ON THE STRUCTURE OF THE SET OF SOLUTIONS OF THE DARBOUX PROBLEM FOR HYPERBOLIC EQUATIONS

by F. S. DE BLASI and J. MYJAK

(Received 22nd October 1984)

1. Introduction and main result

Consider the Darboux problem

$$z_{xy} = f(x, y, z)$$

 $z(x, 0) = \phi(x), \quad z(0, y) = \psi(y),$
(1)

where $\phi, \psi: I \to R^d$ (I = [0, 1]) are given absolutely continuous functions with $\phi(0) = \psi(0)$, and the mapping $f: Q \times R^d \to R^d$ ($Q = I \times I$) satisfies the following hypotheses:

- (A₁) f(.,.,z) is measurable for every $z \in \mathbb{R}^d$;
- (A₂) f(x, y, .) is continuous for a.a. (almost all) $(x, y) \in Q$;
- (A₃) there exists an integrable function $\alpha: Q \to [0, +\infty)$ such that $|f(x, y, z)| \leq \alpha(x, y)$ for every $(x, y, z) \in Q \times \mathbb{R}^d$.

Let $C(Q, R^d)$ denote the Banach space of all continuous functions from Q to R^d endowed with the metric of uniform convergence.

By a solution of problem (1) we mean a function $z \in C(Q, R^d)$ satisfying

$$z(x, y) = \phi(x) + \psi(y) - \phi(0) + \int_{0}^{x} \int_{0}^{y} f(\xi, \eta, z(\xi, \eta)) d\xi d\eta,$$

for every $(x, y) \in Q$.

The purpose of this note is to prove the following

Theorem. Let $f: Q \times R^d \to R^d$ satisfy (A_1) , (A_2) , (A_3) . Let $\phi, \psi: I \to R^d$ be absolutely continuous functions with $\phi(0) = \psi(0)$. Then the set ζ_f of all solutions of the problem (1) is an R_{δ} -set in $C(Q, R^d)$.

Recall that a subset of a metric space is called an R_{δ} -set if it is the intersection of a decreasing sequence of compact absolute retracts. It is known that an R_{δ} -set is acyclic, in particular it is nonempty compact and connected.

Hukuhara [5] and Aronszajn [1] have proved that the set of solutions of the Cauchy problem x' = f(t, x), $x(0) = x_0$, where $f: I \times R^d \to R^d$ is continuous and bounded, is an R_{δ} -set in $C(I, R^d)$. Recently, by using topological degree arguments, Górniewicz and

F. S. DE BLASI AND J. MYJAK

Pruszko [4] have established an analogous result for the Darboux problem (1), under the main hypothesis that f be continuous with respect to all variables. In this note the set of solutions of problem (1) is shown to be an R_{δ} -set also when f satisfies hypotheses of Carathéodory type. Our approach is different from that used in [4].

Remark 1. The statement of the theorem remains true when the condition (A₃) is replaced by the following one: there exist integrable functions $\alpha, \beta: Q \rightarrow [0, +\infty)$ such that $|f(x, y, z)| \leq \alpha(x, y) + \beta(x, y)|z|$ for each $(x, y, z) \in Q \times \mathbb{R}^d$.

2. Preliminaries

The following lemma can be proved as in [2, Lemma 2].

Lemma 1. Let $f: Q \times R^d \to R^d$ satisfy (A_1) , (A_2) , (A_3) . Then for every $\varepsilon > 0$ there exists a locally lipschitzian function $g: Q \times R^d \to R^d$ such that

$$\iint_{Q} \sup_{z \in R^d} \left| g(\xi, \eta, z) - f(\xi, \eta, z) \right| d\xi \, d\eta < \varepsilon.$$

Recall that a subset A of a metric space is called contractible if there exist a point $x_0 \in A$ and a continuous function $h: I \times A \rightarrow A$ such that $h(0, x) = x_0$ and h(1, x) = x for each $x \in A$.

Lemma 2 [6]. Let A be a nonempty compact subset of a metric space X. Then A is an R_{δ} -set in X if and only if A is the intersection of a decreasing sequence of compact contractible subsets of X.

Let $L_1(Q, \mathbb{R}^d)$ be the Banach space of the (equivalence classes of) Lebesgue integrable functions $v: Q \to \mathbb{R}^d$, with the norm $\iint_O |v(\xi, \eta)| d\xi d\eta$.

Lemma 3. Suppose that a sequence $\{v_n\} \subset L_1(Q, \mathbb{R}^d)$ satisfies:

- (i) $|v_n(x, y)| \leq \alpha(x, y)$ for almost all $(x, y) \in Q$ $(\alpha \in L_1(Q, R^d))$;
- (ii) for each $(x, y) \in Q$ the sequence

$$\left\{ \int_{0}^{x} \int_{0}^{y} v_n(\xi,\eta) \, d\xi \, d\eta \right\} \tag{2}$$

is Cauchy.

Then $\{v_n\}$ is weakly Cauchy in $L_1(Q, \mathbb{R}^d)$.

Proof. Clearly $\{v_n\}$ is norm bounded in $L_1(Q, \mathbb{R}^d)$. Let E be a measurable subset of Q. Let $\varepsilon > 0$. Let $P \subset Q$ be an elementary set (that is a set which can be expressed as a union of a finite number of pairwise disjoint rectangles) such that $\iint_{E\Delta P} \alpha(\xi, \eta) d\xi d\eta < \varepsilon/4$ $(E\Delta P = (E \setminus P) \cup (P \setminus E))$. As P is an elementary set, by virtue of (ii) one can find an $n_0 \in \mathbb{N}$ such that $\left|\iint_P (v_m(\xi, \eta) - v_n(\xi, \eta)) d\xi d\eta\right| < \varepsilon/4$ if $m, n \ge n_0$. Then, by an easy computation,

one obtains

$$\left| \iint_{E} \left(v_{m}(\xi,\eta) - v_{n}(\xi,\eta) \right) d\xi \, d\eta \right| \leq 2 \iint_{E\Delta P} \alpha(\xi,\eta) \, d\xi \, d\eta$$
$$+ \left| \iint_{P} \left(v_{m}(\xi,\eta) - v_{n}(\xi,\eta) \right) d\xi \, d\eta \right| < 2 \frac{\varepsilon}{4} + \frac{\varepsilon}{2} = \varepsilon$$

 $(m, n \ge n_0)$, which shows that the sequence $\{\iint_E v_n(\xi, \eta) d\xi d\eta\}$ is Cauchy. By using [3, Theorem IV.8.7] one can complete the proof.

Denote by \mathscr{K} the family of all nonempty compact convex subsets of \mathbb{R}^d . Recall that a multifunction $G: Q \to \mathscr{K}$ is said to be measurable if the set $\{(x, y) \in Q \mid G(x, y) \cap U \neq \emptyset\}$ is (Lebesgue) measurable for every open subset U of \mathbb{R}^d . A multifunction $G: \mathbb{R}^d \to \mathscr{K}$ is said to be upper semi-continuous (u.s.c.) if the set $\{u \in \mathbb{R}^d \mid G(u) \subset U\}$ is open for every open subset U of \mathbb{R}^d .

Consider the (multivalued) Darboux problem

$$z_{xy} \in F(x, y, z)$$

 $z(x, 0) = \phi(x), \qquad z(0, y) = \psi(y),$
(3)

where the functions $\phi, \psi: I \to R^d$ are as above, and the multifunction $F: Q \times R^d \to \mathcal{K}$ satisfies the following hypotheses:

- (H₁) F(.,.,z) is measurable for every $z \in \mathbb{R}^d$;
- (H₂) F(x, y, .) is u.s.c. for a.a. $(x, y) \in Q$;
- (H₃) there exists an integrable function $\alpha: Q \to [0, +\infty)$ such that $\sup\{|u| | u \in F(x, y, z)\} \leq \alpha(x, y)$ for every $(x, y, z) \in Q \times \mathbb{R}^d$.

By a solution of (3) we mean a function $z \in C(Q, \mathbb{R}^d)$ such that there exists an integrable function $v: Q \to \mathbb{R}^d$ satisfying

$$v(x, y) \in F(x, y, z(x, y))$$
 for a.a. $(x, y) \in Q$,

and

$$z(x, y) = \phi(x) + \psi(y) - \phi(0) + \int_0^x \int_0^y v(\xi, \eta) d\xi d\eta \quad \text{for every} \quad (x, y) \in Q.$$

We denote by μ the Lebesgue measure in R^2 and by B the unit closed ball in R^d .

Lemma 4. Let $F: Q \times \mathbb{R}^d \to \mathscr{K}$ satisfy (H_1) , (H_2) , (H_3) and let $\phi, \psi: I \to \mathbb{R}^d$ be absolutely continuous functions with $\phi(0) = \psi(0)$. In addition, suppose that there exists a locally lipschitzian function $g: Q \times \mathbb{R}^d \to \mathbb{R}^d$ such that $g(x, y, z) \in F(x, y, z)$ for each $(x, y, z) \in (Q \setminus Q_0) \times \mathbb{R}^d$, where $\mu(Q_0) = 0$. Then the set ζ_F of all solutions of problem (3) is a (nonempty) compact contractible subset of $C(Q, \mathbb{R}^d)$.

Proof. Since the solution of problem (3) (with g in the place of f) belongs to ζ_F , one has that $\zeta_F \neq \emptyset$.

Let us show that ζ_F is compact. To this end consider any sequence $\{z_n\} \subset \zeta_F$. Taking into account the uniform continuity of ϕ, ψ and assumption (H₃) one can easily show that the functions z_n are equicontinuous and equibounded. By Ascoli-Arzelà's Theorem, passing to a subsequence (without change of notation), we can assume that $\{z_n\}$ converges uniformly on Q, to a function $z_0 \in C(Q, \mathbb{R}^d)$. For each $n \in \mathbb{N}$ we have

$$z_n(x, y) = \phi(x) + \psi(y) - \phi(0) + \int_0^x \int_0^y v_n(\xi, \eta) \, d\xi \, d\eta,$$

where $v_n(\xi, \eta) \in F(\xi, \eta, z_n(\xi, \eta))$ for a.a. $(\xi, \eta) \in Q$. From (4) it follows that the sequence (2) converges for each $(x, y) \in Q$. Since $L_1(Q, R^d)$ is weakly complete, by Lemma 3 there exists a $v_0 \in L_1(Q, R^d)$ such that $\{v_n\}$ converges weakly to v_0 . By Mazur's Theorem there exists a sequence $\{w_n\}$ of finite convex combinations of v_n 's

$$w_n = \sum_{i=0}^{k(n)} \alpha_i^n v_{n+i}, \quad \left(\alpha_i^n \ge 0, \sum_{i=0}^{k(n)} \alpha_i^n = 1\right),$$

such that

$$\iint_{Q} |w_n(\xi,\eta) - v_0(\xi,\eta)| \, d\xi \, d\eta \to 0 \quad \text{as} \quad n \to +\infty.$$

Thus, passing to a subsequence (without change of notation), we can assume that $w_n(x, y) \rightarrow v_0(x, y)$ for each $(x, y) \in Q \setminus Q_0$, where $\mu(Q_0) = 0$. Let $\tilde{Q} \supset Q_0$, $\mu(\tilde{Q}) = 0$, be such that for every $(x, y) \in Q \setminus \tilde{Q}$, the multifunction $F(x, y, \cdot)$ is u.s.c. and, moreover, $v_n(x, y) \in F(x, y, z_n(x, y))$ for n = 1, 2, ...

Let $(x, y) \in Q \setminus \tilde{Q}$ and let $\varepsilon > 0$. Since F(x, y, .) is u.s.c. at $z_0(x, y)$, there exists $n_0 = n_0(x, y, \varepsilon) \in \mathbb{N}$ such that $v_n(x, y) \in F(x, y, z_0(x, y)) + \varepsilon B$ for every $n \ge n_0$. This implies $w_n(x, y) \in F(x, y, z_0(x, y)) + \varepsilon B$ for $n \ge n_0$. From this we deduce that $v_0(x, y) \in F(x, y, z_0(x, y))$. Since (x, y) is arbitrary in $Q \setminus \tilde{Q}$ it is proved that $v_0(x, y) \in F(x, y, z_0(x, y))$ for a.a. $(x, y) \in Q$. Moreover, from (4) for each $(x, y) \in Q$ we have

$$\sum_{i=0}^{k(n)} \alpha_i^n z_{n+i}(x, y) = \phi(x) + \psi(y) - \phi(0) + \int_0^x \int_0^y w_n(\xi, \eta) \, d\xi \, d\eta$$

and so, letting $n \rightarrow +\infty$, we get

$$z_0(x, y) = \phi(x) + \psi(y) - \phi(0) + \int_0^x \int_0^y v_0(\xi, \eta) \, d\xi \, d\eta.$$

Hence $z_0 \in \zeta_F$ and the compactness of ζ_F is established.

It remains to prove that ζ_F is contractible. Let u_0 be the (unique) solution of the Darboux problem $z_{xy} = g(x, y, z)$, $z(x, 0) = \phi(x)$, $z(0, y) = \psi(y)$. Let $u \in \zeta_F$ be arbitrary. For

 $t \in [0, 1)$ consider the Darboux problem

$$z_{xy} = g(x, y, z)$$

$$z(x, t) = u(x, t), \qquad z(t, y) = u(t, y), \qquad (x, y) \in Q_t$$
(5)

where $Q_t = [t, 1] \times [t, 1]$. Denote by $z^{(t)}: Q_t \to R^d$ the (unique) solution of problem (5). For $t \in [0, 1)$ define $u^{(t)}: Q \to R^d$ by

$$u^{(t)}(x, y) = \begin{cases} z^{(t)}(x, y), & \text{if } (x, y) \in Q_t \\ u(x, y), & \text{if } (x, y) \in Q \setminus Q_t. \end{cases}$$

Moreover, set $u^{(1)} = u$. Observe that $u^{(0)} = u_0$.

We claim that for every $t \in [0, 1]$, $u^{(t)}$ is a solution of problem (3). Indeed, let $t \in [0, 1]$. For every $(x, y) \in Q \setminus Q_t$ we have

$$u^{(t)}(x, y) = u(x, y) = \phi(x) + \psi(y) - \phi(0) + \int_{0}^{x} \int_{0}^{y} v(\xi, \eta) \, d\xi \, d\eta, \tag{6}$$

where $v(\xi, \eta) \in F(\xi, \eta, u^{(t)}(\xi, \eta))$ for a.a. $(\xi, \eta) \in Q \setminus Q_t$. For $(x, y) \in Q_t$ we have

$$u^{(t)}(x,y) = z^{(t)}(x,y) = u(x,t) + u(t,y) - u(t,t) + \int_{t}^{x} \int_{t}^{y} v^{(t)}(\xi,\eta) \, d\xi \, d\eta, \tag{7}$$

where $v^{(t)}(\xi,\eta) = g(\xi,\eta,z^{(t)}(\xi,\eta)) \in F(\xi,\eta,z^{(t)}(\xi,\eta))$ and so $v^{(t)}(\xi,\eta) \in F(\xi,\eta,u^{(t)}(\xi,\eta))$ for a.a. $(\xi,\eta) \in Q_t$. From (7), by virtue of (6), we have

$$u^{(t)}(x, y) = \phi(x) + \psi(t) - \phi(0) + \int_{0}^{x} \int_{0}^{t} v(\xi, \eta) d\xi d\eta$$

+ $\phi(t) + \psi(y) - \phi(0) + \int_{0}^{t} \int_{0}^{y} v(\xi, \eta) d\xi d\eta$
- $\phi(t) - \psi(t) + \phi(0) - \int_{0}^{t} \int_{0}^{t} v(\xi, \eta) d\xi d\eta + \int_{0}^{x} \int_{0}^{y} v^{(t)}(\xi, \eta) d\xi d\eta$
= $\phi(x) + \psi(y) - \phi(0) + \int_{0}^{x} \int_{0}^{y} [\chi_{Q \setminus Q_{t}}(\xi, \eta)v(\xi, \eta) + \chi_{Q_{t}}(\xi, \eta)v^{(t)}(\xi, \eta)] d\xi d\eta$,

where χ_A denotes the characteristic function of A. It follows that $u^{(t)}$ is a solution of (3). Thus $u^{(t)} \in \zeta_F$ for each $u \in \zeta_F$ and $t \in I$.

Now define the function $h: I \times \zeta_F \to \zeta_F$ by $h(t, u) = u^{(t)}$. Suppose that $I \times \zeta_F$ is given the

metric $\max\{|t_1-t_2|, ||u_1-u_2||\}, (t_1, u_1), (t_2, u_2) \in I \times \zeta_F \quad (||u_1-u_2|| = \max_{(x, y) \in Q} |u_1(x, y) - u_2(x, y)|).$ We are going to prove that h is continuous.

Under our assumptions ζ_F is a bounded subset of $C(Q, \mathbb{R}^d)$, thus there is a constant m > 0 such that for every $u \in \zeta_F$ one has $u(x, y) \in mB$, $(x, y) \in Q$. Since the set $Q \times mB$ is compact and convex, the restriction of the function g to $Q \times mB$ is lipschitzian with some constant L > 0.

Let $(\tilde{t}, \tilde{u}) \in I \times \zeta_F$. Let $\varepsilon > 0$ and choose $0 < \delta < \varepsilon/(7e^L)$. Let $\tau > 0$ be so that $\iint_{\Delta} \alpha(\xi, \eta) d\xi d\eta < \delta$, where $\Delta = \{(x, y) \in Q | x, y \in [\tilde{t} - \tau, \tilde{t} + \tau]\}$. Let $(t, u) \in I \times \zeta_F$ be such that $|t - \tilde{t}| < \tau$, $||u - \tilde{u}|| < \delta$. Let $t > \tilde{t}$ (the proof is similar when $t < \tilde{t}$).

Suppose $(x, y) \in Q_r$. As

$$h(t, u)(x, y) = u(x, t) + u(t, y) - u(t, t) + \int_{t}^{x} \int_{t}^{y} g(\xi, \eta, h(t, u)(\xi, \eta)) d\xi d\eta$$

$$h(\tilde{t}, \tilde{u})(x, y) = \tilde{u}(x, \tilde{t}) + \tilde{u}(\tilde{t}, y) - \tilde{u}(\tilde{t}, \tilde{t}) + \int_{t}^{x} \int_{t}^{y} g(\xi, \eta, h(\tilde{t}, \tilde{u})(\xi, \eta)) d\xi d\eta$$
(8)

we have

$$\begin{aligned} \left|h(t,u)(x,y) - h(\tilde{t},\tilde{u})(x,y)\right| &\leq \left|u(x,t) - \tilde{u}(x,\tilde{t})\right| + \left|u(t,y) - \tilde{u}(\tilde{t},y)\right| \\ &+ \left|u(t,t) - \tilde{u}(\tilde{t},\tilde{t})\right| + \iint_{\Delta} \alpha(\xi,\eta) \, d\xi \, d\eta \\ &+ \iint_{\tau} \int_{\tau}^{x} \left|g(\xi,\eta,h(t,u)(\xi,\eta)) - g(\xi,\eta,h(\tilde{t},\tilde{u})(\xi,\eta))\right| \, d\xi \, d\eta \\ &< 2\delta + 2\delta + 2\delta + \delta + L \iint_{\tau}^{x} \int_{\tau}^{y} \left|h(t,u)(\xi,\eta) - h(\tilde{t},\tilde{u})(\xi,\eta))\right| \, d\xi \, d\eta. \end{aligned}$$

From this, using Gronwall's inequality, we obtain $|h(t, u)(x, y) - h(\tilde{t}, \tilde{u})(x, y)| \leq 7\delta e^L < \varepsilon$. Suppose $(x, y) \in Q_t \setminus Q_t$. As $h(\tilde{t}, \tilde{u})(x, y)$ is still given by (8) while

$$h(t, u)(x, y) = u(x, y) = u(x, \tilde{t}) + u(\tilde{t}, y) - u(\tilde{t}, \tilde{t}) + \int_{\tilde{t}}^{x} \int_{\tilde{t}}^{y} g(\xi, \eta, u(\xi, \eta)) d\xi d\eta$$

we have

$$\begin{aligned} \left|h(t,u)(x,y) - h(\tilde{t},\tilde{u})(x,y)\right| &\leq \left|u(x,\tilde{t}) - \tilde{u}(x,\tilde{t})\right| + \left|u(\tilde{t},y) - \tilde{u}(\tilde{t},y)\right| \\ &+ \left|u(\tilde{t},\tilde{t}) - \tilde{u}(\tilde{t},\tilde{t})\right| + 2\iint_{\Delta} \alpha(\xi,\eta) \,d\xi \,d\eta < \delta + \delta + \delta + 2\delta = 5\delta < \varepsilon. \end{aligned}$$

Finally, if $(x, y) \in Q \setminus Q_{\tilde{\iota}}$ we have $|h(t, u)(x, y) - h(\tilde{\iota}, \tilde{u})(x, y)| = |u(x, y) - \tilde{u}(x, y)| < \delta < \varepsilon$. Hence $|h(t, u)(x, y) - h(\tilde{\iota}, \tilde{u})(x, y)| < \varepsilon$ for every $(x, y) \in Q$, which implies $||h(t, u) - h(\tilde{\iota}, \tilde{u})|| \le \varepsilon$. This shows that h is continuous at $(\tilde{\iota}, \tilde{u})$. As $(\tilde{\iota}, \tilde{u})$ is arbitrary, h is continuous on $I \times \zeta_F$. Moreover, $h(0, u) = u_0$ and h(1, u) = u, for every $u \in \zeta_F$. Hence ζ_F is contractible and the proof of Lemma 4 is complete.

3. Proof of the Theorem

By Lemma 1, for every $k \in \mathbb{N}$ there is a locally lipschitzian function $g_k: Q \times \mathbb{R}^d \to \mathbb{R}^d$ such that

$$\iint_{\mathcal{Q}} \sup_{z \in \mathbb{R}^d} \left| g_k(\xi, \eta, z) - f(\xi, \eta, z) \right| d\xi \, d\eta \leq \frac{1}{2^k}.$$

For $n \in \mathbb{N}$ define $\tilde{\lambda}_n: Q \to [0, +\infty]$ by

$$\widetilde{\lambda}_n(x, y) = \sum_{k \ge n} \sup_{z \in \mathbb{R}^d} |g_k(x, y, z) - f(x, y, z)|.$$

Note that each $\tilde{\lambda}_n$ is integrable on Q. Consequently there is a null set $Q_0 \subset Q$ such that $\tilde{\lambda}_n(x, y)$ is finite for every $(x, y) \in Q \setminus Q_0$, and every $n \in \mathbb{N}$. Define $\lambda_n : Q \to \mathbb{R}$ by

$$\lambda_n(x, y) = \begin{cases} \tilde{\lambda}_n(x, y), & \text{if } (x, y) \in Q \setminus Q_0 \\ 0, & \text{if } (x, y) \in Q_0. \end{cases}$$

For $n \in \mathbb{N}$ define the multifunction $G_n: Q \times \mathbb{R}^d \to \mathscr{K}$ by

$$G_n(x, y, z) = f(x, y, z) + \lambda_n(x, y)B.$$

Clearly G_n satisfies hypotheses (H₁), (H₂), (H₃) (the latter with $\alpha(x, y) + \lambda_n(x, y)$ in the place of $\alpha(x, y)$). Moreover $g_n(x, y, z) \in G_n(x, y, z)$ for each $(x, y, z) \in (Q \setminus Q_0) \times \mathbb{R}^d$.

Consider the problem

$$z_{xy} \in G_n(x, y, z)$$

$$z(x, 0) = \phi(x), \qquad z(0, y) = \psi(y).$$
(9)

Let ζ_{G_n} denote the set of all solutions $z: Q \to R^d$ of problem (9). By virtue of Lemma 4 (with $g = g_n$, $F = G_n$) the set ζ_{G_n} is nonempty, compact and contractible. Clearly $\zeta_{G_1} \supset \zeta_{G_2} \supset \ldots$, for $G_1(x, y, z) \supset G_2(x, y, z) \supset \ldots$ for each $(x, y, z) \in Q \times R^d$. By Lemma 2, $\zeta = \bigcap_{n=1}^{\infty} \zeta_{G_n}$ is an R_{δ} -set in $C(Q, R^d)$. To finish the proof it suffices to show that $\zeta_f = \zeta$.

It is obvious that $\zeta_f \subset \tilde{\zeta}$. To see the reverse inclusion suppose that $z \in \tilde{\zeta}$. Let $n \in \mathbb{N}$. For each $(x, y) \in Q$ we have

$$z(x, y) = \phi(x) + \psi(y) - \phi(0) + \int_{0}^{x} \int_{0}^{y} v_n(\xi, \eta) \, d\xi \, d\eta,$$

where $v_n(\xi,\eta) \in G_n(\xi,\eta,z(\xi,\eta))$ for a.a. $(\xi,\eta) \in Q$. Hence $v_n(\xi,\eta) = f(\xi,\eta,z(\xi,\eta)) + w_n(\xi,\eta)$, where w_n is a measurable function satisfying $w_n(\xi,\eta) \in \lambda_n(\xi,\eta) B$ for a.a. $(\xi,\eta) \in Q$. Consequently we have

$$\left| z(x, y) - \phi(x) - \psi(y) + \phi(0) - \int_{0}^{x} \int_{0}^{y} f(\xi, \eta, z(\xi, \eta)) d\xi d\eta \right|$$
$$\leq \int_{0}^{x} \int_{0}^{y} \lambda_{\eta}(\xi, \eta) d\xi d\eta \leq \frac{1}{2^{n-1}}.$$

Since $n \in \mathbb{N}$ is arbitrary, we conclude that $z \in \zeta_f$. This completes the proof.

REFERENCES

1. A. ARONSZAJN, Le correspondant topologique de l'unicité dans la théorie des équations différentielles, Ann. Math. 43 (1942), 730-738.

2. F. S. DE BLASI and J. MYJAK, Orlicz type category results for differential equations in Banach spaces, Comm. Math. 23 (1983), 193-197.

3. N. DUNFORD and J. T. SCHWARTZ, *Linear operators*, Part I (Interscience, New York and London, 1958).

4 L. GORNIEWICZ and T. PRUSZKO, On the set of solutions of the Darboux problem for some hyperbolic equations, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 38 (1980), 279-285.

5. M. HUKUHARA, Sur les systèmes des équations différentielles ordinaires, Jap. J. Math. 5 (1928), 345-350.

6. D. M. HYMAN, On decreasing sequence of compact absolute retracts, Fund. Math. 64 (1969), 91-97.

DIPARTIMENTO DI MATEMATICA Università di Roma II Via O. Raimondo 00173 Roma Italy Instytut Matematyki AGH Al. Mickiewicza 30 30-059 Kraków Poland