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Abstract

Integrals related to Cauchy's integral formula and Huygens' principle are used to establish a link
between domains of holomorphy in n complex variables and cells of harmonicity in one higher
dimension. These integrals enable us to determine domains to which analytic functions on real
analytic surfaces in Rn+1 may be extended to solutions to a Dirac equation.
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32 D 05; secondary 32 D 10, 32 D 15.

1. Introduction

The use of Clifford algebras in the study of a number of aspects of mathe-
matical analysis has steadily increased in recent years (see for example [1,4,
6, 7, 8]). In this paper we use the Cauchy integral formula arising in Clifford
analysis [3] to introduce a fundamental link between domains of holomor-
phy, in n complex variables, and cells of harmonicity in (n + 1) complex
variables.

For each domain of holomorphy, ^ , we use the Cauchy integral to deduce
a Cauchy Kowalewski extension, to a cell of harmonicity, for each holomor-
phic function on ^ . Each extension is a solution to the Dirac operator in
C n + I . Our approach enables us to show that the Cauchy Kowalewski ex-
tension of an analytic function denned on a real, H-dimensional, analytic
surface Rn+ , described by Sommen [15], is determined by the functions'
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414 John Ryan [2]

holomorphic extension, and vice versa. For the special case where the exten-
sions are defined on a strip in Kn+1 this result has previously been deduced,
using different techniques, in [14]. An advantage in the approach used here is
that we are able to establish a topological isomorphism between the Clifford
module of holomorphic functions defined on % and the Clifford module of
their Cauchy Kowalewski extensions. From this we obtain an approxima-
tion theorem over domains of holomorphy. We extend some of the results
presented here to higher order iterates of the Dirac operator.

2. Preliminaries

Consider the complex, 2"+1-dimensional Clifford algebra An+x(C), with
basis e l emen t s 1, ex, ... , en+x, ... , e}; , ... , e}: , ... , ex... en+x where eiej

+ ejei — 28tj the Kronecker delta, and j \ < ••• < j r with 1 < r < n + 1.

We denote the complex space spanned by ex,... , en+x by C" + 1 . A vector
z\ei + ••• + z

n+ie
n+\ € C"+ is denoted by z and we set {z: z = 0} =

N(0). For each z, e C"+1 we denote the set {z e C"+ 1 : (z - z,)2 = 0}

by N(zx). The subspace of C"+1 spanned by e2, ... , en+x is denoted by

C" . The norm of a vector Z = zQ + zxex H ^ z\...n+\e\ '"e
n+i i s WZW =

( | z o | 2 + | z 1 | 2 + -.- + | z 1 . . . w + 1 | 2 ) 1 / 2 . Moreover | | Z , Z 2 | | < 2" + 1 | |Z 1 | | \\Z2\\ for
each Zx,Z2GAn+x(C).

Suppose that z, , . . . ,
[9] we denote zp •• • z, be a . Consider the Clifford matrix (a

c
h

d), where a —

C"+1 and 1 < j k < pk , with k € {1, 2, 3, 4} , ac,cd, dbba € C"+! and
ad -be e C\{0} . Then in [11] we show that (az + b)(cz + d)~l is a well
defined Mobius transformation in C"+ l . This extends a result described over

Suppose that z , , . . . , zp e C"+1 and we denote zx---zp by a. Following

Rn+1 in [1]. An example of such a matrix is (Je " * ' ) . The corresponding

Mobius transformation is the Cayley map (z-el)(-elz+ I)"1 . The Clifford

matrix (Je
 ej) gives the Mobius transformation (z + e , ) ( - e , z - I ) " 1 . On

restricting these transformations to the sets C"\{z e C": z2 = 1} we ob-
tain holomorphic charts for the complex, M-dimensional sphere S£ = {z e
C " + 1 : z 2 = l } .

DEFINITION 1 [3]. For U a domain in R"+1 , the real space spanned by
ex, ... , en+l, a C1 function f:U-> An+i (C) is called a left regular, or left
monogenic, function if for each x e C / w e have that Y^tl ejdf(*)/dXj = ° •
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[3] Complex Clifford analysis and domains of holomorphy 415

A similar definition may be given for right regular functions.
We denote the set of left regular functions defined on U by M,(U, An+, (C)),

and the set of right regular functions defined on U by Mr(U, An+i(C)). The
set Mj(U, An+i(C)) is a right An+i{C) module while Mr(U, An+l(C)) is a
left An+l(C) module.

Following [3, 7, 13] we have that for ech domain U' c M." , the space

spanned by e2, ... , en+l, and for each real analytic function g: U' —>

An+i(C), there is a domain U'g c E"+1 , with U' C U'g, and a left regu-

lar function / : U' —> An+l(C) with f \v, — g. On a suitable subdomain of

U'g we have that fg(x) = exp{-xle1dlt)g( It), where dr = E"=2 ejd/dXj

and 1? = E"=2'
 xjej € [ / ' •

DEFINITION 2. The function f is called the left regular Cauchy Kowalewski
extension of g.

If two analytic functions g, , g2 are defined on U' then it is not in
general the case that U' = U' ; for example let g{(x) = (1 + ||x||) and

g2(x) = (l + 11x11)-' on R".
For each left regular function / : ! /—• ^/)+1(C) we have the Cauchy inte-

gral formula [3]

o

where xoe M, with Af a real, (« + 1 )-dimensional, compact submanifold
of U, con the surface area of the unit sphere in Rn+1, G(x) — x|x|~"+1 and
Dx = Y,T=\ej{-\)idxr

It may be deduced from (1) that the left regular Cauchy Kowalewski ex-
tension of g is unique.

When n + 1 - 2k we have G(x) = -x(x\ H 1- x2
n+l)~

k so the formula
(1) has a unique holomorphic continuation to

(2) /+(z0) = - i - f G+(x - zo)Dxf(x),
M

n JdM

where z0 lies in the component M+ of Cn + 1\Ux € a J l / N(x) which contains

M, and G+(x) = -z(z2 + • • • + z2
n+l)~ • The domain M+ is an example

of a cell of harmonicity and has previously been discussed in [2, 12] and
elsewhere.

, o

If z0 e M \M then it is straightforward to deduce that iV(z0) n M is an
(n - 1) dimensional sphere, 5"-1(z0). By Stokes' theorem and the Cauchy
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Riemann equations we have that the integral (2) is equal to

(3) - j - / G+(z-zQ)Dzf+(z),

where Z(z0) is an Sl fibration of S"~l(z0), where for each x e 5"~1(z0)
the Sl fibre lies in the complex hyperplane Cx which contains x and its
antipodal point. Moreover, Z(z0) C M+ , Dz = E ^ - i y ^ - r f z , - , and the

Sl fibre at x does not surround the antipodal point of x within Cx .
From the residue calculus the integral (3) may be partially evaluated to

reveal [4] an analogue of the Huygens' principle for the wave equation in
even dimensions described by Garabedian in [5, Chapter 6].

When n = 2k the function G(x) does not have a unique holomor-
phic continuation to Cn+l\iV(0). However, we have for each real (n + 1)-
dimensional manifold M C Rn+1, the set {z e M+: Ax + (1 - A)z e M+ for
x e N(z) n M and X e [0, 1]} is a subdomain of M+ . We denote this sub-
domain by NM+, and it is straightforward to deduce that its fundamental
group nl(NM+) is isomorphic to the fundamental group n{{M). Conse-
quently, each left regular function f:UC Rn+l - • An+l(C), with M CU,
has a unique holomorphic continuation to f*: NM+ —>• An+l (C). Moreover
when M is compact

(4) /><,) = -L f G+(z - zo)Dzf{z)

G(x-zo)Dxf(x),

o

where z0 e NM+\M and Dz0, Z(z0) is an n-dimensional disc in R" with
boundary the inner sphere of £(z0) n Rn + 1 .

D E F I N I T I O N 3 . For U+ a domain in C"+1 and /*: U+ -> An(C) a holo-
morphic function we say that f* is a complete left regular function if for
each z e U+ we have £"=! ejdf(z)/dzj = 0 .

A similar definition can be given for complex right regular functions.

3. Domains of holomorphy in C"

We may generalize the integral (3) as follows:

THEOREM 1. Suppose that U is a domain in R"+1, that n + 1 = 2k, and
M c U is a compact (n+l)-dimensional manifold. Suppose that z0 EM+\M
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[5] Complex Clifford analysis and domains of holomorphy 417

and F(z0) is the real (n+\)-dimensional submanifoldof Cn+X with boundary
X(z0), and for each x e UnN(z0) the set F(zo)nCx is the union of two discs,
one centered at x and the other at its antipodal point. Then for each xeM+

for which r(z0) n iV(z,) ^ 0 and X(z0) n iV(z1) = 0 , we

(5) [

In fact it is straightforward to show that when z, £ M the set F(z0) n
N(z,) is an (w - l)-dimensional manifold homomorphic to S"~l and for
each x € N(z0) n M there is a point in F(z0) n N(z{) lying in Cx. Con-
sequently, we may apply the residue calculus to partially evaluate the right
hand side of (5) to obtain an integral over the manifold A^z,) n M.

It is also straightforward to deduce, in the above notation,

PROPOSITION 1. The set {z, 6 M+: Y(zQ)r\N{zx) £ 0 and Z(zo)niV(zI) =
0} is an open subset of M+ .

We denote the open set appearing in Proposition 1 by U(T(z0)).

Suppose now that £'(z0) is an n-cycle in C"+I which is homologous
within C"+1+1\iV(z0) to Z(z0). So Z'(z0) is also a fibration of N(zo)P\M
and for each z e N(zo)nM this homological equivalence restricts to a homo-
logical equivalent between the fibres of £'(z0) and £(z0) within Cx\{x, y} ,
where y is the antipodal point of x in iV(z0) n M. Suppose that this ho-
mological equivalent also holds within Af+\iV"(z0). Then, using the same
notation as in Theorem 1 we have

o

THEOREM 2. Suppose that zQ e M \M and F(z0) is the real {n + 1)-
dimensional manifold lying in C"+1, with boundary Z'(z0) and for each x €
Mr\N{zQ) the set F/(z0)nCx is the union of the closure of two domains in Cx.
Then for each z, e M+ for which F/(z0)nAr(z1) ± 0 and ^ ' ( z^n^z , ) = 0
we have

(6) f{z{) = -L / G+{z-

Again we have that the set {z, e M+: F/(z0) n iV(z,) ^ 0 and £'(z0) n
n N(zx) = 0} is an open subset of M+ . We denote this open subset

by ^
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418 John Ryan [6]

The integrals (5) and (6) only depend on the values of f* on a com-
plex, ra-dimensional subspace of C"+1. Consequently, we have the following
constructions:

PROPOSITION 2. Suppose that If' is a domain in Cn, the complex subspace
of Cn+1 spanned by the vectors e2, ... , en+l, and g: U1 —> An+l(C) is a
holomorphic function. Suppose also that z0 e C"+ \C" with 2(z0) c U'.
Then the integral

± [ G\z-zx)Dzg{z)

defines a complex left regular function g* (z,) on U(r(z0)). Furthermore, for

each £'(z0) c U' we have that the integral

defines a complex left regular function g*l(z0) on U(T1(z0)), with ^ ' ( z , ) =

£* (z,) for each z, e U(T(z0)) n ^(^(z,,)0).

Using the same notation as in from the Cauchy Riemann equations we
have Proposition 2,

PROPOSITION 3. Suppose that z0, z2 e c"+ 1 \C" , with X'(z0) and X'(z2) c
U'. Then we have for each z, e [/(^(z,,)) n ^

^ - / G+(z0 - zJDzgiz) = -L / G+(z - z{)Dzg(z).

As a consequence of Proposition 3 we have constructed a complex left
regular function

with
g*\U(T'(zo)) = g*o, and

PROPOSITION 4. Suppose that X: [0, 1) -• C"+1\C" with
z(l)eU' and Z'(A(0) Q V for each t e [0, 1). Then

\img*{X{t)) = g{z{\)).

OUTLINE OF PROOF. From the Huygens principle we have

lim_L f G+(z-X(t))Dz(g(z)-g(z(l))) = 0.
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[7] Complex Clifford analysis and domains of holomorphy 419

COROLLARY. The function g#(z) is the complex left regular Cauchy Kowa-
lewski extension of g.

It is easy to adapt Propositions 2, 3, and 4, and the corollary to Proposition
4 to obtain

THEOREM 3. Suppose that ^ C C " is a domain of holomorphy, with n +
1 = Ik. Then each holomorphic function g: % —» An+l(C) has a unique

continuation to a complex left regular function g*: H(^) —^ An+l(C), where
H(&) = {z € C"+1\C": l"(z) c <% where l"(z) is an S1 fibration of N(z) n
(c(z)K" + z, (z)), with c(z) € Sl c C, and z, (z) G 2^} U It.

We denote the An+1(C) module of An+l(C) valued holomorphic functions
denned on % by @{%, An+i(C)). By regarding this module strictly as a right
module we have from Theorem 3

PROPOSITIONS. The right An+l(C) modules

ffi(&,An+l{Q) and M,{H{^), An+l{C))

are isomorphic.

We may extend Proposition 5 as follows:

THEOREM 4. The right An+l(C) modules

, Att+l{Q) and M,(H(P), An+l(C))

are topologically isomorphic Frechet modules.

PROOF, for the domain of holomorphy % consider a sequence {U^=x of
subdomains, with Ui c Ui+i and \JZ\Ui = ^- T h e n w e h a v e t h a t

JT) C H{VM) and U~, H^) = H{W). Also U. C //([/,.).
For each g: % -»• ̂ n+1(C) we define pt{g) = supz€[/ ||g(z)||. The family

of functions {pt: <9(jM, An+l(C)) -• R+ U {0}}^, defines a system of norms
on <?(%/, An+l{C)) which endows &(&, An+l(C)) with a Frechet topology.
We denote this Frechet module by ((?(&, An+l(C)), P).

For each / : H{W) - An+l(C) we define q.(g*) = supz € / / ( l / ) | | / ( z ) | | .

The family of functions {qt: M,(H(&), An+l(C)) -» R+ U {0}}*,' defines a
system of norms on Mt{H(^), An+i(C)) which endows this module with a
Frechet topology. We denote the Frechet module by

, An+l{C)), Q).
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420 John Ryan [8]

For each g*(H(&), AH+l(C)) we have that p.(g*) < qt(g*). By placing
% = \JzeH(&)\& ^"(z) w e have from (3) that for each / there is a positive
constant C, such that qi+l(g#) < Ctpt{g ) . Consequently, the two Frechet
modules (<?(&, AH+l(Q),P) and (M,(H(&), An+,(C)), Q) are topology
isomorphic.

From the above proof we may straightforwardly obtain the following ap-
proximation theorem:

THEOREM 5. Suppose that %', is a subdomain of %, with %?' c%? and
g: Hi?') -> An+l(C), h: H(&) -» An+l{C) are complex left regular func-
tions with

sup \\g(z) - h{z)\\ < e
"

for some e e R+ . Then there is a constant C(W') € R+ with

sup \\g(z)-h(z)\\<C(V')e.

We now turn to the case where n + 1 = 2k + 1. Suppose now that % is a
domain of holomorphy in C" . Then the set {z € C"+I\C": 2"(z) C ^ and
there is an w-dimensional disc D{z) with boundary in 2"(z), and Z)(z) C
^ } U ^ is denoted by NH(&). Clearly NH(&) C / / ( ^ ) . It is also straight-
forward to deduce

PROPOSITION 6. The set NH(%) is an open subset of H(ft).

Now using Proposition 2 we have

THEOREM 6. Suppose that $/ c C" « a domain of holomorphy, with
n = 2k. Then each holomorphic function g: % —• ^n+1(C) Aas a unique

continuation to a complex left regular function g*: NH(f/) —> An+l(C).

On restricting the system of norms {9,-}^,, appearing in the proof of
Theorem 4, to act on the open sets iV//(C/() we may deduce

THEOREM 7. WACTI n = 2k the right An+l(C) modules <?(&, An+l(C))
and Mt{NH(%), An+l(C)) are topologically isomorphic Frechet modules.

It is now straightforward to deduce an analogue of Theorem 5 in odd
dimensions.
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[9] Complex Clifford analysis and domains of holomorphy 421

From Theorems 4 and 6 we have

THEOREM 8. Suppose that U = {x e R"+1 = xlei + It where -r < xx<r
with r e E+ and ~x e l " } . Suppose that % = {~z eCn: ~z = It' + if
with It , ~y e R" and \ ~? | < r]. Then H(&) = U+, the component
ofC"+l\\Jx€d(u)N(x) containing U, and the modules M,(U, An+i(C)) and

are topologically isomorphic.

Theorem 8 extends a result given in [14].
We also have, from Theorems 4 and 6,

PROPOSITION 7. Suppose that %/ is the Lie ball

Then H{&) is the Lie ball in C"+1, and the modules M,({xe K"+1: |x| < 1},
An{C)) and (f(Ln, An+l(C)) are topologically isomorphic.

Theorem 7 and Proposition 7 are special cases of the following result:

THEOREM 9. Suppose that the domain U c Kn+1 is a normal neighbour-
hood of an open set W c R" and for each xlel + It e % we have that
kx{e{+ It e y for X e (0, 1] and It eW. Suppose also that U+ is the
component of Cn+i\\Jxejj,uN(\) containing U. Then each component of
U+nCn is a domain of holomorphy, and the Frechet modules Mt(U, An+l(C))
and (f(U+ n C " , An+l(C)) are topologically isomorphic.

When n + 1 = 2k we have the following improvement to Theorem 9:

THEOREM 10. Suppose that the domain U c Rn+1 with n + 1 = 2k.
Suppose also that U+ is the component of Cn+l\\Jx€jj<uN(x) containing

U, and that for each xxex+ It e U we have that

N(xlel + It) n ((- x*) + «") C U+.

Then each component of U+ nC" is a domain ofholomorphy, and the Frichet
modules Mt(U, An+l(C)) and &(U+ n C", An+l(C)) are topologically iso-
morphic.
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422 John Ryan [10]

4. Domains of holomorphy in S^ and C"

Following [10] we have that for each holomorphic function g: % —>
^n+i(C) the holomorphic function

OO i
# # / . —> X v ^ *• 2m .m ,—• Ng (z,e,+ z ) = ^ — - z , A«,c<?( z )

is a well defined holomorphic function on some neighbourhood in C"+1 of
V, where An c = £"£ d2/dz2.

Moreover, Zl=l(d
2 / 0 z2

k) g
## ( V ) = 0, and g**\v = g .

DEFINITION 4. Suppose that ^ c C", is a domain of holomorphy and
g: %! —> J4B+1 (C) is a holomorphic function. A holomorphic function H: %g

-» v4n(C), where ^ C C"+1 and ^ c ^ , is called a harmonic Cauchy
Kowalewski extensions of g if H \% = g and An+1 CH (z) — 0.

Whereas, the complex left regular (and right regular) Cauchy Kowalewski
extension of g is unique it is not longer the case that each g e (f(%f, An+l(C))
has a unique harmonic Cauchy Kowalewski extension, for example, the func-
tion jg##(z) + 5##(z) is a harmonic Cauchy Kowalewski extension of g, but
l2g*\z) + \g*(z)tg**{z) for all z.

For each harmonic function h: U —+ An+l(C) we have Green's formula

1 f ( n+l

where

JOM

M is a real (n + 1 )-dimensional compact submanifold of U Q Rn+l and

x o e M .
When n + l = 2k the function h has a unique holomorphic continuation

[2] to a complex harmonic function

1 /" /

(7) h+(z0) = — j \ G+{x - zo)Dxh(x) + H
+ <9/2 i

+(x - zo)Z)x^e; —(x) ,

where z0 e M + and, when n + I = 2k + I, h has a unique holomorphic
continuation to NM+.
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[11] Complex Clifford analysis and domains of holomorphy 423

When n + 1 = Ik the integral (7) is equal to

1 1+1 +

for z, e U(T(z0)), for some z0 e M+ , where

Using the complex harmonic Cauchy Kowalewski extension of g: % -*
^n+i(C) described in the first sentence of this section we may deduce

PROPOSITION 8. Suppose that g: % —> An+l(C) is a holomorphic function,

and n + l = 2k. Suppose that z0 e C"+1\C" with Z(z0) c ^ . Then

is a complex harmonic function.

By similar arguments to those used in the previous section we have that
; function given by forn
Consequently, we have

the function given by formula (8) is a continuation of the function g

THEOREM 11. Suppose that ^ c C" is a domain of holomorphy, with
n + 1 = 2k. Then each holomorphic function g: % —* An+l(C) has a contin-
uation to a complex harmonic function

A similar formula to (4) may be deduced for complex harmonic functions
in odd dimensions, so that we have the following theorem.

THEOREM l l ' . Suppose that %f c C" is a domain of holomorphy, with
n + 1 = 2k + 1. Then each holomorphic function g:f/^ An+1(C) has a

continuation to a complex harmonic function g*#: NH(^) —> An+l(C).

The open set H(%f) is called a cell of harmonicity.

PROPOSITION 9 [9]. Suppose (az+b)(cz+d)~l is a Mobius transformation
in C"+1, with n +1 -2k, and f{{az+b){cz+d)~l) is a complex left regular
function with respect to the variable w = (az + b)(czd)~

l, while g(w) is a
complex harmonic function. Then J, (cz + d)f(w) is a complex left regular
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424 John Ryan [12]

function with respect to the variable z and J2{cz+d)g{w) is complex harmonic
with respect to the variable z, where

Jx(cz + d) = (cz+d){(cz + d)(cz+d)}~k

and
J2(cz + d) = {(cz + d)(cz+d)}~k.

From [10] it is straightforward to observe that whenever J{(Cz + d) is
denned it is invertible in the algebra An+l(C). Clearly J2(cz+d) is invertible,
when denned. Using these facts we can use the Cayley map, the transform
(z + e^){-exz - I ) " 1 , and the complex left regular, and complex harmonic
Cauchy Kowalewski extensions from domains in C" to Cn+1 to deduce

PROPOSITION 10 [10]. Suppose that % is a domain in S%. with « + l -2k,
and g: % —* ^4n+1(C) is a holomorphic function. Then there exists a domain
%fg in C with U c % , and there is a unique complex left regular function
fg'-^g-* ^,,+i(C) and a complex harmonic function hg: %% —> An+l(C) such
that

Using the Clifford matrices (z — ex)(—e{z+ 1) and (z + e,)(—e^z— 1) ,
and Theorem 3 we may characterize the domain %g . We may also charac-
terize the domain ^g by more direct means. First we need

LEMMA 1. Suppose that z G C"+1\(iV(0) u S"c). Then the set N(z) n S£
contains a real manifold which is holomorphic to the sphere Sn~l.

PROOF. AS Z G C"+1\N(0) there exists z G C\{0} and w G S£ such
that z = zw. We may place w = iy where x, y G K"+1. As w G 5^+1

we have that xy + yx = 0. I f y ^ O then we may choose (n - 1) vectors
{e{z)x, . . . , e(z)n_,} in /E"+1 such that

\e(z)j + e(z)jx - ye(z)jy = e{z)}e{z)k + e(z)j = 0

for j ^ k, and e(z)2j = 1 for j = 1, . . . , n - 1. By solving the simultaneous
equations

n - l

n-\
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[13] Complex Clifford analysis and domains of holomorphy 425

where

we have that z(w) = (z2 + l ) /2 . On placing 1 - z(w)2 - (z - z(w))2/2 = y2

we have

z(w)w + yv G iV(z) n S£,

for each v in the real space spanned by w', e(z){, ... , e(z)n_l, with v2 = 1.
A similar result can be obtained by similar means when y = 0.

For z e Cn+l\(N(0) US£) we denote the (n - 1 )-dimensional manifold
constructed in Lemma 1 by *F(z). As *F(z) is a real (n - 1 )-dimensional
submanifold of the complex, n-dimensional manifold S£ we have that for
each z, e 4*(z) there is a complex 1-dimensional submanifold Uz of S£,
containing Zj , with

Consequently, we may construct a real, n-dimensional manifold 6(z) lying
in S£ which is an Sl fibration of *F(z). Moreover, for each zx e *F(z) the
S1 fibre lies in U , and in contractible within U to z. .

Z, Z, 1

The manifold O(z) is the boundary of a real w-dimensional manifold
#(z), with x(z) n Uz homeomorphic to a disc.

By perturbing the point z it is now straightforward to show

LEMMA 2. There is an open subset C/(z) o/C"+1yV(0) such that for each
z1 e U(z) the set N(zl) n ^(z) is a manifold homeomorphic to S" and
N(zl) n x(z) n Uz consists of precisely one point.

From Lemma 2 it is now possible to repeat arguments used in the previous
section of this paper to show

THEOREM 12. Suppose that % c s£ is a domain of holomorphy, with
n + 1 = Ik. Then each holomorphic function g:%^ An+l(C) has a unique
continuation to a complex left regular function

where H{W) = {ze C"+1\(A^(0) US£): 4*(z) c ^ } U ^ .

Now by analogous arguments to those used to establish Theorem 4 we
have, for % c S£ ,
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THEOREM 13. The right An+i(C) modules

and

are topologically isomorphic Frechet modules.

We also have, from Proposition 10 and Theorem 3,

PROPOSITION 11. For % c s £ , a domain of holomorphy, « + 1 = 2k, and

g : ^ —• An+i(C) a holomorphic function, there exists a complex harmonic
Cauchy Kowalewski extension of g to

In [11] we illustrate that for each complex left regular function f:UcC

C"+1 -> An+l(C), the function zkf(z) is annihilated by the operation Dk+l,

where D = Yl"jt\ ejd/dzj . Also, in [11] we illustrate that for each complex

harmonic function h: Uc —• An+l(C) we have that zhh(z) is annihilated by
k + 1

the operator D . From this we have, from Theorem 12 and Proposition
11,

PROPOSITION 12. For % c s£ a domain of holomorphy, n + \ = 2k, and
g:%-+ An+l(C) a holomorphic function, there exists for each q e N+ a
holomorphic function

gq: H{V) - An+l(C)

such that Dqgq(z) = 0 and gg\v = g.

DEFINITION 5. A holomorphic function g: Uc —*• An+l(C) is called com-
plex q-left regular if D9 g(z) = 0 .

In [11] we show that if / ( ( a z + b)(cz + d)~l) is a complex q-left regular

function with respect to the variable (az+b)(cz+d)~l, with (a
c
b
d) aClifford

b)(cz + d)~x) is a complex fc-left r<
ble z, where

d)(cz+d))-"/2+{g-V)/2 if q is odd,

matrix, then Jq{cz + d)f((az + b)(cz + d) x) is a complex fc-left regular
function with respect to the variable z , where

"[CZ + } ~ 1 ( (« + d)(cz+d)yn/2+«/2 if q is even.

It now follows from Proposition 12 that we have the following theorem.

THEOREM 14. Suppose that % is a domain of holomorphy in Cn, with
n = 2k - 1, and g:^-* An+l(C) is a holomorphic function. Then there is
a complex q-left regular function

such that gq\v = g.
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The construction given in Lemma 1 does not depend on n being odd, nor
does the statement immediately preceding Theorem 14 depend on n being
odd. Consequently, we may for each domain ^ c ^ construct the domain

in C"+1\iV(0), and we have

THEOREM 15. For % c s£ , a domain of holomorphy, n = Ik, and
g: ^ —• An+l(C) a holomorphic function, there exists for each q e N+ a
complex q-left regular function gq: NH(%?) -> An+l(C) such that gq\% = g.

Moreover, for ^ c c " , and gl: %fl —> An+i(C) a holomorphic function,

there exists a complex q-left regular function gq : NH(%(X) -* An+x(C) such

that gl
q\vi=gx.

As a consequence of Theorems 14 and 15 we have that the functions

°° 1
Exp t = ^2 7i(z2<?2 + ••• + Zn+len)J '

Exp( X , Z ) = 2 ^ — (x2Z2e2 H ^ Xn+lZn+\en+V
J=0 J'

and ^'(jr2z2+ +JC»+iz"+i) all have complex A:-left regular Cauchy Kowalewski
extensions to Cn+ . It follows that many of the existing results on transfor-
mation analysis associated to the monogenic Cauchy Kowalewski extensions
of these function [3, 13, 14] also hold for these other more general extensions.

5. Holomorphic extensions of analytic functions
on «-dimensional manifolds in Rn+I

In this section we shall assume that M is a real analytic n-dimensional
manifold lying in E"+ 1. As M is analytic there exists a holomorphic, com-
plex M-dimensional manifold CM C C"+1, with M C CM.

Suppose that M is such a manifold. Then for each x e M we may choose
a unit normal vector «(x) to M at x . We may also, for each x e M , choose
a real n-dimensional analytic submanifold Af (x) of CM with x e M(x)
and with tangent space iTMx at x , where TMX is the tangent space of M
at x. We now have that for each X 6 M\{0} the set N(x + An(x)) n iTMx is
an (n - 1 )-dimensional sphere. It is now straightforward to adopt technical
arguments given in [12] to establish the following.
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LEMMA 3. For each xeM there exists A(x) and 6(x) € R+ such that for
each k e (0, X{x)) u ( -6 (x) , 0) we have that the set N(x + An(x)) n M(x) is
a smooth manifold homeomorphic to S"~l.

We denote this manifold by X{y) where y = x + An(x); X(y) is a real
submanifold of CM. Consequently, for each z e l ( y ) there is a one dimen-
sional complex submanifold Uz of CM which contains z and {TUz)z is the
complex space in TCMz which does not contain any vector from CTM(x)z,
the complexification of the tangent space TM(x)z. We may now choose a
fibration Y(y) of X(y) with fibre Uz at each z e X(y). We may also choose
as Sl fibration Z(y) of X(y) where each fibre is the boundary of Uz. More-
over, we may choose each fibre Uz so that it is contractible within itself to
z. We now have, by similar arguments to those outlined in the previous two
sections,

PROPOSITION 13. Within Cn+l there is an open set W(y) containing y
and such that for each holomorphic function g: %M —> An+l(C), with %M a
complex, open submanifold of CM with Y(y) c %M, we have

j-f G+(x-zQ)Dzg(z)

is a complex left regular function on W{y), when n + 1 = 2k.

It is also straightforward to use the Cauchy Riemann equations to adapt
Proposition 3 and 4 to obtain, from Proposition 13,

THEOREM 16. Suppose that h: M—> An+l(C) is an analytic function with

n + 1 = 2k. Then there exists a neighbourhood M(h) of M in R"+1 and a
left regular function fh: M(h) -> An+l(C) such that fh\M = h.

Theorem 16 was established in [15] using different techniques. However,
our approach gives other information. We have

THEOREM 17. Suppose that h: M -* ^4n+1(C) is an analytic function with
n + 1 = 2k. Then h has a Cauchy Kowalewski extension to a left regular
function fk on the domain

{y € E"+1: y = x+An(x), where x&M and X = 0 or N(y)n
M(x) — X(y) with X(y) C %h, the domain ofholomorphy in
CM to which h holomorphically extends).
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Note that the domain in Rn+ described in Theorem 17 need not neces-
sarily be a normal neighbourhood of M.

We denote the domain in Kw+1 appearing in Theorem 17 by V(%h). By
similar arguments to those used in the first section of this paper we have the
following generalization of Theorem 10.

THEOREM 18. Suppose that n + 1 — 2k and % is a domain of holo-
morphy lying in CM. Suppose that @{$J, ^4n+1(C)) is the right An+l(C)
module of holomorphic functions defined on %. Then the Frechet mod-
ules M,(V(&),An+l(C)) and <?(%?', An+l(C)) are topologically isomorphic,
where %' is the maximal subdomain of % for which N{z) n %' contains a
manifold homeomorphic to S"~x for z e C n 1 '

For % a domain of holomorphy lying in CM we denote the set

{y e R"+l: y = x+A«(x), where x € M and X = 0 or iV(y)n
M(x) = X(y), with X(y) c % and X(y) is the boundary of
a real n-dimensional submanifold of M(\)}

by NV(&).
We now have, from similar arguments to those used in the previous two

sections,

THEOREM 19. Suppose that n = 2k. Then the Frechet modules M,(NV(^'),
^n+iCC)) and &C%/', An+l(C)) are topologically isomorphic.

We now turn to Cauchy Kowalewski extensions, of analytic functions de-
fined on M, which satisfy a finite iterate of the Euclidean Dirac operator.
First we have

PROPOSITION 14. Suppose that h: M -> (C) is an analytic function, 0 £

M and fk h{x) is the left regular Cauchy Kowalewski extension of x~k+lh(x)

to M(h). Then xk~lfkJl(x) is annihilated by the operator (J2"tl ejd/dXjf

and xk-xfkth{x)\M = h(x),for k e N+.

LEMMA 4. Suppose that 0 e M. Then there is an x0 e Kn+1 such that
0 £ Mx = M + x0.

As the operator (]C;=i epl®zj)k is a constant coefficient operator it now
follows from Proposition 14 and Lemma 4 that we have the following theo-
rem.
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THEOREM 20. Suppose that h: M —> An+l(C) is an analytic function. Then
for each k e N+ there is a function hk: M{h) -> An+l(C) such that hk\M = h
and ( J 2 " J + l k

6. Real, n-dimensional, analytic manifolds in C"+l

DEFINITION 6. A real ^-dimensional, analytic manifold M lying in C"+ l ,
with the property that for each z 6 M we have

TMz n N(z) = {z},

is called a restricted analytic manifold.
Examples of such manifolds include each real ^-dimensional, analytic

manifold in Kn+1, and the rotation of such a manifold within Cn+l via an
element of the complex orthogonal group O(Cn+i) = {{a^) — {aij){aij)

T =
(<*,,.), with aueC, \<i,j<n}.

It is fairly straightforward to extend the results of the previous sections
to special types of restricted analytic manifolds, and associated domains of
holomorphy. First we note that for each restricted manifold M there is a
complex w-dimensional manifold CM with M C CM. Consequently, for
each z e M and each c e Sl c C, we have that there is a real analytic
manifold M(z, c) c CM, with z € M(z, c) and TM(z, c)z = cTMz.

DEFINITION 6. Suppose M is a restricted analytic manifold, such that for
each z € M there is a vector m(z) e C"+1 such that

(i) the minimal real vector space in Cn+1 containing TMZ and m(z) is
(« + 1)-dimensional, and

(ii) for each vector v{z) in this space we have that v(z)2 = 0 if and only

Then M is called a normally restricted manifold.
We now have

LEMMA 5. For each X g K\{0} and each zeM the set N(z + Xcm{i)) n
TM(z, c) is an (n - \)-dimensional manifold homeomorphic to the sphere

We now have the following generalization of Lemma 3.

LEMMA 6. Suppose that M is a normally restricted analytic manifold.
Then for each z e M and each c e S1 there exists X(z, c), 6(z, c) e K+ such
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that for each Ae (0, X(z, c))U(-0(z, c), 0) the set N(z + Xcm(z))nM(z, c)
is a smooth manifold homeomorphic to Sn~x.

We denote this (n - 1 )-dimensional manifold by X(zx) where z1 = z +
kcm(z). Then X{zx) is a real submanifold of CM. Consequently, for each
z" € ^(z1) there is a one-dimensional complex submanifold C/z»# of CM
which contains z" and (TUxi,)x» is the complex subspace of TCMz,, which
does not contain any vector from CTM(z, c)xn . We may also choose an Sl

fibration Z(z') of J(z ' ) where each fibre is the boundary of Ux>. Moreover,
we may choose each fibre Ux> so that it is contractible within itself to z .
We not have the following generalization of Proposition 13.

PROPOSITION 15. Suppose that n + 1 —2k and M is a normally restricted
analytic manifold lying in C"+ . Then we have an open set W(zx) containing
zx, such that for each open set ^M c CM, with X(z) c %M, and each
holomorphic function g: %M —> An+1(C), the function

± [ G+(z"-z0)Dz"g(z")
10n JZ(Z1)

in complex left regular on W(z ).

Proposition 15 holds for each z' = z + Xcm(z). Moreover, we have

PROPOSITION 16.

Consequently, we have

THEOREM 21. Suppose that M is a normally restricted analytic manifold
lying in C"+1 with n + l = 2k. Then for each holomorphic function g: %M D
M —* An+l(x), there is a complex left regular function

g+: V'M{J?) ^ An+l{C)

such that g+\%, - g, where

V'M{%M) = {z € C"+1: z = z + Acm(z), where zeM,X = 0

or N(z) n M(z, c) = X(z)}.
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For M a normally restricted analytic manifold and ^ a domain of holo-
morphy lying in CM we denote the set

{z G C"+1: z' = z + Xcm(z), where zeM, k = 0 or
N(z) n Af(z, c) = X(z) with a manifold D(z) C Af(z, c),
homeomorphic to an n-dimensional disc, and dD(z) c X(z')}

by NV'M<P).
We now have the following theorem.

THEOREM 22. (i) n + 1 = 2k the Frechet modules M,(V^)An+l(C))
and &($/ n VM{^), An+l(C)) are topologically isomorphic.

(ii) For n = 2k the Frechet modules M,{NV^), An+l{C)) and (?(%fn
NV^(^), An+l(C)) are topologically isomorphic.

We can go further than Theorem 22. First we need

DEFINITION 7. A complex «-dimensional manifold CM lying in Cn+1 is
called a restricted complex manifold if for each z e CM there is a normally
restricted analytic manifold K(z) c CM with z e /(z).

For a restricted complex manifold CM we denote the domain

U VK{
z€CM

by H(CM), and we denote the domain

U
by NH{CM).

Suppose that CM is a restricted complex manifold. Then we have

THEOREM 23. (i) For n+1 = 2k theFrichet modules M,(H'(CM), An+1(C))
and (9(CM, ^n+1(C)) are topologically isomorphic.

(ii) For n = 2k the Frechet modules Mt(NH(CM),An+x(C)) and 3'(CM,
are topologically isomorphic.

Examples of restricted complex manifolds include C" , S£, and

{z,e, + • • • + zn+len+l e Cn+1: zja, + • • • + z2
n+lan+1 = b,

where ax, ... ,an+l, /»6C\{0}}.

A complex submanifold of C"+1 which is not a restricted complex manifold
is N(0)\{0}.
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