated into larger 3GL-based systems.

Unfortunately, FL implementations typically do not give the programmer control

over the detailed layout and lifetime of data, and usually assume a special-purpose

runtime system; these characteristics impede interfacing with foreign languages.

‘Foreign function’ interfaces that address these problems are becoming more com-

mon (Huelsbergen, 1996; Leroy, 1997; Peyton Jones et al., 1997; Tofte et al., 1997),

but tend to have several disadvantages: moving data between languages typically

requires expensive on-the-fly format conversions or tricky cast operations; there is

often substantial overhead in transferring control between FL and 3GL runtime

systems, which discourages small-grained interactions; and the resulting integrated

code is an inelegant hybrid that depends upon the implementation details of FL

and 3GL compilers, which may be unacceptable in organizations that mandate use

of standardized, portable 3GLs.

We have developed an alternative approach to interoperability that completely by-

passes these problems by translating the entire FL program into the imperative 3GL

used by the legacy code base. Specifically, we have built a system that translates an

ML-like source language (called RML, for ‘Restricted ML’) into well-typed, portable,

‘vanilla’ Ada83 or ANSI C code, which can be passed to a standard compiler. Since

the output of the translator represents the FL’s types and control structures using

the 3GL’s types and control structures, FL and 3GL code can be easily integrated,

even within a single procedure, in an efficient and fully type-safe manner.

Our system has been developed as the back end of a larger application generator

system that produces integrable components from high-level specifications (Kieburtz

et al., 1995); we first generate RML code from the specifications using semantics-

directed techniques, and then translate that code to Ada83 using the scheme de-

scribed in this paper.1 However, the system is quite general; it can accommodate

hand-written or generated RML code from any source, and may be useful in any

context where tight integration with an existing legacy code base is desirable.

This paper describes the design and implementation of our RML-to-3GL trans-

lator. Many of the requirements on such a translator are familiar from existing FL

compilers: high-level features such as polymorphism, higher-order functions, and

algebraic datatypes need to be expressed in terms of much lower-level type and con-

1 The choice of Ada83 was mandated by our project sponsor, the U.S. Air Force Materiel
Command.
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trol constructs. However, the need to generate adequately performing, well-typed,

vanilla target code – particularly for Ada83, a quite secure and restrictive language –

makes special demands on the translator. These have led us to a novel combination

of compilation techniques, some of which are of independent interest:

• We use a type-based macro-expansion technique called templates (Volpano and

Kieburtz, 1985; Volpano and Kieburtz, 1989) to integrate 3GL code into RML.

Each RML program is translated with respect to a particular template, which

defines a set of abstract, primitive types and a set of primitive operators. The

definitions take the form of macros that expand into target-language text. Both

substantial legacy code components and simple primitive types and operators

are handled uniformly in this fashion. Operators must be monomorphic and

first-order. Templates are specified using a specialized definition language; see

section 4.

• Our system removes polymorphism from RML programs by cloning polymor-

phic functions and datatype declarations, making a separate monomorphic

version for each distinct set of instantiating type variables; see section 6. Al-

though this approach has been suggested before (Jones, 1994), and similar

effects have sometimes been achieved by accident (Tarditi et al., 1996), we

are unaware of any previous practical, intentional realizations. The approach

requires access to the whole RML program.

• Our system removes higher-order functions using a novel typed closure-

conversion algorithm that represents closures as members of algebraic data-

types, and generates type-specific dispatch functions to interpret them; see

section 9. The resulting code does not even require function pointers

(which Ada83 lacks). Unlike previous treatments of typed closure-conversion

(Minamide et al., 1996), we do not need to introduce new language primitives

or fancy type systems to maintain typability, although our method does again

require access to the whole program, which must be monomorphic.

• Our system optimizes the closure-converted code, using simple, standard

‘partial-evaluation-style’ transformations; although optimizing at this stage

has been suggested before, we are not aware that anyone has actually done it,

and it proves to be useful. For example, the standard uncurrying optimization

is performed ‘for free’ by the standard inlining optimization; see section 10.1.

• Furthermore, the code produced by our typed closure-conversion algorithm

can be viewed as being the result of the simple, implicit closure analysis. Our

system takes advantage of this closure analyses to choose more efficient closure

representations and perform more aggressive inlining than an untyped conver-

sion could support; see section 10.2. We also show how to express the results

of the somewhat stronger closure analysis of Bondorf and Jørgensen (Bon-

dorf and Jørgensen, 1993; Palsberg, 1995) within the standard algebraic type

framework; see section 10.3.

• Our system eliminates tail calls, even among mutually recursive functions,

without introducing global labels (which both ANSI C and Ada83 lack). It

uses local labels instead, merging mutually recursive functions into a single

function with multiple entry points if necessary; see Section 11.
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The architecture of our translator resembles that of other recent transformation-

based FL compilers (Appel, 1992; Leroy, 1991; Peyton Jones, 1996; Tarditi et al.,

1996). The translator, which is itself written in Standard ML, is structured as a

series of relatively simple transformations, each preserving semantics and types;

see section 5. It uses a small set of intermediate languages, each of which is

strongly typed and executable by an interpreter. There are type-checkers and self-

test mechanisms built in at each intermediate language stage; these have been used

heavily during development to find and correct bugs in the translator. Only the

very last transformation step is dependent on the particular 3GL target language

involved, so the translator is easily retargeted to new output languages. Our system

relies on standard 3GL compilers to handle traditional low-level concerns like

register allocation, instruction selection, and local optimization, with reasonable

results. Although high performance is not our primary goal, the performance of

the C code generated by the translator compares favorably with the output of the

well-regarded Standard ML of New Jersey compiler.

Memory management is one area in which we have not innovated. Our C back end

incorporates the Boehm-Demers-Weiser conservative collector (Boehm and Weiser,

1988). Heap allocation in C is the one spot where we must perform casting, to

allocate storage for values of different types from a common heap; of course, this

is standard practice in C. Although Ada83 supports garbage collection in principle,

the implementations we are using do not; the Ada-based applications we have built

so far are structured so that it is safe to perform simple ‘bulk’ deallocation (in the

Ada code) at a few key points.

There has been much recent interest in using typed intermediate representations

in compilers (Peyton Jones et al., 1993; Morrisett, 1995), but in most cases types

are abandoned well before code generation. The TIL compiler (Tarditi et al., 1996)

does keep type information until a late stage in the compilation process when code

has reached a low level form more primitive than 3GL code, but its type system

is substantially more complex than the C or Ada-style typing we use. While there

are many existing systems that compile ML or Haskell to C (Tarditi et al., 1992;

Cridlig, 1992; Chailloux, 1992; Peyton Jones, 1992; Tofte et al., 1997), they often

make heavy use of casts or non-standard extensions (e.g. as provided by gcc),

especially to handle closures and exceptions and to avoid using the C procedure

activation model. Our system generates ANSI-standard, nearly cast-free code. Also,

many of these systems generate C from very low-level intermediate forms, e.g., stack

machines, so that the target C program has a completely different structure than

the source FL program. By contrast, our translator only perturbs the function-level

structure of the source program when it needs to; a ‘C-like’ RML program with no

nested or higher-order functions and no inter-function tail calls will be translated

to a very natural-looking C program with the same structure. Our system does not

currently handle exceptions, however.

This paper describes the overall architecture of our system, and reports in detail

on the more novel transformations. We assume the reader to be familiar with the

syntax of functional languages such as ML, and to be able to read Ada and C code.

We have tried to avoid formality except as demanded for the sake of precision.

https://doi.org/10.1017/S0956796898003086 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796898003086


From ML to Ada 371

PACKAGE GeoLib IS

TYPE trans_array IS ARRAY (1..3, 1..3) of float;

TYPE transform IS ACCESS trans_array;

TYPE point IS RECORD x:float; y:float; END RECORD;

ID:transform := ...;

FUNCTION rotate (r:float) RETURN transform;

FUNCTION translate (x,y:float) RETURN transform;

...

FUNCTION compose (x,y:transform) RETURN transform;

FUNCTION apply (t:transform; p:point) RETURN point;

END GeoLib;

Fig. 1. Example Ada package specification (excerpts).

2 Example

As a simple motivating example, suppose we wish to build an RML component

using an existing Ada package that implements simple 2D transformations on points

(see figure 1). Points are represented as pairs of reals and transformations as heap-

allocated 3×3 real matrices; transformations are composed and applied using matrix

multiplication (see figure 2).

We want to use this existing Ada to do the numerical computation, while using

RML for convenient manipulation of points and transforms considered as abstract

values.2 (We also use Ada to write the ‘main program’ or driver that will be

responsible for invoking the RML component; we have little more to say about this

driver, however.) In this application the granularity of the primitive operations is

quite small, so invoking a function to perform each one might be quite inefficient. A

template definition that imports these operations (and basic real number support)

into an RML component is shown in figure 3. This template declares real, point

and transform as new abstract types, with the operator signatures as listed. Most of

the operators expand into calls to the corresponding Ada routines; apply is defined

to expand into inline Ada code. Template syntax is explained in section 4.

A simple RML component that uses this template is shown in figure 4. RML

concrete syntax is similar to SML; details are given in section 3. This component

makes heavy use of RML’s facility for defining and manipulating polymorphic alge-

braic types like list and abstract traversal operations like foldl. It builds a list

of transforms and uses foldl and compose to make a combined transformation;

it then uses another foldl to apply the combined transform to a list of points,

and a third foldl to reverse the result (returning the list of transformed points to

its original order).

The remainder of the paper will refer repeatedly to this example component, to

show the effect of various transformations. As a preview of the end product, we show

2 This is a somewhat artificial example, since many functional language implementations
have good built-in support for numerical computing, and recoding such a small legacy
component would be easy.
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PACKAGE BODY GeoLib IS

...

FUNCTION rotate (r:float) RETURN transform IS

BEGIN

RETURN NEW trans_array’((cos(r),-sin(r),0.0),

(sin(r), cos(r),0.0),

( 0.0, 0.0,1.0));

END rotate;

...

FUNCTION compose (x,y:transform) RETURN transform IS

ret_val:transform;

BEGIN

FOR i IN 1..3 LOOP FOR j IN 1..3 LOOP ... END LOOP; END LOOP;

RETURN (ret_val);

END compose;

FUNCTION apply (t:transform; p:point) RETURN point IS

ret_val:point;

BEGIN

-- N.B. Bottom row of t is always (0.0,0.0,1.0)

ret_val.x := (p.x * t(1,1)) + (p.y * t(1,2)) + t (1,3);

ret_val.y := (p.x * t(2,1)) + (p.y * t(2,2)) + t (2,3);

RETURN (ret_val);

END apply;

END GeoLib;

Fig. 2. Example Ada package implementation (excerpts).

template GeoLibTemplate

type real "float"

type point "point"

type transform "transform"

val add (x0:real,x1:real) : (res:real) pure "‘res‘ := ‘x0‘ + ‘x1‘;"

...

val div (x0:real,x1:real) : (res:real) "‘res‘ := ‘x0‘ / ‘x1‘;"

...

val id : transform "id"

val rotate (r:real) : (res:transform) pure "‘res‘ := rotate (‘r‘);"

...

val apply (t:transform,p:point) : (res:point) pure

"BEGIN \

\ ‘res‘.x := ((‘p‘.x * ‘t‘(1,1)) + (‘p‘.y * ‘t‘(1,2)) + ‘t‘(1,3)); \

\ ‘res‘.y := ((‘p‘.x * ‘t‘(2,1)) + (‘p‘.y * ‘t‘(2,2)) + ‘t‘(2,3)); \

\ END"

Fig. 3. Example template for geometric operations (excerpts).
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export type point list "PList"

val Nil : point list "PNil"

val Cons : point * point list -> point list "PCons"

val doit : point list -> point list "doit"

datatype ’a list = Cons of ’a * ’a list | Nil

fun foldl (c,n,l) =

case l of

Nil => n

| Cons(x,r) => foldl(c,c(x,n),r)

val ts = Cons(translate (2.0,~2.0),

Cons(scale(1.0,0.5),

Cons(rotate((div(3.141592,2.0))),Nil)))

fun doit ps =

let val whole_t = foldl (compose,id,ts)

fun consapp (x,l) = Cons(apply(whole_t,x),l)

val ps0 = foldl(consapp,Nil,ps)

in foldl(Cons,Nil,ps0)

end

Fig. 4. RML component using geometric template.

the final output of the RML-to-Ada translator on this component in Figure 5. This

is genuine output, except that we have renamed the variables and reformatted for

better readability, and coalesced some variable declarations and initial assignments

into declarations with initializers. The output code illustrates many of the key

characteristics of our translation approach, although because of the extremely small

size of the input program, the optimizer has done an unusually good job with it. The

output is efficient first-order monomorphic code. The original polymorphic foldl

function has been specialized into two monomorphic variants foldl0 and foldl1,

taking transform lists to transforms and point lists to point lists, respectively.

The two possible functional arguments to foldl1, namely Cons and consapp, are

represented as members of a discriminated record type closure. The discriminant

tag indicates which function is required; the consapp variant, which carries the free

variable whole t as an associated value, must be dynamically constructed, whereas

the Cons variant is statically defined. In either case, the closure is small enough to

be manipulated by value, rather than being heap-allocated. Moreover, since Cons

and consapp are used only as arguments to foldl, their code is actually inlined into

foldl1. The primitive Ada code for apply, used within consapp, has been inlined,

as specified in the template. Even stronger optimization has been applied to foldl0:

since compose is the only argument that can be passed to it, no closure is required

at all, and its body is specialized to call the primitive Ada compose routine directly.

The only heap-allocated structures in the Ada program are the lists themselves,

for which the translator has automatically chosen an efficient representation using

one record per list item and the NULL pointer to represent the empty list; point
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WITH GeoLib; USE GeoLib; WITH Math; USE Math;

PACKAGE Geo_package IS

TYPE PList_item ; TYPE PList IS ACCESS PList_item;

TYPE PList_item IS RECORD PCons_0:point; PCons_1:PList; END RECORD;

FUNCTION PCons (PCons_0:point; PCons_1:PList) RETURN PList;

PNil:PList := NULL;

FUNCTION doit (ps:PList) RETURN PList;

END Geo_package;

PACKAGE BODY Geo_package IS

TYPE TList_item ; TYPE TList IS ACCESS TList_item;

TYPE TList_item IS RECORD TCons_0:transform; TCons_1:TList; END RECORD;

FUNCTION TCons (TCons_0:transform; TCons_1:TList) RETURN TList;

TNil:TList := NULL;

TYPE closure_constructors IS (cons_variant,consapp_variant);

TYPE closure (constructor:closure_constructors := cons_variant) IS

RECORD CASE constructor IS

WHEN cons_variant => NULL;

WHEN consapp_variant => whole_t:transform;

END CASE; END RECORD;

cons:closure(cons_variant);

tf: float; t0:transform; t1:transform; t2:transform;

vts0:TList; ts1:TList; ts:TList;

FUNCTION PCons (p0:point; p1:PList) RETURN PList IS

BEGIN return NEW PCons_item’(PCons_0 => p0, PCons_1 => p1); END;

FUNCTION TCons (t0:transform; t1:TList) RETURN TList IS

BEGIN return NEW TCons_item’(TCons_0 => t0, TCons_1 => t1); END;

FUNCTION foldl0 (n:transform; l:TList) RETURN transform IS

n0:transform := n; l0:TList := l;

BEGIN

GOTO JumpPoint0;

<<JumpPoint0>>

IF l0 = NULL THEN

RETURN n0;

ELSE

DECLARE x : transform := l0.TCons_0; r: TList := l0.TCons_1;

n : transform := compose(x,n0);

BEGIN

n0 := n; l0 := r;

GOTO JumpPoint0;

END;

END IF;

END foldl0;

Fig. 5. Generated Ada code corresponding to example (beginning).
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FUNCTION foldl1 (c:closure, n:PList; l:PList) RETURN PList IS

c0 : closure := c; n0 : PList := n; l0 : PList := l;

BEGIN

goto JumpPoint1;

<<JumpPoint1>>

IF l0 = NULL THEN

RETURN n0;

ELSE

DECLARE x : point := l0.PCons_0 ; r : PList := l0.PCons_1;

BEGIN

CASE c.constructor IS

WHEN cons_variant =>

DECLARE n: PList := PCons(x,n0);

BEGIN

c0 := c0; n0 := n; l0 := r;

GOTO JumpPoint1;

END;

WHEN consapp_variant =>

DECLARE whole_t : transform := c0.whole_t; p0 : point;

BEGIN

p0.x := ((x.x * whole_t(1,1)) +

(x.y * whole_t(1,2)) + whole_t(1,3));

p0.y := ((x.x * whole_t(2,1)) +

(x.y * whole_t(2,2)) + whole_t(2,3));

DECLARE n : PList := PCons(p0,n0);

BEGIN

c0 := c0; n0 := n; l0 := r;

GOTO JumpPoint1;

END;

END;

END CASE;

END IF;

END f1;

FUNCTION doit (ps:PList) RETURN PList IS

whole_t : transform := foldl0(id,ts);

c : closure := (consapp_variant,whole_t);

ps0 : PList := foldl1(c,PNil,ps);

ps1 : PList := foldl1(cons,PNil,ps0);

BEGIN

RETURN ps1;

END doit;

BEGIN

t0 := translate(2.0,-2.0); t1 := scale(1.0,0.5);

tf := 3.141592 / 2.0; t2 := rotate(tf);

ts0 := TCons(t2,TNil); ts1 := TCons(t1,ts0); ts := TCons(t0,ts1);

END Geo_package;

Fig. 5 (cont.). Generated Ada code corresponding to example (conclusion).
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τ ::= K (primitive types)

| t (type variables)

| (〈τ〉∗)→ τ (function types)

| (〈τ〉,)D (algebraic types)

σ ::= [∀〈t〉,.]τ (type schemes)

e ::= (k : K) (primitive constants)

| (v : τ) (variables)

| e(〈e〉,) (function applications)

| (c : τ)(〈e〉,) (constructor applications)

| p(〈e〉,) (primitive applications)

| fn [inline] rule (anonymous abstractions)

| let vdecs in e (local declarations)

| case e of 〈(c : τ) rule〉| (destructuring)

rule ::= (〈v : τ〉,) => e (rules)

vdecs ::= val rec 〈v : σ = fn [inline] rule〉and (recursive function declarations)

| val v : σ = e (value declarations)

atdec ::= (〈t〉,)D[flat] = 〈c [of 〈τ〉∗]〉| (algebraic type declarations)

atdecs ::= datatype 〈atdec〉and (mutually recursive declarations)

export ::= type τ "name" (type exports)

| val v : τ "name" (value exports)

comp ::= export 〈export〉 〈atdecs〉 〈vdecs〉 (components)

Fig. 6. RML Abstract syntax. In this and other syntax descriptions, we use the notation

〈x〉sep to mean a sequence of zero or more x’s separated by sep, and [x] to mean an optional

x. When giving examples written in the syntax, we generally omit the grouping parentheses

() when no ambiguity results.

lists use a completely flattened five-word record per item, with no indirection for the

point pair or for the embedded reals. The tail-recursive calls in foldl0 and foldl1

have been converted to local jumps. The only major remaining optimizations to be

performed by the Ada compiler are variable coalescing, jump-to-jump elimination,

and loop invariant hoisting.

3 RML source language

RML is an eager language with first-class functions, algebraic datatypes and para-

metric (Hindley–Milner) polymorphism. Plain RML, without primitives, is essen-

tially similar to the pure subset of core Standard ML (SML ’97) (Milner et al.,

1997), without nested patterns or many derived forms, but with the addition of true

multi-argument functions and data constructors. Impure features such as references,

arrays, and I/O can be added to the language via the template primitive mecha-
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nism (see Section 4), but exceptions are fundamentally missing. In this paper, we

use a human-readable but still somewhat abstract syntax for RML (figure 6) and

the other intermediate languages used in the translator. In this representation, it is

assumed that no identifier is bound twice. In practice, source code is fed to the RML

translator using a more elaborate concrete syntax (very similar to SML syntax) with

the usual lexical scoping rules, or, for machine-generated source, using an internal

representation of the abstract syntax. The primary difference between concrete and

abstract syntax is that the former is untyped; the system performs standard Hindley–

Milner type inference (Hindley, 1969; Milner, 1978; Damas, 1984; Cardelli, 1987) to

obtain the type-annotated abstract form. Also, the concrete syntax allows primitives

and constructors to be used as first-class values whereas the abstract syntax permits

them only in the operator position of applications; such first-class uses are automat-

ically eta-expanded by the concrete syntax parser. Finally, the parser accepts and

translates some of the common SML derived forms, e.g. fun for val rec.

RML’s typing rules are largely standard, so we mention only distinctive points

here. RML abstract syntax includes explicit type annotations on variable and

constructor uses and type schemes on declarations. These annotations suffice to

reconstruct the types of arbitrary terms. Different mentions of a let-bound (or

top-level) function or of a constructor may, of course, have different types; for any

given mention, the instantiating type expressions for the generic type variables can

be determined by unifying the type annotation on the mention with the scheme

annotation on the declaration. Like SML ’97, RML adheres to the value restriction

on polymorphic bindings (Wright, 1995), requires recursive bindings to be explicit

function abstractions, and prohibits polymorphic recursion among functions.

Unlike SML ’97, RML also prohibits polymorphic recursion in datatype defin-

itions.3 Also, unlike SML, RML lacks records or tuples per se, but these can be

built as datatypes with a single constructor. Datatypes can be marked as ‘flat’

meaning that they should be manipulated as a tuple of immediate values rather

than being heap-allocated; this is suitable for small records or simple sum types. As

a degenerate special case, a data type may have zero constructors; a case over such

a value of such a type has no arms and thus arbitrary result type, and its dynamic

semantics is to abort.

The semantics of RML declarations and expressions are straightforward, so we

omit a formal presentation. As in SML, evaluation order is fixed left-to-right, and

all conditional control flow is governed by case expressions. User-defined functions

and primitives all receive their parameters by value. There is no built-in facility for

exceptions, nor can these be sensibly implemented using call-by-value primitives.

The unit of translation is a component: a sequence of type and value declarations

(e.g. as in figure 4). Each RML component has an export clause, which lists the

types and values that are to be exported for use by 3GL components of the system

and specifies 3GL names for them. In particular, the main program or driver for

an executable is always written in the host 3GL, and invokes RML code via one or

3 I.e., in a datatype definition abstracted over a given list of type variables, every right-hand-
side mention of that datatype must be instantiated at exactly the same variables.
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type ::= type K "string" (primitive types)

value ::= val k : K "string" (primitive constants)

| val p(〈v : τ〉):(v : τ) [pure] "string" (primitive functions)

t ::= template name 〈type〉 〈value〉 (templates)

Fig. 7. Template specification syntax. Types τ are as in RML.

more of the exported functions. Polymorphic types and values can only be exported

at specific monomorphic instances. Argument and result types of exported functions

must be first-order. Formally, the ‘meaning’ of a component is an environment

mapping 3GL names to RML types and values; this environment must not be

altered by the translation process.

Our translator currently does not directly support multiple RML components

in a program, although functions generated from one RML component can be

treated like any other 3GL functions and imported as (first-order) primitives into

another RML component via the template mechanism. There are two obvious

reasons why it might be useful to divide the RML code for a large system into

multiple components: to provide independent namespaces (e.g. for libraries), or to

speed up system building via separate compilation. We plan to extend our system

to support the former goal, which should be straightforward. Separate compilation

would be much harder, however, since many of our translation strategies depend

fundamentally on having access to all the RML source code at one time.

4 Templates

Each RML component is translated with respect to a particular template, which

specifies the interface between 3GL components and RML code. The template

definition plays two key roles. It specifies which types and operators, implemented

in the 3GL, are to be available to RML code as primitives; this information is used

by the translator when parsing and type-checking RML components. The template

also includes macro definitions for the types and operators in terms of 3GL code

fragments; these are used by the translator when it generates 3GL code from RML.

Templates are defined using a small special-purpose language, whose concrete syntax

is shown in figure 7. Template specifications make heavy use of quoted strings, which

represent text in the target 3GL; they utilize a standard set of escape conventions

based on those of SML. Figure 3 provides a typical example of an Ada template; a

C template definition would have the same format, though of course the macro text

would differ.

Primitive types typically include both general-purpose types (e.g. integer, real,

. . .) and application-specific types (e.g. transform or point). A primitive type is

introduced by a type declaration, which gives the type a name to be used within

RML code and specifies the corresponding 3GL type name – built-in or user-

defined – that provides a concrete realization of the type. Primitive types are always

monomorphic, i.e. not parameterized.
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Primitive values and operators are defined by val declarations, which specify

their types and their expansions into 3GL code. Values, operator arguments, and

operator results must have primitive types,4 which implies that values and operators

are always monomorphic and first-order. A value declaration specifies the (RML)

type of the value and the corresponding 3GL syntax for it.5 An operator declaration

specifies formal names and types for the operator’s arguments and result; the

corresponding 3GL code string is treated as a macro using the formal names as

parameters. Formal parameters are referenced inside the string by surrounding them

with back-quotes (‘). For example, the definition of the primitive division operator

might be

val div (x0:real,x1:real) : (res:real) "‘res‘ := ‘x0‘ / ‘x1‘;"

An RML expression like val a = div (x,2) eventually leads to the Ada code

. . . a := x / 2; . . .

As this example illustrates, the expansions for operators are statements rather than

expressions, which permits more elaborate definitions. To make this possible from

the RML side, code generation is performed on an imperative intermediate form (see

section 12.1) in which primitive operator calls appear only as the right-hand sides of

assignment statements, so the result of an operation is ‘returned’ by assigning it to a

variable. All actual arguments to operators are either variable names or constants,

which prevents potential problems with multiple uses of a formal argument in the

macro.

Operators on general-purpose primitive types (e.g. the div operator described

above) can often be implemented using built-in operators of the 3GL. Application-

specific types and operators usually depend on non-trivial 3GL type definitions

and library code. If desired, calls to small functions can be inlined by hand in the

operator definition (e.g. apply in our example).6 Operators marked as pure are

assumed (without separate verification) to have no side-effects; the translator can

apply more aggressive optimizations to expressions that involve only pure operators

(see section 8).

5 Compiler architecture and representations

The compiler is structured as a pipeline operating on a series of specialized, typed

intermediate representations; see figure 8. This section of the paper summarizes the

most important steps in the compilation sequence, and serves as a guide to the

detailed descriptions of these steps in the sections that follow.

4 There is also a mechanism, which we do not describe in detail here, for using the algebraic
type bool = true | false; this permits RML code to perform conditional computation
based on the result of a primitive operation.

5 In principle, every integer, real, and string literal used in a RML program should be
specified this way; to avoid this tedium, the template mechanism has all such literal
constants ‘built-in’.

6 Our experience has been that 3GL compilers cannot be depended upon to perform such
inlining automatically.

https://doi.org/10.1017/S0956796898003086 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796898003086


380 A. Tolmach and D. P. Oliva

Parsing and type inference

Monomorphic RML code

Sequentialization (7)

SIL code

First-order SIL code

Higher-order removal (9)

Tail-recursion removal (11)

SIL with jump points

Conversion to imperative style (12) 

MIL code

C code Ada code

Specification
Template

Reoptimization (10)

Optimization (8)

RML concrete syntax

Typed RML code

Remove polymorphism (6)

3GL code generation (12)

Fig. 8. Architecture of the compiler. Numbers in parentheses refer to section numbers in this

paper where the relevant transformation is described.
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• RML code is parsed from a concrete text representation or loaded from

a binary representation produced by a separate generator tool. Parsing is

performed with respect to a particular template definition, which provides a

particular set of primitive types and operators.

• The RML code is annotated with type information using conventional Hindley-

Milner type inference. The annotated code is then translated to monomorphic

form (section 6).

• The monomorphic RML code is transformed to a more restrictive language,

called SIL (Sequentialized Intermediate Language), which is a variant of A-

normal form (Flanagan et al., 1993), closely related to continuation-passing

style (Steele, 1978; Kranz et al., 1986; Appel, 1992). In SIL (figure 12), all

arguments to functions and primitives are required to be named variables

or constants. Thus, the translation from RML to SIL (section 7) effectively

fixes the order of evaluation of all primitives. SIL also supports ‘jump points’,

i.e. locally scoped continuation functions (Kelsey, 1995), though the initial

translation to SIL doesn’t use these.

• The SIL code is optimized (section 8) by repeated application of rewrite

rules that encode ‘partial-evaluation style’ improvements: value and variable

propagation, simplification of case expressions over known values, elimination

of dead code and unused datatypes, and conservative function inlining.

• The SIL code is reduced to first-order form (section 9). The resulting code is

then re-optimized (section 10).

• All tail calls are changed into jumps, merging mutually recursive functions if

necessary (section 11).

• The SIL code is transformed into imperative target code, in two stages, which

are treated only briefly in this paper (section 12). First, SIL code is transformed

into a further intermediate form, called MIL (Mutable Intermediate Language),

which abstracts the essential characteristics shared by C, Ada83, and similar

languages. Then, MIL code is translated into Ada83 or C code using the

template macros.

The entire compiler amounts to about 20,000 lines of Standard ML, and runs under

version 109.31 of the Standard ML of New Jersey system.

6 Eliminating polymorphism

6.1 Concept

Our target 3GLs do not directly support parametric polymorphism.7 The translator

therefore converts polymorphic components to monomorphic ones by producing

specialized clones of polymorphic functions and constructors for each type at which

they are used. By arranging to perform this step early in the compilation process, as

an RML-to-RML translation, we clear the way for later transformation algorithms,

7 Actually, Ada generics have the necessary power, but certain restrictions on the form of
generic package interfaces can cause unnecessary extra copies of code to be generated.
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notably the higher-order function remover and the representation analyzer, which

require monomorphic input.

The specialization algorithm operates on the complete type-checked source pro-

gram, in which every use of a polymorphic identifier has been annotated with its

instantiated type. Given this representation, the full set of instantiations for each

type abstraction can be enumerated, in a way which will be described below. RML’s

restrictions against polymorphic recursion in datatypes or functions guarantee that

these sets are finite. Moreover, the complete set of instantiations for the bound type

variables in a recursive function or datatype definition (or mutually recursive set of

definitions) can always be determined without looking at the right-hand side(s) of

the definition(s). This fact allows the instantiations to be enumerated by a one-pass

algorithm that doesn’t require a fixed-point calculation.

In our section 2 example, the specializer generates two versions of the list

datatype, specialized to points and transforms respectively, and two corresponding

versions of the foldl function. The resulting component is shown in figure 9.

6.2 Details of the algorithm

The complete specialization algorithm consists of three passes over the type-

annotated program produced by a standard inferencer. The first pass replaces any

occurrences of free type variables by an arbitrary trivial type; this is safe because the

computation never examines values whose types involve free type variables (Mor-

risett et al., 1995). The second pass computes a mapping from each polymorphic

variable and algebraic type constructor to its corresponding set of instantiations.

The third pass uses this mapping to perform the actual specialization.

The enumeration pass is by far the most complex of the three; details are

given in figure 10. To explain the algorithm, we first require some terminology. A

(simultaneous) substitution S = (〈t〉 7→ 〈τ〉) is a mapping from a sequence of n type

variables to a corresponding sequence of n types. Applying a substitution S to a type

τ has the usual effect of replacing each type variable t ∈ Dom(S) with S(t), while

leaving other type variables and all type constructors unchanged. We further define

the result of applying a substitution S to a sequence of types 〈τ〉 to be the sequence

〈S(τ)〉. A multi-substitution M is a mapping (〈t〉 7→ {〈τ〉}) from a sequence of n type

variables to a set of corresponding sequences of n types; it thus compactly describes

a set of substitutions with a common domain. We define the result of applying M to

a type (resp. a sequence of types) to be the set of types (resp. of sequences of types)

resulting from applying the individual substitutions in turn and removing duplicates.

Any substitution can be viewed as a multi-substitution by making the result into

a singleton set. If M1 = (〈t〉 7→ T1) and M2 = (〈t〉 7→ T2) are multi-substitutions

with the same domain, we define their sum, M1 ] M2, as the multi-substitution

(〈t〉 7→ T1∪T2), where ∪ represents ordinary set union with removal of duplicates. If

〈M〉 is a sequence of multi-substitutions all having the same domain, we write
⊎ 〈M〉

for their combined sum. We define the composition M2 ◦M1 of multi-substitutions

M1 = (〈t〉 7→ T1) and M2 to be the multi-substitution (〈t〉 7→ ⋃ {M2(〈τ〉) | 〈τ〉 ∈ T1}),
where

⋃
computes the union of the members of a set of sets.
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export

type plist "PList"

val PNil : plist "PNil"

val PCons : point * plist -> plist "PCons"

val doit : plist -> plist "doit"

datatype plist = PNil | PCons of point * PList

datatype tlist = TNil | TCons of transform * TList

val rec foldl0 : (transform * transform -> transform) *

transform * tlist -> transform =

fn (c,n,l) =>

case l of

TNil => n

| TCons(x,r) => foldl0 (c,c(x,n),r)

val rec foldl1 : (point * plist -> plist) * plist * plist -> plist =

fn (c,n,l) =>

case l of

PNil => n

| PCons(x,r) => foldl1 (c,c(x,n),r)

val ts : tlist = TCons(. . .)

val rec doit : plist -> plist =

fn ps =>

let val whole_t : transform =

foldl0(fn (t1,t2) => compose(t1,t2),id,ts)

in let val consapp : point * plist -> plist =

fn (x,l) => PCons(apply(whole_t,x),l)

in let val ps0 : plist = foldl1(consapp,PNil,ps)

in foldl1(fn (x,l) => Cons(x,l),PNil,ps0)

Fig. 9. RML abstract syntax for geometric example component after type specialization.

Most type annotations are omitted to improve readability.

An instantiation map I [[x]] is a mapping from polymorphic identifiers x : ∀〈t〉,.τ0 to

multi-substitutions with domain 〈t〉; we will build instantiation maps whose domains

include both variables and algebraic type constructors. If I is an instantiation map

and S is a set of identifiers, we write I |S for the instantiation map that results

from restricting I ’s domain to S . If I1 and I2 are instantiation maps, we write

I1 ] I2 for the instantiation map {x 7→ I1 [[x]] ] I2 [[x]] | x ∈ (Dom(I1) ∪ Dom(I2))}.
Further, if 〈I〉 is a sequence of instantiation maps,

⊎ 〈I〉 represents their sequential

combination under ]. Finally, if I = {x 7→Mx} is an instantiation map and M is

a multi-substitution, we define the composition M ◦ I to be the instantiation map

{x 7→M ◦Mx}.
Each of the syntax-directed rules in figure 10 maps a syntactic fragment to the

instantiation map describing the sets of type instantiations induced by mentions

of variables and constructors within that fragment. In particular, C calculates the
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T [[K]] = ∅
T
[[
(〈τ〉∗)→ τ0

]]
= (

⊎ 〈T [[τ]]〉) ] T [[τ0]]

T
[[
(〈τ〉,)D

]]
= (

⊎ 〈T [[τ]]〉) ] {D 7→ (Tyvarsof [[D]] 7→ 〈τ〉)}

S
[[∀〈t〉,.τ]] = T [[τ]]

E [[(k : K)]] = ∅
E [[(v : τ)]] = {v 7→ Inst(Schemeof [[v]], τ)} ] T [[τ]]

E
[[
e0(〈e〉,)

]]
= E [[e0]] ] (

⊎ 〈E [[e]]〉)
E
[[
(c : τ)(〈e〉,)

]]
= {Tyconof [[c]] 7→ Inst(Schemeof [[c]], τ)}
]T [[τ]] ] (

⊎ 〈E [[e]]〉)
E
[[
p(〈e〉,)

]]
=

⊎ 〈E [[e]]〉
E [[fn inl rule]] = R [[rule]]

E [[let vdecs in e]] = D(E [[e]]) [[vdecs]]

E
[[
case e of 〈(c : τ) rule〉|

]]
=

E [[e]] ] (⊎ 〈{Tyconof [[c]] 7→ Inst(Schemeof [[c]], τ)} ] T [[τ]] ]R [[rule]]〉)
R
[[
(〈v : τ〉,) => e

]]
= 〈T [[τ]]〉 ] E [[e]]

D(I) [[val v : σ = e]] = I ] (I [[v]] ◦ S [[σ]])

]
(
I [[v]] ◦

(
E [[e]]

∣∣∣Free[[e]]

))
]
(
E [[e]]

∣∣∣Bound [[e]]

)
D(I)

[[
val rec 〈v : σ = fn inl rule〉and

]]
=

I ] (M ◦ (⊎ 〈S [[σ]]〉))
]
(
M ◦

(⊎〈R [[rule]]

∣∣∣Free[[rule]]

〉))
]
(⊎〈R [[rule]]

∣∣∣Bound [[rule]]

〉)
where M =

⊎ 〈I [[v]]〉

DS(I)
[[〈vdecs〉 vdecs0

]]
= DS(D(I) [[vdecs0]])

[[〈vdecs〉]]
DS(I) [[ ]] = I

AS(I)
[[〈atdecs〉 atdecs0

]]
= AS(A(I) [[atdecs0]])

[[〈atdecs〉]]
AS(I) [[ ]] = I

A(I)
[[
datatype

〈
(〈t〉,) D flt = 〈c [of 〈τ〉∗]〉|

〉
and

]]
=

I ] (I [[D]] ◦ (⊎〈⊎〈⊎ 〈T [[τ]]〉〉〉))
X [[type τ "name"]] = T [[τ]]

X [[val v : τ "name"]] = {v 7→ Inst(Schemeof [[v]], τ)} ] T [[τ]]

C
[[
export 〈export〉 〈atdecs〉 〈vdecs〉]] =

AS
(
DS
(⊎ 〈X [[export]]〉) [[〈vdecs〉]]) [[〈atdecs〉]]

Fig. 10. Enumeration of instances of polymorphic identifiers.
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instantiation map for an entire component, whose domain is the component’s

complete set of top-level and let-bound variables and algebraic type constructors.

The algorithm walks over the component in bottom-up fashion, so that information

about the (non-recursive) mentions of an identifier has always been incorporated

into an instantiation map before the definition of that identifier is processed; this

map is passed as an auxiliary argument I to the rule that processes the definition,

i.e. D or A. Thus, for example, to process a fragment

let val v : ∀〈t〉,.τ = e1 in e2,

the algorithm

i. builds an instantiation map Ie2
based on e2;

ii. builds instantiation maps Iτ based on τ and Ie1
based on e1, in which the

instantiating types may mention the type variables 〈t〉;
iii. divides Ie1

into two parts, IFe1
and IBe1

, corresponding to the free and bound

variables of e1;

iv. expands IFe1
to I ′Fe1

by pre-composing with Ie2
[[v]], the multi-substitution

describing all possible instantiations for the 〈t〉;
v. similarly expands Iτ to I ′τ;

vi. sums I ′τ , I ′Fe1
, the (unexpanded) IBe1

, and Ie2
to yield the final map for the

overall let expression.

The distinction between free and bound variables effectively prevents the map entry

for a locally-defined function from being refined further after its definition has been

processed, which is important for the specialization pass. The rules for recursive

function and datatype definitions are similar. Because RML prohibits polymorphic

recursive definitions of functions or algebraic types, the auxiliary I is guaranteed to

describe all instantiations of the identifier being defined; that is, there is no need

to look at the right-hand side of the definition as well. However, in the recursive

function case it is necessary to combine instance information about uses of all

mutually-recursive functions before pre-composing.

The algorithm relies on a number of auxiliary functions. Free[[e]] returns the set

of free variables and type constructors mentioned in expression or rule e; simi-

larly, Bound [[e]] returns the set of bound variables of e. Inst(∀〈t〉,.τ0, τ) returns a

substitution S = (〈t〉 7→ 〈τ′〉) such that S(τ0) = τ; it will only be called on argu-

ments for which the result substitution is guaranteed to exist. We also assume the

existence of reconstruction functions Schemeof [[x]], which returns the (possibly de-

generate) type-scheme corresponding to any variable or constructor x; Tyconof [[c]],

which returns the algebraic type constructor to which data constructor c belongs;

and Tyvarsof [[D]], which returns the (possibly empty) sequence of type variables

over which the algebraic type constructor D is abstracted. Moreover, we assume

certain consistency conditions on these functions: the schemes of any two mutually-

recursive functions must have the same sequence of bound type variables; similarly,

the schemes of any two data constructors of the same type constructor or of

mutually-recursive type constructors must have the same sequence of bound type

variables, which must also match the sequence(s) returned by Tyvarsof on the type
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datatype ’a p = P of ’a * ’a

val f:∀’b.’b -> ’b p = fn (x:’b) => (P:’b * ’b -> ’b p)(x:’b,x:’b)

val g:∀’c,’d.’c * ’d -> ’d p =

fn (y:’c,z:’d) =>

let val h:∀’e.’e -> ’d p = fn (w:’e) => (f:’d -> ’d p)(z:’d)

in let val v:’c p = (f:’c -> ’c p)(y:’c)

in (h:’c p -> ’d p)(v:’c p)

val a:bool p = (g:int * bool -> bool p) (3:int,true:bool)

val b:string p = (g:bool * string -> string p) (false:bool,"abc":string)

Fig. 11. Example of nested polymorphic functions.

constructor(s). These conditions are naturally met by the annotations produced by

a standard type-inferencer, provided that all recursive definitions are separated into

their strongly-connected components before inferencing.

As an (artificial) example of the algorithm’s operation, consider the code in fig-

ure 11, written in explicitly typed form. The computation proceeds roughly as follows

(ignoring the generation of empty map entries for non-polymorphic variables):

• The declaration of b is processed, yielding an instantiation map

I1 = {g 7→ (〈’c, ’d〉 7→ {〈bool, string〉}), p 7→ (〈’a〉 7→ {〈string〉})}
• The declaration of a is processed, yielding an instantiation map

I2 = {g 7→ (〈’c, ’d〉 7→ {〈int, bool〉}), p 7→ (〈’a〉 7→ {〈bool〉})}
• I2 is added to I1 to produce the overall map for the declarations of a and b

I3 =

{
g 7→ (〈’c, ’d〉 7→ {〈bool, string〉 , 〈int, bool〉}),
p 7→ (〈’a〉 7→ {〈bool〉 , 〈string〉})

}
• The let val v expression is processed, yielding (in several steps) the map

I4 =


f 7→ (〈’b〉 7→ {〈’c〉}),
h 7→ (〈’e〉 7→ {〈’c〉}),
p 7→ (〈’a〉 7→ {〈’c〉 , 〈’d〉})


• The body of the definition of h is processed, yielding the map

I5 = {f 7→ (〈’b〉 7→ {〈’d〉}), p 7→ (〈’a〉 7→ {〈’d〉})}
• The composition I4 [[h]] ◦ I5 is computed, yielding I5 unchanged.

• I5 is added to I4 to produce the overall map for the body of the definition of

g:

I6 =


f 7→ (〈’b〉 7→ {〈’c〉 , 〈’d〉}),
h 7→ (〈’e〉 7→ {〈’c〉}),
p 7→ (〈’a〉 7→ {〈’c〉 , 〈’d〉})


• The composition I3 [[g]] ◦ (I6

∣∣∣{f,p} ) is computed, yielding the map:

I7 =

{
f 7→ (〈’b〉 7→ {〈int〉 , 〈string〉 , 〈bool〉}),
p 7→ (〈’a〉 7→ {〈int〉 , 〈string〉 , 〈bool〉})

}
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• I7 is added to I6

∣∣∣{h} and then to I3 to produce the overall map for the

declarations of g, h, a, and b:

I8 =


g 7→ (〈’c, ’d〉 7→ {〈bool, string〉 , 〈int, bool〉}),
h 7→ (〈’e〉 7→ {〈’c〉}),
f 7→ (〈’b〉 7→ {〈int〉 , 〈string〉 , 〈bool〉}),
p 7→ (〈’a〉 7→ {〈int〉 , 〈string〉 , 〈bool〉})


• Processing the definitions of f and p will produce the same map I8.

I8 can now be used to guide the the specialization pass of the algorithm. Two

specialized copies are made of function g, corresponding to the two instantiations

for 〈’c, ’d〉. Note the importance of tracking the sequences of instantiations for

these type variables; if the instantiations of each variable were tracked separately,

there would be no way to distinguish the correct instantiations from the spurious

ones with ’c = bool,’d = bool and ’c = int, ’d = string. Within each copy

of g, a single specialized version is made of h, with ’e instantiated to the relevant

instance of ’c, namely int within the first copy of g and bool within the second.

Note that if the enumeration algorithm did not ‘freeze’ the instantiation map for h

at its point of definition, the final map would have the entry

h 7→ (〈’e〉 7→ {〈int〉 , 〈bool〉})
While this would correctly enumerate the versions of h that are required, it would

fail to indicate that only one instance is needed within each copy of g, nor say

which one is needed where. Finally, three specialized copies are made of p and f,

corresponding to the three instantiations for ’a and for ’b. We omit a detailed

description of the specialization pass, which is quite straightforward given the

existence of the instantiation map.

6.3 Discussion

In the worst case, the size of the monomorphic program produced by this algorithm

may be exponential in the size of the original polymorphic program. However, we

have not found code explosion to be a serious problem in practice, as most poly-

morphic functions tend to be small; this is probably because the more polymorphic

a function is, the fewer useful things it can do (Wadler, 1989)!

The idea of removing parametric polymorphism by specialization has received

much informal discussion, and a small experiment has been attempted for Gofer

(Jones, 1994), but we are not aware of any previous practical compiler based on

this approach. Analysis of benchmarks run on the Til compiler (Tarditi et al., 1996)

indicates that the compiler removes essentially all polymorphism as the result of

aggressive function inlining, thus offering independent evidence that specialization

need not lead to excessive code explosion. However, since Til does not guarantee

to produce a monomorphic program, it cannot take full advantage of having one

during later compilation stages, as our translator does.
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τ ::= K (primitive types)

| D (monomorphic algebraic types)

| (〈τ〉∗)→ τ (function types)

se ::= (k : K) (primitive constants)

| v (variables)

e ::= se (simple expressions)

| v(〈se〉,) (function applications)

| c(〈se〉,) (constructor applications)

| p(〈se〉,) (primitive applications)

| let decs in e (local declarations)

| case se of
〈
c(〈v〉,) => e

〉
| (destructuring)

| goto l(〈se〉,) (jumps to local labels)

vdec ::= val v:τ = e (variable declarations)

fdecs ::= fun
〈
v [inline] (〈v : τ〉,):τ = e

〉
and

(mutually recursive function declarations)

ldecs ::= label
〈
l(〈v : τ〉,):τ = e

〉
and
(mutually recursive jump point declarations)

decs ::= vdec (variable declarations)

| fdecs (function declarations)

| ldecs (jump-point declarations)

topdecs ::= vdec (top-level variable declarations)

| fdecs (top-level function declarations)

atdec ::= D [flat] = 〈c [of 〈τ〉∗]〉| (algebraic type declarations)

atdecs ::= datatype 〈atdec〉and (mutually recursive declarations)

export ::= type τ "name" (type exports)

| val v : τ "name" (value exports)

comp ::= export 〈export〉 〈atdecs〉 〈topdecs〉 (components)

Fig. 12. SIL syntax.

7 Sequentialization

RML has a rich collection of expression forms; our target 3GLs have severely limited

expressions. Also, even where there appears to be a direct correspondence between

expression forms in RML and a target language, evaluation order may differ. Thus,

the first step in translating RML is to simplify expressions and name all intermediate

results, at the same time explicitly sequentializing the computation in the intended

order. We call the resulting language SIL (Sequentialized Intermediate Language);

its syntax is specified in figure 12. Compared with RML, the most important
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fun doit (ps:plist) : plist =

let val whole_t : transform =

let fun comp (t1:transform,t2:transform) = compose(t1,t2)

in foldl0(comp,id,ts)

in let fun consapp (x:point,l:plist) =

let val p0 = apply(whole_t,x)

in PCons(p0,l)

in let val ps0 : plist = foldl1(consapp,PNil,ps)

in let fun cons (x:point,l:plist) = PCons(x,l)

in foldl1(cons,PNil,ps0)

Fig. 13. SIL translation of geometric example component (selection).

differences are that arguments to applications and discriminants in case expressions

must be simple, i.e. variables or constants, and there are no anonymous function

expressions. SIL’s type system is monomorphic, since any polymorphism has already

been removed at the RML level. This means that types can no longer mention

type variables, there are no more type schemes, and type annotations are dropped

wherever they have become redundant (e.g. on variable mentions); exports and

algebraic type declarations are otherwise identical to RML. Jump points (label and

goto) do not appear in the initial translations of RML code; their use is discussed

in section 11. As an example, figure 13 shows the SIL form of the doit functions

from the monomorphic version (figure 9) of our running example from section 2.

The transformation from RML to SIL essentially performs the naming and

sequentialization steps of a continuation-passing-style (CPS) transform (Steele, 1978;

Kranz et al., 1986; Appel, 1992), but without introducing full-scale continuations. We

omit the details of the transformation, which are fairly straightforward. The resulting

SIL code closely resembles other ‘almost-CPS’ forms that have been adopted in

recent functional language compilers (Lawall and Danvy, 1993; Flanagan et al.,

1993; Kelsey, 1995; Tarditi, 1996).

SIL adopts a relatively permissive approach to the location of let-bindings: it

permits the result of a case to be let-bound, unlike A-normal form (Flanagan

et al., 1993), and even permits the result of a let expression to be let-bound, unlike

both A-normal form and Til’s B-form (Tarditi, 1996). This extra flexibility makes

it easy to transform RML case expressions into SIL without duplicating code or

introducing continuation functions, and also keeps SIL closed under a larger class

of optimization transformations.

8 Optimization

SIL code is optimized by repeated application of rewrite rules that encode ‘partial-

evaluation style’ improvements. These include propagation of simple expressions

(constants and variables), simplification of case expressions over known values,8

8 This optimization includes selection of fields from records with known values as an
important special case.
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elimination of unused function and (pure) value bindings, elimination of unused

datatypes, hoisting out of let bindings (described below), and conservative function

inlining. A function application is inlined if

• it is the sole application of that function; or

• its body is ‘small’, i.e. a value, variable, or another application; or

• its body has the form of a case expression over an argument, the argument is

a known value, and the relevant arm of the case is ‘small’ (we call this case

splitting); or

• the programmer demands inlining via a source pragma on the function defini-

tion.

To guarantee termination of the inliner, a function is never inlined into its own body.

Our choice and implementation of optimizations was largely inspired by Appel and

Jim (1997). The optimizer does not perform speculative inlining. Optimization passes

are performed repeatedly until no change is observed or some fixed small number

of passes has been reached. The optimization passes are preceded by a single round

of eta-expansion to improve opportunities for inlining.

When a variable is let-bound to a case expression, its value is not known at

compile time, and so cannot be propagated. Hoisting case expressions out of lets

is an optimization-enabling transform that can increase the amount of information

available for constant propagation in each case arm. The general form of the

transformation is:
let val v = case e0 of

C1(〈w〉,) => e1

| C2(〈w〉,) => e2

| . . .

| Cn(〈w〉,) => en
in e

⇒
case e0 of

C1(〈w〉,) => let val v = e1 in e

| C2(〈w〉,) => let val v = e2 in e

| . . .

| Cn(〈w〉,) => let val v = en in e

It is primarily worth doing if e has the form f(v) and it is possible to perform case

splitting on f. In general, this is a dangerous transformation, since it duplicates the

code for e in each case arm, so it performed only when e is a ‘small’ expression. In

addition, lets are always hoisted out of lets, as this never causes code explosion,

and may help optimization by exposing more case hoisting opportunities.

The optimizations described above do not make essential use of type information,

but our system does perform some simple type-based global optimizations. All uses

of a ‘transparent’ datatype of the form datatype t = T of τ can be replaced by

direct uses of τ, and the datatype definition itself can then be removed. All uses of

a ‘unit’ datatype of the form datatype t = T in function or constructor argument

lists can be eliminated (even for escaping functions), and any remaining values of

type t can be replaced by the literal T. These forms of datatype quite often arise in

code generated by the higher-order removal process (see section 9).

Since RML has strict semantics, and templates may include impure operators, the

optimizer must guarantee not to duplicate, reorder, or eliminate calls to primitives

or to potentially nonterminating functions. In fact, none of the transformations

described above induce duplication or reordering, and only ‘pure’ expressions can
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be eliminated. Pure primitive operators are marked as such in the template defini-

tion; for simplicity, all user function calls are treated as impure. A more sophis-

ticated approach would be to perform an effects analysis on functions to increase

the number of eliminable expressions (e.g. (Talpin and Jouvelot, 1992; Tarditi,

1996)).

9 Removing higher-order functions

9.1 Concepts

Our target 3GLs do not directly support first-class nested functions: Ada83 does

not even support pointers to top-level functions, and ANSI C does not support

nested functions. We therefore must convert higher-order programs into equivalent

first-order programs without nested functions, i.e. perform closure conversion. For

simplicity, we wish to express the first-order programs in a strict subset of the

original language, as in ‘closure-passing style’ (Appel and Jim, 1989), where closures

are represented as ordinary records, and are constructed and accessed using ordinary

record operators. In particular, this would allow us to optimize closure manipulation

operations using ordinary record optimizations. However, we would also like the

closure-converted program to be well-typed according to the rules of the original

language – rules that should also be enforceable in C or Ada. The difficulty is that

two functions with the same type might well differ in the number and types of their

free variables, and hence have closure records of completely different (structural)

type.

Minamide, Morrisett and Harper (1996) have treated this problem, but their

solutions rely either on new language primitives for closure manipulation, which

complicate subsequent optimization, or on giving closures existential types, a sub-

stantial complication to the compiler’s type system. Neither solution leads to typable

C or Ada. Moreover, both solutions continue to make use of (top-level) function

pointers.

We take a different approach, which relies on having the whole monomorphic

program available for analysis and transformation. It derives from the interpretive

technique introduced by Reynolds (1972) and Warren (1982) and explored in typed

settings by Bell, Bellegarde and Hook (Bell, 1994; Bellegarde and Hook, 1994;

Bell et al., 1997). The key idea is to represent function closures as members of

a algebraic data type (i.e. discriminated union). There is one constructor for each

function definition in the program; its arguments are the function’s free variables.9 To

convert a program to first order, all higher-order operations on functions are replaced

by equivalent operations on closure values. Function definitions are lambda-lifted,

and their original definitions are replaced by closure constructor applications; calls

to ‘unknown’ (i.e. lambda-bound) functions are transformed into calls to a ‘dispatch’

function, passing a closure value as argument. The dispatch function examines the

9 We use a flat closure representation in this paper; more elaborate representations could be
handled in the same framework.
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Original code:

fun twice (f:int->int, i:int) : int = f(f i)

fun main (y:int,z:int) =

let fun g1 (x:int) : int = +(x,y)

in let fun g2 (x:int) : int = +(x,2)

in ...twice(g1,z)...twice(g2,z)...

After closure-converting g1 and g2:

datatype clos = G1 of int | G2 for type int->int

fun g1’ (x:int,y:int) : int = +(x,y) lambda-lifted functions

and g2’ (x:int) : int = +(x,2)

and dispatch (c:clos,i:int) : int = for type int->int

case c of

G1 y => g1’(i,y)

| G2 => g2’ i

fun twice (f:clos, i:int) : int = dispatch(f,dispatch(f,i))

fun main (y:int,z:int) =

let val g1 : clos = G1 y closure values

in let val g2 : clos = G2

in ...twice(g1,z)...twice(g2,z)...

Fig. 14. Simple example of typed closure conversion. The converted code is a slightly

optimized version of the output produced by the formal algorithm in section 9.2.

closure tag and passes control to the appropriate (lambda-lifted) function. As usual,

calls to ‘known’ (i.e. let-bound) functions need not be converted in this way – they

are simply changed to invoke the lambda-lifted version; if all calls to a function

are known, the construction of a closure datatype value will be removed altogether

by the standard dead-code elimination optimization. Figure 14 provides a simple

example involving the higher-order function twice.

In a strongly-typed setting, a single closure datatype and dispatch function typi-

cally do not suffice: there must be a pair of them for each distinct arrow type in the

program.10 The translation algorithm must choose the correct dispatch function at

each site by inspecting the type of the (original) function. This effect is illustrated

by the code in figure 15, which shows the closure-converted version of our running

example.

In contrast with higher-order removal techniques based on code specializa-

tion (Chin and Darlington, 1996), our algorithm can handle programs in which

the number of generated closures cannot be statically bounded. Figure 16 gives an

example, based on the well-known encoding of an integer set as a characteristic

10 It is not possible to build a single, polymorphic dispatch function using the ordinary
typing rules for case.
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datatype tclos = Ccomp for type transform*transform->transform

datatype pclos = Ccons | Cconsapp of transform

for type point*plist->plist

fun comp’ (t1:transform,t2:transform) : transform = compose(t1,t2)

and tdispatch (c:tclos,t1:transform,t2:transform) : transform =

case c of for type transform*transform->transform

Ccomp => comp’(t1,t2)

and consapp’ (x:point,l:plist,whole_t:transform) : plist =

let val p0 = apply(whole_t,x)

in PCons(p0,l)

and cons’ (x:point,l:plist) : plist = PCons(x,l)

and pdispatch (c:pclos,x:point,l:plist) : plist =

case c of for type point*plist->plist

Ccons => cons’(x,l)

| Cconsapp (whole_t) => consapp’ (x,l,whole_t)

fun foldl0 (c:tclos,n:transform,l:tlist) : transform =

case l of

TNil => n

| TCons(x,r) =>

let val n’ : transform = tdispatch(c,x,n)

in foldl0(c,n’,r)

fun foldl1 (c:pclos,n:plist,l:plist) : plist =

. . .same except with val n’ : plist = pdispatch(c,x,n). . .

fun doit’ (ps:plist,id:transform,ts:tlist) : plist =

let val comp : tclos = Ccomp

in let val whole_t : transform = foldl0(comp,id,ts)

in let val consapp : pclos = Cconsapp(whole_t)

in let val ps0 : plist = foldl1(consapp,PNil,ps)

in let val cons : pclos = Ccons

in foldl1(cons,PNil,ps0)

val ts : tlist = TCons(...)

fun doit (ps:plist) = doit’(ps,id,ts)

Fig. 15. Geometric example component after closure-conversion. This is a slightly optimized

version of the output produced by the formal algorithm in section 9.2.

function of type int->bool. Executing upto(n) builds the set {1, 2, 3, . . . , n}, repre-

sented by n+ 1 int->bool closures, each (except the last) containing another such

closure as a free variable. This pattern is reflected in the fact that type clos is

recursive; in fact, it is isomorphic to the standard list datatype one might use to

represent sets non-functionally!
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Original code:

fun empty (x:int) : bool = false

fun member (s:int->bool,x:int) : bool = s x

fun insert (s:int->bool,x:int) : int->bool =

let fun s1 y = case =(x,y) of true => true | false => s x

in s1

fun upto (n:int) : int->bool =

case =(n,0) of true => empty | false => insert(upto(-(n,1),n))

fun main (n:int) : bool = member(upto n,100)

After closure-converting the int->bool functions:

datatype clos = E | S1 of int * clos for type int->bool

fun empty’ (x:int) : bool = false lambda-lifted functions

and s1’ (y:int,x:int,s:clos) =

case = (x,y) of true => true | false => dispatch(s,x)

and dispatch(c:clos,i:int) : bool = for type int->bool

case c of

E => empty’ i

| S1 (x,s) => s1’(i,x,s)

val empty : clos = E closure value

fun member (s:clos,x:int) : bool = dispatch(s,x)

fun insert (s:clos,x:int) : clos =

let val s1 : clos = S1(x,s) closure value

in s1

fun upto (n:int) : clos = . . . unchanged . . .

fun main (n:int) : bool = . . . unchanged . . .

Fig. 16. Closure conversion of code for sets represented by characteristic functions. To improve

readability, RML concrete syntax is used rather than SIL. The converted code is a slightly

optimized version of the output produced by the formal algorithm in section 9.2.

9.2 Details of the algorithm

The core of the algorithm is a syntax-directed translation of terms to terms, under

which

• each distinct arrow type is converted to a unique corresponding closure

datatype;

• each function definition is ‘lambda-lifted’ by augmenting its argument list with

new arguments representing the function’s free variables;

• these augmented functions are renamed and their definitions are lifted to

top-level;

• each original function definition in the body of the program is replaced by a

binding to an application of a freshly chosen closure constructor to the free

variables;

• variables bound to function values become variables bound to closure values;
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• calls to unknown functions become calls to the appropriate dispatch function,

passing the closure datatype value as an extra argument;
• calls to known functions become calls to the corresponding lifted function,

passing the free variables as extra arguments.

Along the way, the conversion keeps track of the new closure datatypes and data

constructors, which are created incrementally; when all top-level declarations in the

component have been converted, this information is used to construct the definitions

of the closure datatypes and the corresponding dispatch functions. Finally, these

definitions are combined with the lifted function definitions and the converted terms

to form the fully converted component definition.

As described here, the algorithm redefines every function-valued identifier as a

closure and changes every arrow type to a closure type. But the signatures of

exported values must not be changed; this implies that the argument and result

types of exported functions must not involve arrow types (as noted in section 3),

and that exported functions themselves must not be closure converted. In practice,

the system handles the latter problem by creating special stub versions of exported

functions, with unchanged signatures, but we omit this detail from the formal

presentation here, which is therefore correct only for programs that do not export

functions. To further simplify the presentation, we assume that every recursive use of

a function name appears in the operator position of an application; this restriction

is easily met by eta-expanding any other recursive uses before running the algorithm.

A detailed specification of the term conversion algorithm is given in figure 17. The

translation of type τ is denoted τ. T S translates top-level declarations, E translates

expressions, F translates functions, and FS is an auxiliary function for translating

recursive sets of functions. Each of these translations is explicitly parameterized

by an environment k that records those identifiers in the current scope that refer

to known functions; where defined, k [[v]] returns the sequence of free variables of

v, which are guaranteed to be in the current scope as well. F and FS are also

parameterized by the function’s sequence of free variables. A translates mutually

recursive sets of algebraic type declarations.

In addition to producing result terms, these translations use side-effects to build

important auxiliary structures:

i. a mapping Lift from source function names to corresponding lifted function

names;
ii. a bijective mapping ClosType from source arrow types to corresponding

closure datatype names;
iii. a mapping Dispatch from closure datatype names to corresponding dispatch

function names;
iv. a set Lifted of lifted function definitions; and
v. a mapping ClosData from closure datatype names tc to sets of tuples

(dc, f, 〈fv : τ〉)
where dc is a closure data constructor of tc, f is the corresponding (lifted)

function name, and 〈fv : τ〉 is the sequence of the corresponding function’s

free variables and their types.
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K = K

D = D

(〈τ〉∗)→ τ0 = ClosType
[[
(〈τ〉∗)→ τ0

]]
Ek [[se]] = se

Ek
[[
v(〈se〉,)

]]
= if v ∈ Dom(k)

then let 〈fv〉 = k [[v]] in Lift[[v]](〈se〉,,〈fv〉,)
else (Dispatch ◦ ClosType ◦ Typeof ) [[v]](v,〈se〉,)

Ek
[[
c(〈se〉,)

]]
= c(〈se〉,)

Ek
[[
p(〈se〉,)

]]
= p(〈se〉,)

Ek [[let val v : τ = e1 in e2]] = let val v : τ = Ek [[e1]] in Ek [[e2]]

Ek
[[
let fun 〈fdec〉and in e

]]
= let 〈fv〉 = FVk

[[
fun 〈fdec〉and

]]
in

let k′ = k 〈+ (FunName[[fdec]] 7→ 〈fv〉)〉 in

FSk′ (〈fv〉)
[[〈fdec〉]] [[e]]

Ek
[[
case se of

〈
c(〈v〉,) => e

〉
|

]]
= case se of

〈
c(〈v〉,) => Ek [[e]]

〉
|

FSk(〈fv〉)
[[

fdec 〈fdec〉]] [[e]] = let F k(〈fv〉) [[fdec]] in FSk(〈fv〉)
[[〈fdec〉]] [[e]]

FSk(〈fv〉) [[ ]] [[e]] = Ek [[e]]

F k(〈fv〉)
[[
v0 inl (〈v : τ〉,) : τ0 = e

]]
=

Lifted := Lifted +
(

Lift[[v0]] inl (〈v : τ〉,,
〈
fv : Typeof [[fv]]

〉
,
):τ0 = Ek [[e]]

)
;

let tc = (ClosType ◦Typeof ) [[v0]] in

let c = newDataCon() in

ClosData := ClosData +
(
tc 7→ (

c,Lift[[v0]],
〈
fv : Typeof [[fv]]

〉))
;

val v0 : tc = c(〈fv〉,)

A
[[
datatype

〈
D flt = 〈c [of 〈τ〉∗]〉|

〉
and

]]
=
〈
D flt = 〈c [of 〈τ〉∗]〉|

〉
T Sk [[val v : τ = e topdecs]] = val v : τ = Ek [[e]] T Sk [[topdecs]]

T Sk
[[
fun 〈fdec〉and topdecs

]]
= let 〈fv〉 = FVk

[[
fun 〈fdec〉and

]]
in

let k′ = k 〈+ (FunName[[fdec]] 7→ 〈fv〉)〉 in

〈F k′ (〈fv〉) [[fdec]]〉 T Sk [[topdecs]]

T Sk [[ ]] =

Fig. 17. Closure conversion of SIL terms.

The mappings Lift, ClosType, and Dispatch are treated as self-memoizing functions:

they generate and return a fresh name when called with a given argument for the first

time; subsequent calls with that argument return the same result as the first call. We

also assume auxiliary functions NewDataCon(), which returns a fresh closure data

constructor name each time it is called; Typeof [[e]], which reconstructs the (original)

type of any source term e; and FunName[[f]], which extracts the function name

from a declaration f. The Lifted set and ClosData sets are extended explicitly as a

side-effect of the F translation. When the term translation is complete, these sets are

used to generate the closure datatype definitions and dispatch functions, as described

below. Note that the order in which side-effects are executed to build these structures
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FVk
[[
fun 〈fdec〉and

]]
=

⋃ 〈FVk [[fdec]]〉
FVk

[[
v0 inl (〈v : τ〉,) : τ0 = e

]]
= FVk [[e]]−⋃ 〈{v}〉 − {v0}

FVk [[(k : K)]] = ∅
FVk [[v]] = {v}

FVk
[[
v(〈se〉,)

]]
=

⋃ 〈FVk [[se]]〉
∪(if v ∈ Dom(k) then {k [[v]]} else {v})

FVk
[[
c(〈se〉,)

]]
=

⋃ 〈FVk [[se]]〉
FVk

[[
p(〈se〉,)

]]
=

⋃ 〈FVk [[se]]〉
FVk [[let val v : τ = e1 in e2]] = FVk [[e1]] ∪ (FVk [[e2]]− {v})
FVk

[[
let fun 〈fdec〉and in e

]]
= FVk

[[
fun 〈fdec〉and

]]
∪(FVk [[e]]− 〈FunName[[fdec]]〉)

FVk
[[
case se of 〈c(〈v〉) => e〉]] = FVk [[se]] ∪ (⋃〈FVk [[e]]−⋃ 〈{v}〉〉)

Fig. 18. Calculation of free variables. The notation
⋃ 〈X〉 denotes the set union of all the

sets X resulting from a calculation on members of a sequence.

does not alter the results except for choice of names, so the translation functions in

figure 17 do not have to be read with any particular imperative evaluation order

in mind. For simplicity, the figure omits certain variable renamings required to

maintain identifier uniqueness.

The auxiliary function FVk [[e]], specified in figure 18, computes the free variables

of expression e assuming the initial known function environment k. As specified, FV
returns a set; we assume that an implementation will produce the members of the

set in some deterministic order, which then becomes the canonical sequence ordering

for the free variables wherever they are used. The free variable calculation is slightly

tricky because it must produce the free variables of the translated term, given the

original term as input; yet, the free variables must be calculated before the translation

can occur! To break the circularity, we observe that the free variables sets of source

and translated terms can only differ due to the replacement of a known function

application f(〈v〉,) by the corresponding lifted application Lift[[f]](〈v〉,,〈fv〉,), where

〈fv〉 are the free variables of f. In this case the target free variable set should not

include f, but should include the 〈fv〉.11

The top-level conversion function C for components is shown in figure 19. This

function must be read imperatively, since the construction of the closure datatypes

and dispatch functions and the translation of the export list rely on the auxiliary

data structures built as a side-effect of the T S and AS translations. A datatype

declaration and dispatch function are built for each closure datatype invented by

ClosType, i.e. corresponding to each arrow type in the source program. Note that it

is possible for a closure datatype to end up with no constructors; the corresponding

dispatch function body is a case with no arms and hence no well-defined type.

These dispatch functions are never actually applied; in most cases, the dead-code

eliminator will remove them.

11 We discovered this formulation of the free variable calculation in Xavier Leroy’s Gallium
compiler (Leroy, 1992).

https://doi.org/10.1017/S0956796898003086 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796898003086


398 A. Tolmach and D. P. Oliva

C
[[
export 〈export〉 〈atdecs〉 〈topdecs〉]] =

( Lift := ∅; ClosType := ∅; Dispatch := ∅;
Lifted := ∅; ClosData := ∅;
let
〈
atdec′

〉
= Flatten 〈A [[atdecs]]〉 in

let
〈
topdecs′

〉
= T S∅

[[〈topdecs〉]] in

(* at this point all mappings have been built *)

closure atdecs := ∅; dispatch funs := ∅;
for all tc ∈ Codom(ClosType) do

closure atdecs := closure atdecs +

tc = 〈dc of 〈τ〉∗〉|;
dispatch funs := dispatch funs +

Dispatch[[tc]] (v0 : tc,〈v : µ〉,) : µ0 =

case v0 of〈
dc(〈fv : τ〉,) => f(〈v〉,,〈fv〉,)

〉
|

where 〈(dc, f, 〈fv : τ〉)〉 = ClosData(tc)

and 〈µ〉∗ → µ0 = ClosType−1(tc)

and v0, 〈v〉 are fresh

done;

export 〈export〉
datatype

〈
atdec′

〉
and and 〈a | a ∈ closure atdecs〉and

fun 〈f | f ∈ dispatch funs〉and and 〈f | f ∈ Lifted〉and〈
topdecs′

〉
)

Fig. 19. Closure conversion of SIL components. The notation 〈s | s ∈ S〉 should be read as a

sequence comprehension, i.e. the sequence of s values drawn from set S . Auxiliary function

Flatten converts a sequence of sequences into a single sequence.

Freshly-created closure datatype declarations may refer to the converted ver-

sions of source program datatype declarations (since free variables may belong to

datatypes) and vice-versa (since source datatypes may include fields of arrow type,

which are converted to closure types). Therefore, the converted component has

a single mutually recursive set of algebraic type declarations including both clo-

sure datatypes and converted source datatypes. For similar reasons, the converted

component groups all the freshly-created closure dispatch functions and the lifted

versions of the source program functions into a single mutually recursive declaration,

followed by the translations of the original top-level declarations. Identifier unique-

ness guarantees that it is harmless to declare any set of declarations as mutually

recursive; a post-processing step is used to separate both datatypes and functions

into their true mutually-recursive components.

9.3 Discussion

Because of the need for per-type dispatch functions, our algorithm depends critically

on having monomorphic source code, but we believe a similar algorithm could be

given for polymorphic programs with the addition of a typecase construct (Mor-

risett, 1995). Bell, Bellegarde and Hook (Bell et al., 1997) have specified a more

elaborate algorithm for polymorphic source programs that performs type specializa-
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tion and higher-order removal simultaneously, and may leave parts of the program

polymorphic where that is possible. Their approach is thus more powerful, but it is

also significantly more complicated, and has not been implemented.

Our algorithm also depends on having the full source program available; this

restriction can be lifted if we permit extensible datatype declarations, i.e., datatypes

for which the data constructor declarations can be scattered throughout the program,

even in separate compilation units (Tolmach, 1997). Supporting such datatypes

requires only a small extension to the type system (Standard ML treats the built-in

exception type constructor in this way), but requires a somewhat more expensive

implementation of case, and precludes some of the optimizations discussed in the

next section.

10 Optimization of first-order code

After first-order conversion and a pass back through the optimizer, a typical call to

an unknown function has become a known call (to a dispatch function) followed

by a case dispatch. This sequence is probably less efficient than the single indirect

jump that would be performed by a conventionally closure-converted program.12

However, there are many potential performance advantages to be obtained from

the ‘interpreted’ style of the converted program, deriving from the fact that it is an

explicitly first-order program.

10.1 Uncurrying

The general-purpose optimizations that inline ‘small’ functions and perform ‘case

splitting’ also work together on the explicit closure form to mimic the effect of a

standard uncurrying transformation, with no extra implementation effort. Consider

a curried function

f (x1:t1) (x2:t2) : t = e

expressed in SIL as:

fun f (x1:t1) : t2 -> t =

let fun f2 (x2 : t2) : t = e

in f2

A fully-applied instance ((f e1) e2) is expressed in SIL as:

let val g1 : t2 -> t = f e1

in g1 e2

12 In C, which supports indirect jumps to top-level functions, our representation could be
converted back to a conventional closure representation as a final compilation step, by
using the code pointers of the lifted functions as the constructor tags for the closure type.
(This works because each closure value is cased over only once, by the relevant dispatch
function.) Of course, the C code would require unsafe casts.
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This code is much less efficient than an application of an arity-2 function would

be, due to the cost of building and entering an intermediate closure. An uncurrying

transformation reduces the cost by introducing an arity-2 function f’ and redefining

f to call f’ (note that e is not duplicated).

fun f’ (x1:t1,x2:t2) : t = e

fun f (x1:t1) : t2->t =

let fun f2 (x2:t2) : t = f’(x1:t1,x2:t2)

in f2

Now fully-applied instances of f are altered to call f’ directly instead; partially-

applied or escaping instances of f are not changed. A similar transformation is

desirable for curried functions of more than two arguments, whenever they are

called with two or more actuals.

Uncurrying is ordinarily performed prior to closure conversion. Appel (1992)

noted that uncurrying can be achieved simply by introducing the definition of f’, as

above, and relying on standard inlining heuristics to inline f and f2 (whose bodies

are small), yielding a direct call to f’. Our observation is that closure conversion

already performs the same transformation that Appel suggests, introducing a lifted

version of f2. By applying a round of our standard optimizations after closure

conversion, we get uncurrying ‘for free’. Here is the result of closure conversion on

the example above:

datatype clos = Cf2 of t1 | ...

fun f’ (x1:t1) : clos = Cf2(x1)

fun dispatch (c:clos,x2:t2) : t =

case c of

Cf2 x1 => f2’(x2,x1)

| ...

and f2’ (x2:t2,x1:t1) : t = e

let val g1 : clos = f’(e1)

in dispatch(g1,e2)

Now, the standard optimizer proceeds as follows: it inlines the call f’(e1), since the

body of the function is ‘small’, which yields:

let val g1 : clos = Cf2(e1)

in dispatch(g1,e2)

Now the call to dispatch can be ‘case split’, resulting in the inlining of the dispatch

and yielding the direct n-ary call f2’(e2,e1)! Note that the success of this inlining

strategy doesn’t depend on the number of cases in this dispatch function, which might

be arbitrarily large. Nor does it depend on a sizing heuristic; even our conservative

inliner will always judge the relevant function bodies to be small enough. It also

works correctly for functions of more than two arguments.
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10.2 Implicit type-based closure analysis

Higher-order functions complicate compilers by making flow analysis much more

difficult: data flow and control flow become interdependent, so analyses from

the conventional 3GL compiler world won’t work without modification. Many

partial-evaluation-based optimizations, such as value propagation and dead-code

elimination, require the compiler to determine an (approximation of) the set of

lambda-expressions that might be invoked at each application site in the program.

Existing implementations of this so-called closure analysis use abstract interpreta-

tion involving a fixpoint calculation (Sestoft, 1988; Shivers, 1991), a constraint-based

mechanism (Bondorf and Jørgensen, 1993; Palsberg, 1995), or region inference (Koch

and Olesen, 1996). Surprisingly, no existing system appears to take advantage of

the fact that simple typing provides a good first cut at the analysis ‘for free’. Also,

existing closure analysis algorithms do not express their results within the language

itself, and so cannot feed subsequent general-purpose optimizations.

Our closure conversion algorithm can be seen as the encoding of a simple type-

based closure analysis. Type inference tags each application site with a type, and

the only lambda-expressions that can be invoked at that site are those whose type

matches the annotation. The set of such lambdas is made explicit in the dispatch

function called at that site and in the corresponding closure datatype. Standard

partial-evaluation style optimizations such as constant propagation and dead code

elimination, as described in section 8, work directly on this representation. In

addition, there are potential optimization payoffs if the number of data constructors

for a particular closure type is small. A singleton set of constructors is ideal: the

optimizer knows precisely which function will be called, and can arrange to call it

directly or (if it small enough) inline it (Jagannathan and Wright, 1996). Inlining is

also possible (with some risk of code blow-up) for sets with just a few constructors,

although we have not implemented this.

If a closure datatype must be built, the compiler can use the fact that it knows

all the constructors to choose an optimized representation. The standard datatype

representation tricks (Cardelli, 1984; Appel, 1992) will avoid building heap records

for closure constructors with no free variables. It is also useful to support ‘flat’ (i.e.

unboxed) variant types (see section 12.2) to avoid heap allocation for non-recursive

constructors that have just a few free variables.

As an example, figure 20 shows the effect of optimizing the code in figure 15.

Function pdispatch, having already absorbed consapp’ and cons’, has been inlined

into foldl1. Closure datatype pclos can be represented ‘flat’ and hence need not

be heap-allocated. Datatype tclosure has been recognized as a ‘unit’ type, and its

definition and uses have been removed altogether, allowing the body of tdispatch

to be simplified into a call to comp’ and thence into a call to compose, before being

inlined into foldl0. Finally, function doit’ has been inlined into doit.

The payoff from inlining and closure representation optimizations depends upon

the precision of the underlying type-based closure analysis, and this in turn de-

pends on source program types. To the extent that these types represent structural

distinctions among values, they are essentially fixed by the programmer’s choice of
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datatype pclos flat = Ccons | Cconsapp of transform

fun foldl0 (n:transform,l:tlist) : transform =

case l of

TNil => n

| TCons(x,r) =>

let val n’ : transform = compose(x,n)

in foldl0(n’,r)

fun foldl1 (c:pclos,n:plist,l:plist) : plist =

case l of

PNil => n

| PCons(x,r) =>

case c of

Ccons =>

let val n’ : plist = Cons(x,n)

in foldl1(c,n’,r)

| Cconsapp(whole_t) =>

let val p0 : point = apply(whole_t,x)

in let val n’ : plist = Cons(p0,n)

in foldl1(c,n’,r)

val ts : tlist = TCons(...)

fun doit (ps:plist) : plist =

let val whole_t : transform = foldl0(id,ts)

in let val consapp : pclos = Cconsapp(whole_t)

in let val ps0 : plist = foldl1(consapp,PNil,ps)

in foldl1(Ccons,PNil,ps0)

Fig. 20. Optimized first-order code for geometric example component.

data structures and algorithms. However, source languages that support a name-

equivalence model for types allow programmers to distinguish between different uses

of structurally equivalent types. In RML (as in Standard ML), for example, this can

be done by using ‘transparent’ datatype declarations, e.g.

datatype fahrenheit = F of int

datatype centigrade = C of int

Ordinarily, programmers do this in order to make their program text clearer and

to obtain help from the compiler’s type-checker in detecting logical errors. For

example, lambda-bound functions of type fahrenheit->fahrenheit can be reliably

distinguished from those of type centigrade->centigrade, etc., reducing the risk

of accidentally confusing the two kinds of quantities. Under our closure conversion

scheme, these two functions will go into distinct closure datatypes, each having fewer

constructors than would a datatype for their common structural type int->int, and

hence possibly offering more optimization opportunities at their call sites. Thus users

have a further motive for making fine typing distinctions: they may thereby enable

better optimization, more efficient closure representations, and better performance!
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10.3 Explicit closure analysis

The translator can also perform its own forms of flow analysis explicitly, and record

the results in the form of a more specialized typing, which the closure converter will

take into account when collecting constructors into closure datatypes, thus perhaps

producing a larger number of datatypes each containing fewer constructors. We have

built one such analyzer, structured as a variant of type inferencing. Beginning with a

copy of the original SIL program in which every expression is annotated with an ex-

plicit (monomorphic) type, the analyzer tags each occurrence of an arrow type (on a

fn expression or a variable) with a unique integer. It then performs a standard type-

checking traversal of the program, with one adjustment: whenever the type-checker

unifies two arrow types, the integer tags on these types are placed in the same equiva-

lence class. In particular, this guarantees that if a fn expression (l : τ1→iτ2) is among

those that might possibly be applied at an application (a : τ1→jτ2)(b : τ1), then the

tags i and j are necessarily in the same equivalence class. On the other hand, arrow

tags are not placed in the same equivalence class merely because their argument and

result types match. Thus the classes are a refinement on ordinary types. This analysis

is simple, given that the typed intermediate form in already in hand, and it is almost

linear (its complexity is dominated by the union-find algorithm). It produces essen-

tially the same analysis as the constraint-based approach described by Bondorf and

Jørgensen (1993) and further analyzed by Palsberg (1995). Koch and Olesen (1996)

have implemented a closure analysis for the ML Kit compiler based on (potentially

polymorphic) region annotations (Tofte and Talpin, 1997); functions allocated to the

same region are placed in the same closure-analysis equivalence class. Our tag unifi-

cation method closely resembles region inference for monomorphic programs (Baker,

1990; Tofte and Talpin, 1997), although we developed it independently; nothing in

our scheme corresponds to the ML Kit’s polymorphic region inference, however.

An important point about our framework is that the result of an automated

analysis like this can be expressed directly in SIL, and used as the basis of a (finer-

grained) closure conversion. This is done by rewriting the SIL program. For each

equivalence class τ1→iτ2, the analyser simply invents a new unary datatype Di = Ci

of τ2 and replaces all instances of τ1→iτ2 by τ1 → Di, adding the necessary coercions

to the program. These amount to a Ci construction around the body of each function

of this type and a case on the result of each application of such a function. The

resulting program is fed directly to the ordinary closure converter. The transparent

Di types are cleaned from the resulting first-order program by the standard optimizer.

As future work, we plan to apply conventional (FORTRAN-world) optimizers

to our closure-converted code, particularly to take advantage of well-developed

dataflow frameworks that don’t rely on inlining to propagate information.

11 Eliminating tail calls

Function calls are generally expensive in standard implementations of our target

3GLs.13 So it is very desirable to remove tail calls in favor of jumps, especially

13 Deeply recursive nests of calls are particularly expensive on SPARC processors when
register windows are used (as they are by most 3GL compilers).
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fun foldl0 (n:transform,l:tlist) : transform =

let label jp0 (n0:transform,l0:tlist) : transform =

case l0 of

TNil => n0

| TCons(x,r) =>

let val n’ : transform = compose(x,n0)

in goto jp0(n’,r)

in goto jp0(n,l)

. . .

fun doit(ps:plist) : plist =

let val whole_t = foldl0(id,ts)

in . . .

Fig. 21. Insertion of jump points into geometric example code.

when such calls are recursive. Tail calls are frequent in SIL, both in user functions

derived from the original RML code, and in the dispatch functions generated by

higher-order function removal.

To make it possible to express calls as jumps, SIL includes a facility for defining

labeled jump points and corresponding gotos within a function (Kelsey, 1995). Jump

points are declared similarly to let-bound functions, with a label name, formal

parameters, defining expression, and body; gotos are similar to function applications,

with a target jump point label and actual parameters. However:

• goto expressions can only appear in tail position;

• jump point labels can only be mentioned as the targets of gotos (i.e. they are

not first class values); and

• a goto to a particular jump point may appear recursively inside the jump

point definition, or within the immediate body, but not within any function

declaration nested inside the body.

Hence, when SIL is translated into a target 3GL, SIL jump point labels can become

ordinary labels, their parameters become ordinary variable declarations scoped at

the function level, and a SIL goto translates into a set of assignments to the

parameter variables followed by an ordinary local goto.

When can a tail-call be turned into a goto? A simple recursive tail call from a

function to itself is easy: a jump point is inserted at the top of the function body

and the recursive tail call is changed to a goto; non-recursive and non-tail calls are

unchanged. As an example, figure 21 shows how a jump point is introduced at the

top of foldl0 in the code of figure 20.

The same approach can be extended to handle tail-calls among mutually-recursive

functions, though at a significantly increased cost. In order to make the nested labels

have the proper scoping, the functions must be combined into a single function with

simulated multiple entry points. A jump point is established inside the combined

functions for each of the original functions, and the combined function gets an
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extra discriminant argument used to dispatch control to the appropriate label. The

discriminant is encoded as a datatype, in a manner very similar to the closure

datatypes introduced during higher-order function removal. For example:

let fun f (x:t1) = ... g z

and g (y:t2) = ... f w ... f q

in g r

becomes

datatype D flat = F of t1 | G of t2

let fun f_or_g (d:D) =

let label f (x:t1) = ... goto g z

and g (y:t2) = ... f_or_g(F w) ... goto f q

in case d of

F x’ => goto f x’

| G y’ => goto g y’

in f_or_g(G r)

Under this transformation, a non-tail call to one of the original functions requires

constructing a discriminant datatype value, passing it to the combined function,

and performing an immediate case dispatch on it. Fortunately, the added datatype

can always sensibly be declared flat, since it cannot be recursive, and its values

are always consumed immediately at the top of the combined function and never

escape. In most target 3GL compilers, the net effect is to push the datatype tag and

parameters (i.e. the original functions’ arguments) on the stack. In principle, good

compilers could pass them in registers. Still, this transformation is costly in code

size and execution time (for non-tail calls), so it is performed only if there is at least

one tail-recursive call in the set of definitions. But it is well worth including in our

repertoire, because mutual tail-recursion between dispatch functions and the lifted

functions they invoke is quite common.

12 Generating C or Ada code

The translation of first-order, optimized SIL code into our target 3GLs is fairly

straightforward, so we give only a brief overview here. To ease re-targeting to

new 3GLs, the translation is mediated by a common imperative intermediate form

called MIL. A MIL component is a sequence of algebraic type declarations, value

definitions, and function definitions. The translations to MIL and thence to Ada or

C maintain the top-level structure of the SIL code.

12.1 MIL code

The body of each MIL function is a block, which consists of local (mutable)

variable declarations, a labeled set of nested sub-blocks, and an imperative statement

sequence. A statement sequence consists of zero or more assignment statements

(described below) followed by one of: an (unlabeled) sub-block, a case statement

(whose arms are blocks), a goto to a label (in this block or an enclosing one), or

an explicit function return. MIL blocks are produced for each SIL function body,
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let-binding, and case arm, and at several other points where it is convenient to use

temporary variables. Each MIL block is translated directly to a {}-delimited block

in C or a DECLARE. . .BEGIN. . .END block in Ada.

Assignment statements update variables declared in their block or in an enclosing

one. The right-hand side of an assignment is restricted to be a variable, a literal

constant, or an application; applications apply a primitive operator, constructor

or user-defined function to variables or constants. In particular, template-defined

primitive operators appear only on the right-hand sides of assignments, and only

with simple variable or constant arguments. MIL assignments are translated directly

into C or Ada assignments.

12.2 Algebraic type representation

MIL algebraic type declarations extend SIL declarations with representation in-

formation. Careful choice of representations is quite important for achieving good

performance in target code. Any algebraic type can be represented as a heap-

allocated (‘boxed’), tagged variant record, with each n-ary data constructor in the

type corresponding to a tagged variant with n fields, and such types can be defined

in a straightforward manner in Ada and C. Under this approach, all type representa-

tions have uniform size (one word), which is important for systems with polymorphic

target code. More efficient representations that maintain the uniform size require-

ment are well-known; our system uses all the standard tricks (Appel, 1992; Cardelli,

1984) except those that require casting. But since our system generates monomorphic

code, we need not require that all types have uniform size. Any non-recursive type

whose values occupy a sufficiently small space can be represented flat (or ‘unboxed’),

i.e. manipulated directly by value rather than being heap-allocated and manipulated

by reference.

The use of unboxed records carries both benefits and costs. The major benefit

is reducing the use of the heap, with consequent reductions in allocation, garbage

collection, and data access costs. On the other hand, unboxed records are more

expensive to move around than boxed ones, as each move requires that the entire

contents of the record be copied. Thus, automatic use of the unboxed representation

should be restricted to fairly small records; we make the threshold size a tunable

parameter of the translator. Users can also force a datatype to be held unboxed by

marking it as flat in the source program.

Unlike other functional language compilers known to us, our translator supports

unboxed representations even for variant records. These are particularly useful for

avoiding heap-allocation of small closures. Of course, unboxed values always occupy

the space needed for the largest possible variant, and hence waste space (and copying

time) for smaller variants, so it is again important that the largest variant not be

too large.

Both Ada and ANSI C support manipulation of unboxed record values, though

not as efficiently as we would like. One potential advantage of using unboxed values

is that they need not, in principle, stored in memory at all; they can often be

profitably spread over registers (at least on machines that have lots of registers).
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Unfortunately, our target 3GL compilers are generally reluctant to handle unboxed

records this way; in particular, they insist on passing and returning unboxed records

on the stack. We cannot improve on this without direct access to machine code.

Even so, choosing unboxed representations offers measurable improvements in the

performance of some benchmarks, as discussed in section 13.

12.3 Code generation

We have used the gcc compiler for ANSI C compilation and the Sun Ada compiler

(versions 1.1 and 3.0) for Ada83 compilation. We rely on the 3GL compilers to do

several important tasks, including register allocation and copy propagation, peephole

optimization of jumps, and generation of good code for case statements. In practice,

the two compilers we use vary considerably in the quality of their code, with gcc

generally doing a better job, especially on copy propagation.

In a few cases, the semantics of the target language cause subtle performance

problems. For example, in Ada83 a local variable slated to contain a variant record

must be initialized with a default value, even if it is immediately overwritten by an

assignment; these initializations make function entry much more expensive than the

simple stack pointer adjustment one might expect.

We have also had to deal with a number of complications arising from arbitrary

limitations in the Sun Ada compiler. For example, there is a hard internal limit

on the depth of syntactically nested blocks; this has required us to perform a

transformation on MIL function bodies that lifts all nested blocks to the top of the

function. Unfortunately, this transformation broadens the syntactic scope of local

variables and thus substantially increases the stress on the Ada compiler’s register

allocator.

13 Performance benchmarks

Simple benchmark results indicate that our compiler generates code that is quite

competitive in quality with the well-established Standard ML of New Jersey com-

piler. We also measure the effects of using more refined closure analysis and of using

unboxed closure representations. A summary of the benchmark results is given in

Table 1. life is an implementation by Reade (1989) of Conway’s Game of Life

making makes heavy use of higher-order functions; the inner loop processes a list

of pairs of integers which we mark as flat. fft is an implementation of the Fast

Fourier Transform due to Xavier Leroy; it is based on a template that supports

simple operations on arrays of reals. interpd and interpc are lambda-calculus

interpreters evaluating the factorial function; the former is in direct style and the

latter in continuation-passing style; they are taken from Bondorf (1990). sieve is

a list-based version of the sieve of Eratosthenes. mess parses and reformats simple

bit-based messages; the RML code was generated by our Message Specification

Language application generator (Kieburtz et al., 1995).

Row smlnj represents the behavior of Standard ML of New Jersey. The other rows

represent the behavior of our compiler generating C under a variety of compilation
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Table 1. Benchmark results

life fft interpd interpc sieve mess

lines 302 237 113 119 48 385

smlnja timeb 2.0 5.8 2.3 3.0 11.2 13.5

standardc d timeb 0.8 2.7 2.0 4.7 8.3 4.6
closure sizee 3 1 1 1 1 9

flow-flatc d timeb 0.8 2.7 1.7 4.6 8.2 4.6
flow-boxedc d timeb 1.0 2.7 2.0 5.1 8.2 4.7

closure sizee 3 1 5 7 1 9

flow-flat-nogcc timeb 0.5 2.6 1.2 2.4 5.1 3.4
heapf 2.4 0 6.6 29.9 26.9 13.3

flow-boxed-nogcc timeb 0.6 2.7 1.3 2.6 5.1 3.2
heapf 3.9 0 8.5 34.9 26.9 16.6

a SML/NJ version 109.27 with reducemore := 0 and rounds := 0.
b User+system time in seconds, on unloaded 133MHz Pentium with 80MB memory, under

Linux version 2.0.27.
c Generated C code compiled under gcc version 2.7.2.1 with option -O3.
d Generated C code linked with Boehm-Demers-Weiser conservative collector version 4.11.
e Maximum closure size in words.
f Heap allocation in MB.

settings; the resulting C was then compiled gcc and (unless otherwise noted) linked

with the Boehm-Demers-Weiser conservative garbage collector (Boehm and Weiser,

1988). Row standard represents the standard configuration of our compiler. In

particular, flat (non-heap) datatype representations are used for all non-recursive

closure types. Execution times for our compiler are within a small factor of those of

SML/NJ, and substantially better in some cases. These figures should be considered

only as a rough indication of comparable performance, however, since there are

numerous differences between the two systems that make exact comparison difficult.

For example, SML/NJ checks for overflow on integer arithmetic operations, whereas

C does not – although profiling results indicate that this difference is irrelevant to

these particular benchmarks. More seriously, the performance of each system is

heavily influenced by the amount of physical memory allocated by its memory

management system at start-up, but it is difficult to control this quantity to ensure

a fair comparison.

flow-flat represents a configuration in which we invoke the more explicit clo-

sure analysis described in section 10.3 and continue to use the (often larger) flat

representations for all closure types; flow-boxed does the same analysis but uses

boxed representations for all closure types. Comparing these figures indicates that

the refined closure analysis is occasionally worthwhile (e.g. for interpd), but only

in conjunction with the flat representation for closure types.

These comparisons of flat vs. boxed closure representations may be skewed by our

use of the relatively slow Boehm-Demers-Weiser collector, which probably penalizes
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heavy heap allocation disproportionately more than a system with an efficient

built-in allocator. To get better evidence that flat closures types are worthwhile,

we linked the generated code for flow-flat and flow-boxed against a very low-

overhead heap memory management implementation: allocation from a single large

array and no garbage collection. The results are shown as flow-flat-nogc and

flow-boxed-nogc. Even with very cheap heap management, and despite the fact

that gcc doesn’t generate particularly good code for handling flat structures, the

substantially lower heap allocation requirements of the flat approach lead to

measurable speed improvement except for the very largest closure size. We conclude

that flat closure allocation is worth further investigation as an optimization technique

for functional language compilers.

14 Conclusions

Versions of the compiler described here have been in use within our overall trans-

lation system for over three years. It generates working Ada83 and ANSI C code

with respectable performance relative to established functional language compilers,

and an unimpeachable level of type safety. It has cheerfully handled RML input

programs of up to 20,000 lines. Generated Ada components have been integrated

into the US Air Force’s Generic Command Center demonstration environment,

thus meeting the specific goals of the project for which this work was originally

undertaken.

More broadly, we believe that our template approach is a promising alternative

to previous interoperability schemes for strongly-typed functional languages. We

would like to perform more detailed comparisons between our work and existing

non-functional ‘glue’ languages like Tcl. We also plan to extend template definitions

to include specifications of algebraic laws that capture important primitive-specific

optimizations such as arithmetic constant folding.

We also believe that our simple approaches to handling polymorphism and higher-

order functions may be generally useful for implementing type-preserving compilers.

Like other researchers (Tarditi et al., 1996; Peyton Jones, 1996) we have found

the ability to type-check intermediate representations invaluable in uncovering bugs

in the course of compiler development. Moreover, the type systems required by

our intermediate languages are considerably simpler than those needed by some

other systems. We have also developed new uses for type information in late-

stage optimization of programs, and we see further opportunities to apply more

conventional optimization techniques on first-order SIL code. The ability to generate

efficient monomorphic data representations and to avoid some heap-allocation of

closures has an important impact on performance. The effects of polymorphic

function cloning on code size need more thorough investigation, however.

The most significant restriction of our system is that it requires access to the entire

RML program, because both polymorphism removal and higher-order removal are

‘whole-program’ transformations. However, we believe that this problem can be at

least partly addressed by providing separately compiled components a digest of the

relevant type and function information from the other components.
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