
The Journal of Symbolic Logic

Volume 88, Number 4, December 2023

THE STRENGTH OF AN AXIOM OF FINITE CHOICE
FOR BRANCHES IN TREES

JUN LE GOH

Abstract. In their logical analysis of theorems about disjoint rays in graphs, Barnes, Shore, and the
author (hereafter BGS) introduced a weak choice scheme in second-order arithmetic, called the Σ1

1 axiom
of finite choice (hereafter finite choice). This is a special case of the Σ1

1 axiom of choice (Σ1
1-AC0) introduced

by Kreisel. BGS showed that Σ1
1-AC0 suffices for proving many of the aforementioned theorems in graph

theory. While it is not known if these implications reverse, BGS also showed that those theorems imply
finite choice (in some cases, with additional induction assumptions). This motivated us to study the proof-
theoretic strength of finite choice. Using a variant of Steel forcing with tagged trees, we show that finite
choice is not provable from the Δ1

1-comprehension scheme (even over �-models). We also show that finite
choice is a consequence of the arithmetic Bolzano–Weierstrass theorem (introduced by Friedman and
studied by Conidis), assuming Σ1

1-induction. Our results were used by BGS to show that several theorems
in graph theory cannot be proved using Δ1

1-comprehension. Our results also strengthen results of Conidis.

§1. Introduction. Reverse mathematics, as initiated by Friedman [5] in the 1970s,
is a program in the foundations of mathematics which aims to find the axioms
or formal systems needed in order to carry out proofs of particular mathematical
theorems. Early results by Friedman, Simpson, and others showed that several
basic theorems of analysis, algebra, and combinatorics, when formalized in second-
order arithmetic, are equivalent to one of five sets of axioms, now known as the
“Big Five.” (The standard reference for subsystems of second-order arithmetic is
[15].) These equivalences were proved over the base theory RCA0, which formalizes
computable mathematics and is the weakest of the Big Five. Later work revealed
several exceptions to the Big Five phenomenon, including theorems that lie strictly
between consecutive levels of the Big Five, and theorems that are incomparable to
some level of the Big Five (for instance, Ramsey’s theorem for pairs). In this paper,
we study a weak form of the axiom of choice which lies strictly between consecutive
levels of the Big Five, namely ACA0 and ATR0.

The study of choice schemes in second-order arithmetic predates reverse
mathematics. In 1962, Kreisel [8] introduced the Σ1

1 axiom of choice (Σ1
1-AC), which

asserts that

∀n∃Xϕ(n,X) → ∃(Xn)n∀nϕ(n,Xn)

Received April 30, 2021.
2020 Mathematics Subject Classification. Primary 03D55, 03B30, 03F35.
Key words and phrases. theories of hyperarithmetic analysis, reverse mathematics, finite choice, Steel

forcing, arithmetic Bolzano–Weierstrass theorem.

© The Author(s), 2023. Published by Cambridge University Press on behalf of The Association for Symbolic Logic. This is an Open
Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/),
which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

0022-4812/23/8804-0004
DOI:10.1017/jsl.2023.39

1367

https://doi.org/10.1017/jsl.2023.39 Published online by Cambridge University Press

https://creativecommons.org/licenses/by/4.0/
www.doi.org/10.1017/jsl.2023.39
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jsl.2023.39&domain=pdf
https://doi.org/10.1017/jsl.2023.39

1368 JUN LE GOH

for each formula ϕ(n,X) in the language of second-order arithmetic which is
arithmetical (i.e., has no set quantifiers). Equivalently,1 it asserts that for any
sequence of trees (Tn)n, each of which has a branch (i.e., a ray in the sense of
graph theory), one can choose a branch from each Tn.

Kreisel’s interest in Σ1
1-AC stemmed at least partially from its intimate connection

with the hyperarithmetic sets. (For background on hyperarithmetic theory, see [13].)
This connection arises from studying the �-models (defined below) of RCA0 + Σ1

1-
AC, or Σ1

1-AC0 for short.
A structure in the language of second-order arithmetic has the form

(N,S,+, ·, <, 0, 1,∈),

where (N,+, ·, <, 0, 1) is a structure in the language of first-order arithmetic (called
the first-order part), S is a collection of subsets of N (called the second-order part),
and ∈ is the membership relation between elements of N and elements of S. Such
a structure is said to be an �-model if its first-order part is the standard natural
numbersN and the symbols +, ·, etc. have their standard interpretations. We identify
an �-model with its second-order part.

Kreisel [8] showed that the �-model HYP consisting of all hyperarithmetical
subsets of N satisfies Σ1

1-AC0, and furthermore, HYP is the minimum �-model of
Σ1

1-AC0. This is analogous to the well-known facts that ACA0 has a minimum �-
model ARITH consisting of all arithmetical subsets of N, and RCA0 has a minimum
�-model REC consisting of all recursive (a.k.a. computable) subsets of N. In fact,
Friedman [5] observed that a subset ofP(N) is a model ofRCA0 (ACA0, respectively)
if and only if it is closed under (effective) join ⊕ and Turing reduction ≤T (and the
Turing jump operator, respectively). In summary:

Theory Minimum �-model Closure of �-models

RCA0 REC ⊕, ≤T
ACA0 ARITH ⊕, ≤T , Turing jump

Σ1
1-AC0 HYP

One might hope to fill in the final entry of the table with “⊕, hyperarithmetical
reduction.” Every �-model of Σ1

1-AC0 is closed under join and hyperarithmetical
reduction [8]. However, not every subset of P(N) which is closed under join and
hyperarithmetical reduction satisfies Σ1

1-AC0. The issue is not that Σ1
1-AC0 is too

strong; rather, there is no theoryT such that the�-models ofT are exactly those which
are closed under join and hyperarithmetical reduction [17, 2.2.2]. This motivated
the following definition:

Definition 1.1 (Steel [16], Montalbán [9]). A theory T is a theory of hyperarith-
metic analysis (THA) if:

1To prove this, use [15, V.5.4] and observe that Σ1
1-AC0 and the statement about trees each imply

ACA0 over RCA0.

https://doi.org/10.1017/jsl.2023.39 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.39

THE STRENGTH OF AN AXIOM OF FINITE CHOICE FOR BRANCHES IN TREES 1369

– every �-model of T is closed under join and hyperarithmetic reduction, and
– T holds in HYP(Y) for every Y ⊆ N (here HYP(Y) consists of all subsets of
N which are hyperarithmetically reducible to Y).

Before we discuss examples of THAs, note that each THA T characterizes
the notion of hyperarithmetic reduction in the following sense: A set X ⊆ N is
hyperarithmetically reducible to a set Y ⊆ N if and only if every �-model of T
which contains Y also contains X.

The aforementioned results of Kreisel [8] relativize to show that Σ1
1-AC0 is a THA.

In the 60s and 70s a number of THAs were identified and proved to be nonequivalent
[4, 16, 17]. These THAs are natural fragments of well-studied axiom schemes such
as choice schemes or comprehension schemes. In 2006, Montalbań [9] was the first
to identify a THA which is a published theorem not stated using concepts from logic
(such as first-order formulas). This THA, known as INDEC, is a result of Jullien
(see [9]) about indecomposability of linear orderings. Other works on THAs include
[2, 10–12].

Recently Barnes, Goh, and Shore [1] (hereafter BGS) identified several theorems
of graph theory which are THAs. These theorems are variations of classical results
of Halin [6] on disjoint rays in graphs. For simplicity we only discuss the oldest
of these results (see [3, Theorem 8.2.5(i)] for its statement), which we call Halin’s
theorem. (Much of the discussion below applies to variations of Halin’s theorem as
well; see [1].) In their proof that Halin’s theorem is a THA, BGS [1] showed that
Halin’s theorem is provable using Σ1

1-AC0, and conversely, Halin’s theorem implies
the following weakening of Σ1

1-AC0 (assuming additional induction axioms on top
of what is available in RCA0):

Definition 1.2 (BGS [1]). Finite-Σ1
1-AC0 consists of RCA0 and

(∀n)(∃ nonzero finitely many X)ϕ(n,X) → (∃(Xn)n)(∀n)ϕ(n,Xn)

for each arithmetical formula ϕ(n,X). Formally, “(∃ nonzero finitely many
X)ϕ(n,X)” means that there is a nonempty sequence (Xi)i<j such that for each
X, ϕ(n,X) holds if and only if X = Xi for some i < j.

Henceforth we will refer to finite-Σ1
1-AC0 as finite choice.

In this paper we present implications and nonimplications between finite choice
and other known THAs (Theorems 1.3 and 1.5). First we ought to discuss why
finite choice is a THA. To show that a theory is a THA, it suffices to show that it
is sandwiched between two THAs. Of course Σ1

1-AC0 implies finite choice. On the
other hand, finite choice implies another known THA: unique-Σ1

1-AC0, which asserts
(in addition to RCA0) that

∀n∃!Xϕ(n,X) → ∃(Xn)n∀nϕ(n,Xn)

for each arithmetical formulaϕ(n,X). Unique-Σ1
1-AC0 has appeared in the literature

with names such as arithmetical replacement Π0
(�)-RA [17, p. 6], Π1

0-replacement

[16, p. 74], and most commonly weak-Σ1
1-AC0 (e.g., [15, VIII.4.12]). A proof that

unique-Σ1
1-AC0 is a THA can be found in [15, VIII.4.15–16].

Since finite choice is sandwiched between Σ1
1-AC0 and unique-Σ1

1-AC0, we can
calibrate its proof-theoretic complexity by comparing it with other THAs in this

https://doi.org/10.1017/jsl.2023.39 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.39

1370 JUN LE GOH

position. One such THA is the Δ1
1-comprehension scheme (Δ1

1-CA0), which asserts
(in addition to RCA0) that

∀n(ϕ(n) ↔ ¬�(n)) → ∃X∀n(n ∈ X ↔ ϕ(n))

for any ϕ(n) and �(n) which are Σ1
1. It is easy to see that Σ1

1-AC0 → Δ1
1-CA0 →

unique-Σ1
1-AC0. In order to separate Δ1

1-CA0 and Σ1
1-AC0, Steel [16] introduced a

new forcing notion and used it to construct an �-model which satisfies Δ1
1-CA0 but

not Σ1
1-AC0. Van Wesep [17] modified Steel’s methods to construct an�-model which

satisfies unique-Σ1
1-AC0 but not Δ1

1-CA0. Subsequently various modifications of Steel
forcing have been used to separate THAs [2, 9–12]. Using yet another variant of
Steel forcing (Section 3.3), we shall prove the following:

Theorem 1.3. There is an �-model which satisfies Δ1
1-CA0 but not finite choice.

Therefore Δ1
1-CA0 does not imply finite choice, even if additional induction axioms are

assumed.

In particular, finite choice is strictly stronger than unique-Σ1
1-AC0. Theorem 1.3

was used by BGS [1] to show that Halin’s theorem and many of its variants cannot
be proved using Δ1

1-CA0 (even if additional induction axioms are assumed).
To show that finite choice is strictly weaker than Σ1

1-AC0, we will establish a
connection between finite choice and a known THA: the arithmetic Bolzano–
Weierstrass theorem ABW introduced by Friedman [5]. Our statement of ABW
below follows Conidis [2, p. 4470].

Definition 1.4. The arithmetic Bolzano–Weierstrass theorem (ABW) states that if
A(X) is an arithmetic predicate on 2N , then eitherA(X) has finitely many solutions,
or the set {X ∈ 2N : A(X)} of A-solutions has an accumulation point.

Friedman asserted that ABW follows from Σ1
1-AC0. Conidis [2, Theorem 2.1(2)]

furnished a proof of that statement. In addition, [2, Theorem 2.1(4)] showed that
ABW implies unique-Σ1

1-AC0 over the base theory consisting of RCA0 and the
induction scheme for Σ1

1 formulas (denoted IΣ1
1). (To the best of our knowledge it

is not known if ABW implies unique-Σ1
1-AC0 over just RCA0. Nevertheless, as every

�-model satisfies IΣ1
1, Conidis’s result shows that every �-model of RCA0 + ABW

satisfies unique-Σ1
1-AC0.) We will strengthen Conidis’s result by proving the following

(Section 2):

Theorem 1.5. ABW implies finite choice over RCA0 + IΣ1
1.

It follows that finite choice is strictly weaker than Σ1
1-AC0, as RCA0 + IΣ1

1 + ABW
does not imply Σ1

1-AC0 or even Δ1
1-CA0 (as witnessed by Van Wesep’s model, see [17,

Lemma 1.4] and [2, Theorem 4.7]).
Having established a connection between ABW and finite choice (Theorem 1.5),

our Theorem 1.3 gives an alternate, arguably simpler, proof of Conidis’s [2, Theorem
3.1] result that Δ1

1-CA0 does not imply ABW. (See Remark 3.1.)

§2. Arithmetic Bolzano–Weierstrass. We adapt a proof of Conidis [2, Theorem
2.1(4)] to prove Theorem 1.5, which asserts that RCA0 + IΣ1

1 + ABW
 finite choice.

https://doi.org/10.1017/jsl.2023.39 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.39

THE STRENGTH OF AN AXIOM OF FINITE CHOICE FOR BRANCHES IN TREES 1371

Proof of Theorem 1.5. Suppose that ϕ(n,Y) is an arithmetical predicate which
is an instance of finite choice, i.e., for each n, ϕ(n,Y) has finitely many solutions.
Without loss of generality, we may assume that ϕ(n, ∅) always fails.

Define an arithmetical predicate A on 2N as follows: A(〈Xn〉n) holds if

∃n0((∀n ≤ n0)[ϕ(n,Xn)] ∧ (∀n > n0)[Xn = ∅]).

Using IΣ1
1 and the assumption that for each n, ϕ(n,Y) has a solution, we can show

that for each n0, A(〈Xn〉n) has at least n0 distinct solutions. (Note if Xn is ∅, then it
does not code a solution to ϕ(n, ·).) Hence A(〈Xn〉n) is an instance of ABW.

By ABW, the set {〈Xn〉n : A(〈Xn〉n)} has an accumulation point Y. Interpret Y as
a sequence 〈Yn〉n. We claim that for all n, ϕ(n,Yn) holds.

Suppose towards a contradiction that ϕ(k,Yk) fails. Since ϕ(k, ·) has only finitely
many solutions, there is some m sufficiently large such thatYk � m �= Y � m for every
Y such that ϕ(k,Y) holds.

Now, by our choice of 〈Yn〉n, there are infinitely many 〈Xn〉n satisfying A such
that Xk extends Yk � m. For any such 〈Xn〉n, ϕ(k,Xk) fails, so by definition of A,
Xn = ∅ for all n ≥ k.

But for each n < k, ϕ(n, ·) has only finitely many solutions, so there cannot
be infinitely many 〈Xn〉n satisfying the above conditions. Contradiction. We have
showed that 〈Yn〉n is a finite choice solution to ϕ(n,Y). �

We do not know if finite choice implies ABW.

§3. Δ1
1-comprehension does not imply finite choice. The rest of the paper is devoted

to proving Theorem 1.3 using a new variant of Steel’s [16] tagged tree forcing. We
assume familiarity with forcing in arithmetic (see, e.g., [14, Section 3]). A helpful
reference for forcing in arithmetic over ramified languages is [13, III.4 and IV.3].

We begin by fixing some notation regarding trees. By a tree we mean a subset of
N<N which is closed under prefix. An element f of NN is a branch through a tree T,
written f ∈ [T], if every prefix of f lies in T. If some � in T is a prefix of a branch
through T, we say that � is extendible in T. The empty string is denoted by ∅. The
length of a string � is denoted by |�|. If � is a prefix of � (or a branch f), we write
� ⊆ � (� ⊆ f, respectively). If � is a nonempty string, �– denotes the prefix of � of
length |�| – 1. If � is a string and T is a tree, � ∩ T denotes the longest prefix of �
which lies in T.

3.1. The model. We shall construct an �-modelM∞ ⊂ P(N) which satisfies Δ1
1-

CA0 but not finite choice. The basic setup follows [10].
To defineM∞ we will construct a generic object

〈TG, {fGi : i ∈ N}, hG 〉,

where TG is a tree, each fGi is a distinct branch through TG , and hG : TG →
�CK1 ∪ {∞} is the well-founded rank function on TG , i.e., for all � in the well-
founded part ofTG , we have hG(�) = sup{hG(�) + 1 : � ∈ TG, � ⊇ �}, while for all
� which is extendible inTG , we have hG(�) = ∞. Our convention is that∞ = ∞ + 1
and ∞ >∞ > α, so hG(�) = sup{hG(�) + 1 : � ∈ TG, � ⊇ �} for all � in TG .

Then, for each finite F ⊂ N (written F ⊂f N), we define

MF = {X ⊆ N : ∃� < �CK1 (X ≤T (TG ⊕ 〈fGi 〉i∈F)(�))},

https://doi.org/10.1017/jsl.2023.39 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.39

1372 JUN LE GOH

where Y (�) denotes the transfinite iteration of the Turing jump of Y up to level �.
(For background on transfinite iterations of the Turing jump, see [13]. Later, we will
express MF as the sets which are computable in H�,F for some � < �CK1 , defined
below.) Notice that � ranges over the computable ordinals, rather than the ordinals

which are computable in �
TG⊕〈fGi 〉i∈F
1 . Nonetheless we will show in Corollary 3.14

thatMF = HYP(TG ⊕ 〈fGi 〉i∈F).
Finally, our desired �-model is defined by

M∞ =
⋃
F⊂fN

MF .

Notice that hG does not appear in the definitions ofMF orM∞. Nonetheless it will
play a crucial role in showing thatM∞ has the properties we desire.

Let us sketch why finite choice fails inM∞. We will show (Lemma 3.9) that for
each F ⊂f N, MF ∩ [TG] = {fGi : i ∈ F }. This implies that the branches through
TG inM∞ are exactly the branches fGi , for i ∈ N. This also implies thatM∞ does
not contain any infinite sequence of distinct branches fGi , for such a sequence has
to lie in someMF , contradicting Lemma 3.9.

This allows us to construct a failure of finite choice: For each n, let Tn be the
subtree of TG passing through 〈n〉. Our forcing will ensure that each [Tn] contains
(nonzero) finitely many fGi . Hence M∞ thinks that 〈Tn〉n is an instance of finite
choice. Any finite choice solution to 〈Tn〉n would be an infinite sequence of distinct
branches fGi (they are distinct because the nth branch has first entry n), and hence
would not lie inM∞, by the previous paragraph.

In preparation for describing the forcing, we shall give every element of M∞ a
name. Define by recursion on � < �CK1 :

H1,F = TG ⊕ 〈fGi 〉i∈F , S�,F,e =W
H�,F
e , H�,F =

⊕
	<�,e∈N

S	,F,e

for � < �CK1 , F ⊂f N, e ∈ N. (Here WY
e is the eth computably enumerable set

relative to the oracle Y.)

3.2. The forcing language. We consider a ramified language L∞ which extends
the language of second-order arithmetic with constants for each element of M∞,
and various types of restricted set variables.

In order to define L∞, we first define a language LF for each F ⊂f N. LF consists
of first-order formulas in the language of second-order arithmetic generated by
the following set variables and constants: for each D ⊆ F , there are unranked set
variables of the formXD and ranked set variables of the formX
D for each
 < �CK1 ,
while the constants are intended to name every element ofMF :

– T, fi for i ∈ F ;
– for each 	 < �CK1 , H	,F and S	,F,e for each e ∈ N.

LetCF denote the above set of constants. If S is of the form S	,F,e , we define dom(S)
to be F. We define C� to be the set of all constants of the form H	,F or S	,F,e for
some 	 < �.

The language L∞ consists of
⋃
F⊂fN

LF , unranked set variables of the form X,

and ranked set variables of the form X
 for each
 < �CK1 .

https://doi.org/10.1017/jsl.2023.39 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.39

THE STRENGTH OF AN AXIOM OF FINITE CHOICE FOR BRANCHES IN TREES 1373

Each formula � of L∞ can be assigned an ordinal rank as follows:

rk(�) = �CK1 · u(�) + �2 · o(�) + � · r(�) + n(�),

where:

– u(�) < � denotes the number of unranked quantifiers in �;
– o(�) < �CK1 denotes the least upper bound of

{	 : 	 is the superscript of a bound variable in �}
∪ {	 + 1 : some constant of the form S	,F,e or H	,F occurs in �};

– r(�) < � denotes the number of ranked set quantifiers in �;
– n(�) < � denotes the number of connectives.

We say that a formula � of L∞ is ranked if all of its bound variables are ranked, or
equivalently, if rk(�) < �CK1 .

A variable of the form X
D or XD is F-restricted ifD ⊆ F . A constant of the form
H�,D or S�,D,e is F-restricted if D ⊆ F . A formula of L∞ is F-restricted if all of its
bound variables and constants are F-restricted.

A formula is Σ-over-LF if it is built up from ranked F-restricted formulas using
∧, ∀n, and ∃X .

For any formula � and any � < �CK1 , we define �� by replacing every unranked
set variable in � with its ranked counterpart, i.e., X is replaced by X� and XF is
replaced by X�F .

3.3. The forcing notion. The forcing P consists of tuples

p = 〈Tp,fp, hp〉
such that:

(C1) Tp ⊆ N<N is a finite tree;
(C2) fp is a finite partial function from N to Tp\{∅} such that each � ∈ Tp of

length 1 is an initial segment of some fp(i)
(we view fp as a finite collection of finite paths in Tp);

(C3) hp : Tp → �CK1 ∪ {∞} satisfies the following:
(a) hp is a rank function, i.e., if � � �, then hp(�) > hp(�)

(by fiat ∞ >∞ > α for every α);
(b) for all i ∈ dom(fp), hp(fp(i)) = ∞;
(c) hp(∅) = ∞.

We think of hp as a labeling or tagging of nodes in Tp. Condition (C2) is novel;
ordinary Steel forcing only requires thatfp is a finite partial function from N to Tp.
We impose (C2) in order to ensure that every node of length 1 is extendible in the
generic tree TG . Note that by (C2) and (C3)(b), for each � in Tp of length 1, we
must have hp(�) = ∞. Therefore, if Tp contains any node of length 1, then (C3)(c)
follows from (C2) and (C3)(b). There may be nodes � (of length greater than 1)
such that hp(�) = ∞ yet there is no i such that � ⊆ fp(i).

We say that q extends p, written q ≤ p, if:

(E1) Tq ⊇ Tp;
(E2) for all i ∈ dom(fp), fq(i) is defined and fp(i) = fq(i) ∩ Tp

(old paths cannot be extended in the old tree);

https://doi.org/10.1017/jsl.2023.39 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.39

1374 JUN LE GOH

(E3) for all i ∈ dom(fq)\dom(fp), fq(i) ∩ Tp = ∅
(new paths can only intersect the old tree at the root);

(E4) hq ⊇ hp.
Conditions (E2) and (E3) are needed for us to control the complexity of the

forcing relation. Condition (E2) is present in ordinary Steel forcing [16, p. 68]. One
could weaken (E2) by considering only conditions p where each fp(i) is a leaf in
Tp (such conditions are dense in the above forcing): In this case we could replace
(E2) by “for all i ∈ dom(fp), fq(i) is defined and fp(i) ⊆ fq(i).” Condition (E3)
is not in [16] but needs to be added to it, as pointed out in [10, Section 2.2].

Remark 3.1. Conidis [2, Section 3.2] used a more complicated variant of Steel
forcing (with locks on certain nodes of Tp which can be toggled on and off) to
prove that Δ1

1-CA0 does not imply ABW0. Theorems 1.3 and 1.5 together provide an
alternate proof of his result.

We will take G to be a sufficiently P-generic filter (G must decide all Σ-over-LF
formulas for all F ⊂f N, as well as all formulas of the form ∀n(�(n) ↔ ¬ϕ(n)),
where ϕ and � are Σ-over-LF for some F ⊂f N). Then we may define TG =⋃
p∈G T

p,fGi =
⋃
p∈G f

p(i) for i ∈ N, and hG =
⋃
p∈G h

p. By genericity, eachfGi
is an infinite branch in TG , the branches fGi are distinct, and hG is the well-founded
rank function on TG .

We encode each condition as a number as follows. Fix a computable linear
ordering with well-founded part �CK1 . (Such orderings are known as pseudo-well-
orderings; see [7].) We identify each α < �CK1 with its corresponding element in
the well-founded part. When we write α < � , we always refer to their order as
ordinals rather than the natural number ordering. Using the above identification
and standard pairing functions, we may encode P as a Π1

1 subset of N. For each
α < �CK1 , define Pα to be the set of all conditions p such that the range of hp is
contained in α ∪ {∞}. We have P =

⋃
α<�CK1

Pα . Each Pα is computable, uniformly
in α.

3.4. The forcing relation. The forcing relation for formulas in L∞ is defined by
recursion as follows:

(1) for quantifier-free formulas of arithmetic �, p � � if and only if � is true;
(2) p � � ∈ T if either |�| < 2 and � ∈ Tp, or �– ∈ Tp and hp(�–) ≥ 1;
(3) p � 〈n,m〉 ∈ fi if i ∈ dom(fp) and fp(i)(n) = m;
(4) p � 〈0, �〉 ∈ H1,F if p � � ∈ T;
(5) p � 〈1, 〈i, 〈n,m〉〉〉 ∈ H1,F if i ∈ F and p � 〈n,m〉 ∈ fi ;
(6) for 	 > 1, p � n ∈ S	,F,e if p � ∃sR(H	,F ; e, s, n) where R codes a universal

Turing machine;
(7) for 	 > 1, p � 〈e, n, �〉 ∈ H	,F if � < 	 and p � n ∈ S�,F,e ;
(8) p � ∀x�(x) if for all n ∈ N, p � �(n);
(9) p � ∀X
F�(X
F) if for all 	 <
, e ∈ N, p � �(S	,F,e);

(10) p � ∀X
�(X
) if for all 	 <
, e ∈ N, F ⊂f N, p � �(S	,F,e);
(11) p � ∀XF�(XF) if for all 	 < �CK1 , e ∈ N, p � �(S	,F,e);
(12) p � ∀X�(X) if for all 	 < �CK1 , e ∈ N, F ⊂f N, p � �(S	,F,e);
(13) p � ϕ ∧ � if p � ϕ and p � �;
(14) p � ¬� if for every q ≤ p, q �� �.

https://doi.org/10.1017/jsl.2023.39 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.39

THE STRENGTH OF AN AXIOM OF FINITE CHOICE FOR BRANCHES IN TREES 1375

Lemma 3.2. The following facts hold of �:

(1) If p � �, then for every sufficiently generic filter G which contains p, M∞
satisfies �.

(2) If G is sufficiently generic andM∞ satisfies �, then there is some p ∈ G such
that p � �.

Analogous facts hold for � ∈ LF and each modelMF .

Just as we encoded each forcing condition as a number, we may also encode
each formula in L∞ as a number. We will show that the forcing relation for certain
classes of formulas (encoded as a relation on numbers) can be computed withinM∞
(Lemma 3.12).

3.5. Analyzing the forcing relation for ranked formulas. In order to control the
complexity of the forcing relation, we will show that conditions that are sufficiently
similar to each other force the same formulas of sufficiently low complexity. The
basic notion of similarity in Steel forcing is known as retagging:

Definition 3.3 [16, Definition 4]. Suppose � < �CK1 and F ⊂f N. If p and p∗

are conditions, we say that they are �-F-retaggings if:

– Tp = Tp
∗

and fp � F = fp
∗ � F ;

– hp and hp
∗

agree on labels strictly smaller than �;
– if hp(�) ≥ �, then hp

∗
(�) ≥ �.

We make some observations:

– �-F-retagging is an equivalence relation on conditions.
– If p and p∗ are �-F-retaggings, then for any �′ ≤ � and any F ′ ⊆ F , p and p∗

are �′-F ′-retaggings as well.

Central to our analysis will be the ability to replace a quantifier over P with a
quantifier over some subset P� (recall that P is Π1

1 while P� is computable). Once
we have established connections between retagging and the forcing relation, the
following lemma will be useful for achieving the above:

Lemma 3.4. For any q ∈ P and any � < �CK1 , there is some q∗ ∈ P� such that:

– q and q∗ are �-F-retaggings for every F ⊂f N;
– for every p ∈ P� such that q ≤ p, we have q∗ ≤ p.

Proof. Define Tq
∗

= Tq , fq
∗

= fq , and

hq
∗
(�) =

{
∞, hq(�) ≥ �,
hq(�), hq(�) < �.

It is easy to see that q∗ satisfies the desired properties. �

A cornerstone of the method of Steel forcing is the following basic retagging
lemma.

Lemma 3.5. Let p and p∗ be ��-F-retaggings. Then for all q ≤ p and all � <
� , there exists q∗ ≤ p∗ such that q and q∗ are ��-F-retaggings. Furthermore, if
dom(fp

∗
) ⊆ F (and hence fp

∗ ⊆ fp), then we can choose q∗ such that fq
∗ ⊆ fq .

https://doi.org/10.1017/jsl.2023.39 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.39

1376 JUN LE GOH

The first part of the lemma is identical in form to [10, Lemma 2.5]. The second
part has no analog in [10], but its analog would follow immediately from the proof
of [10, Lemma 2.5]. For our forcing we will construct q∗ (specifically fq

∗
) slightly

differently in order to prove the second part. The second part will be used in the
proof of Lemma 3.11.

Proof. Define q∗ as follows:
– Tq

∗
= Tq ;

– in general, we define fq
∗

to be the disjoint union of:
– fq � F ,
– fp

∗ � (dom(fp
∗
)\(dom(fq) ∩ F)), and

– a function g such that dom(g) is disjoint fromF ∪ dom(fp
∗
) and range(g) =

{� ∈ Tq∗\Tp∗ : |�| = 1};
– if dom(fp

∗
) ⊆ F and we want to satisfy the second part of the lemma, we

define fq
∗

= fq � (F ∪ {i : fq(i) ∩ Tp = ∅});
– hq

∗
is defined by cases:

hq
∗
(�) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
hp

∗
(�), if � ∈ Tp,

∞, if ∃i(� ⊆ fq∗(i)),
hq(�), if hq(�) < ��,
�� + |�|Q, otherwise,

where Q = {� ∈ Tq : hq(�) ≥ ��} and |�|Q ∈ N denotes the rank of � in the
finite tree Q.
hq

∗
is well-defined. First, we show that the second and third cases in the definition

of hq
∗

are mutually exclusive. Suppose � ⊆ fq∗(i) for some i.

Case 1. If fq
∗
(i) = fq(i), then hq(�) = ∞ > ��.

Case 2. If fq
∗
(i) = fp

∗
(i), then � ∈ Tp and hp

∗
(�) = ∞. Since p and p∗ are

��-F-retaggings, we have hp(�) ≥ �� . It follows that hq(�) = hp(�) ≥ �� > ��.
Case 3. Otherwise, |fq∗(i)| = 1. Then hq(�) = ∞ > ��.
Second, in order to show that the first and second cases in the definition of

hq
∗

do not conflict, we shall show that if � ∈ Tp and � ⊆ fq∗(i) for some i, then
hp

∗
(�) = ∞.

Case 1. Suppose fq
∗
(i) = fq(i) and i ∈ F . 1a. If fq(i) ∩ Tp = ∅, then � = ∅

so hp
∗
(�) = ∞. 1b. Otherwise, by (E2) and (E3), we have fq(i) ∩ Tp = fp(i).

Since p and p∗ are ��-F-retaggings, we have fp
∗
(i) = fp(i). It follows that � ⊆

fq(i) ∩ Tp = fp(i) = fp
∗
(i), implying hp

∗
(�) = ∞.

Case 2. If fq
∗
(i) = fp

∗
(i), then hp

∗
(�) ≥ hp∗(fp

∗
(i)) = ∞.

Case 3. Otherwise, |fq∗(i)| = 1. Then hp
∗
(�) = ∞.

To see that the first and third cases in the definition of hq
∗

do not conflict,
suppose � ∈ Tp and hq(�) < ��. We have hp(�) = hq(�) < ��, so by retagging,
hp

∗
(�) = hp(�) = hq(�) as desired. We have shown that hq

∗
is well-defined.

q∗ satisfies (C2). We address the two definitions of fq
∗

separately. Suppose � ∈
Tq

∗
has length 1. We want to show that there is some i such that � ⊆ fq∗(i).

We begin by considering the first definition of fq
∗
. First, consider the case

� ∈ Tp∗ . If there is some i ∈ dom(fp
∗
)\(dom(fq) ∩ F) such that � ⊆ fp∗(i),

https://doi.org/10.1017/jsl.2023.39 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.39

THE STRENGTH OF AN AXIOM OF FINITE CHOICE FOR BRANCHES IN TREES 1377

then we are done. Otherwise, since p∗ satisfies (C2), there is some i ∈ dom(fp
∗
) ∩

dom(fq) ∩ F such that � ⊆ fp∗(i). Then fq
∗
(i) = fq(i) ⊇ fp(i) = fp

∗
(i) ⊇ �

as desired.
Second, if � ∈ Tq∗\Tp∗ , then there is some i ∈ dom(g) such that g(i) = �. We

have fq
∗
(i) = g(i) = � as desired.

Next we consider the second definition of fq
∗
. Assume that dom(fp

∗
) ⊆ F . If

� ∈ Tp∗ , then since p∗ satisfies (C2), there is some i ∈ dom(fp
∗
) such that � ⊆

fp
∗
(i). Such i lies in F by assumption, so fq

∗
(i) = fq(i) ⊇ fp(i) = fp

∗
(i) ⊇ �

as desired.
If � ∈ Tq∗\Tp∗ , then since q satisfies (C2), there is some i ∈ dom(fq) such that

� ⊆ fq(i). Since � /∈ Tp and |�| = 1, it follows that fq(i) ∩ Tp = ∅. So i lies in
dom(fq

∗
). Hence fq

∗
(i) = fq(i) ⊇ � as desired. This completes the proof that q∗

satisfies (C2).
To show that q∗ is a condition, it remains to check (C3). We omit the verification

as it is exactly the same as that for ordinary Steel forcing.
q∗ extends p∗. (E1) and (E4) are immediate. To check (E2), consider any i ∈

dom(fp
∗
).

Case 1. Suppose i ∈ F . By retagging, we have i ∈ dom(fp) ⊆ dom(fq) and
fp

∗
(i) = fp(i). In both definitions of fq

∗
we have fq

∗
(i) = fq(i), so fq

∗
(i) ∩

Tp
∗

= fq(i) ∩ Tp = fp(i) = fp
∗
(i) (the second equality holds by (E2)).

Case 2. If i /∈ F , then we have dom(fp
∗
) �⊆ F . So we are only concerned with the

first definition of fq
∗
. In this case fq

∗
(i) is defined to be fp

∗
(i), which lies in Tp

∗
,

so fq
∗
(i) ∩ Tp∗ = fp

∗
(i).

To check (E3), consider any i ∈ dom(fq
∗
)\dom(fp

∗
). We analyze the two

definitions of fq
∗

separately.
We begin by considering the first definition of fq

∗
.

Case 1. i ∈ dom(fq) ∩ F and fq
∗
(i) = fq(i). Since i ∈ F \dom(fp

∗
), we have

i /∈ dom(fp) by retagging. Hence by (E3) for q ≤ p, we have fq(i) ∩ Tp = ∅ as
desired.

Case 2. Otherwise, i ∈ dom(g) and fq
∗
(i) = g(i). In this case, g(i) /∈ Tp∗ and

|g(i)| = 1, so g(i) ∩ Tp∗ = ∅ as desired.

Next we consider the second definition of fq
∗
. If i ∈ F , then the reasoning is

identical to Case 1 above. Otherwise, by the definition offq
∗
, we havefq

∗
(i) ∩ Tp =

fq(i) ∩ Tp = ∅ as desired. This completes the proof that q∗ extends p∗.
Finally, it is easy to check that q and q∗ are ��-F-retaggings. �

The following consequences of the basic retagging lemma are routine (see [10,
Lemma 2.4 and Corollary 2.6]). We include their proofs for completeness.

Lemma 3.6. Let � be a ranked formula in LF . Suppose that p and p∗ are (� ·
rk(�))-F-retaggings. Then p � � if and only if p∗ � �.

Proof. We proceed by induction on the rank of �. The only nontrivial case
is when � is ¬ϕ. Assuming that p∗ and p are (� · rk(¬ϕ))-F-retaggings and that
p∗ � ¬ϕ, we want to show thatp � ¬ϕ, i.e., for all q ≤ p, we have q �� ϕ. By Lemma
3.5, there is some q∗ ≤ p∗ such that q∗ and q are (� · rk(ϕ))-F-retaggings. Since

https://doi.org/10.1017/jsl.2023.39 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.39

1378 JUN LE GOH

p∗ � ¬ϕ, we have q∗ �� ϕ. Applying the inductive hypothesis to q and q∗ shows that
q �� ϕ as desired. �

Corollary 3.7. Suppose p ∈ P� and � ∈ LF . If there is some q ≤ p such that
q � �, then there is some q′ ≤ p inPmax{�,�·rk(�)} such that q′ � �. Therefore,p � ¬�
if and only if for all q ≤ p in Pmax{�,�·rk(�)}, q �� �.

Proof. Apply Lemma 3.4 to obtain some q′ ≤ p in Pmax{�,�·rk(�)} such that q
and q′ are (max{�,� · rk(�)})-F-retaggings. By Lemma 3.6, q′ � �. �

Corollary 3.8. For each condition p and each formula� in LF , ∅(rk(�)) can decide
whether p � � uniformly in p and �.

Proof. Induction on rk(�) using Corollary 3.7. �

We may now analyze which branches on TG lie in each MF . The proof below
follows [10, Lemma 2.7], with modifications in order to account for (C2).

Lemma 3.9. For each F ⊂f N,MF ∩ [TG] = {fGi : i ∈ F }. HenceM∞ ∩ [TG] =
{fGi : i ∈ N}, but no infinite sequence of distinct fGi lies inM∞.

Proof. Suppose towards a contradiction that S = S	,F,e ∈ [TG] is not fGi for
any i ∈ F . Then there is some prefix � ⊂ S such that � �⊂ fGi for any i ∈ F . For
later purposes, fix such � with length greater than 1. By Lemma 3.2, fix p ∈ G such
that p � ϕ(S), where ϕ(S) is

S ∈ [T] ∧ � ⊂ S ∧ (∀i ∈ F)(� �⊂ fi).

Note ϕ(S) is a ranked formula in LF .
By genericity, we may assume that � ∈ Tp. Next, fix � < �CK1 large enough so

that � > � · rk(ϕ(S)) and p ∈ P� .
Since p forces that � is extendible in TG , we have hp(�) = ∞ (by Lemma 3.2). We

now define p∗ which is a �-F-retagging of p, such that hp
∗
(�) ∈ [�,�CK1). Define

Tp
∗

= Tp. Definefp
∗

to be the union offp � F and a function g such that dom(g)
is disjoint from F and range(g) = {� ∈ Tp : |�| = 1}. Finally, define

hp
∗
(�) =

{
� + |�|Q, if � ⊇ � ∧ hp(�) = ∞,
hp(�), otherwise,

where Q = {� : � ⊆ � ∨ (� ⊇ � ∧ hp(�) = ∞)}.
Since hp(�) = ∞ and |�| > 1, it is straightforward to check that hp

∗
is a rank

function and hp
∗
(∅) = ∞. In order to show that p∗ is a condition, it suffices to

check that hp
∗
(fp

∗
(i)) = ∞ for all i ∈ dom(fp

∗
). If i ∈ F , we have � �⊆ fp(i) =

fp
∗
(i), so hp

∗
(fp

∗
(i)) = hp(fp

∗
(i)) = hp(fp(i)) = ∞. If i ∈ dom(fp

∗
)\F (that

is, dom(g)), then fp
∗
(i) has length 1, so hp

∗
(fp

∗
(i)) = hp(fp

∗
(i)) = ∞.

Finally, it is clear that p∗ is a �-F-retagging of p, and hence an (� · rk(ϕ(S)))-F-
retagging of p. By Lemma 3.6 we have

p∗ � S ∈ [T] ∧ � ⊂ S,

which is impossible because hp
∗
(�) �= ∞. �

https://doi.org/10.1017/jsl.2023.39 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.39

THE STRENGTH OF AN AXIOM OF FINITE CHOICE FOR BRANCHES IN TREES 1379

The following lemma is new; (C2) was designed in order to prove it.

Lemma 3.10. M∞ does not satisfy finite choice.

Proof. Consider the following arithmetical predicate ϕ(n,X) (with parameter
TG):

X ∈ [TG] ∧ X (0) = n.

First, we claim that for each n, there is some X ∈M∞ such that ϕ(n,X) holds.
By genericity, fix some p ∈ G such that 〈n〉 ∈ Tp. By (C2), there is some i such that
〈n〉 ⊆ fp(i). Then ϕ(n, fGi) holds.

Second, we claim that for each n, there are at most finitely many X ∈M∞ such
thatϕ(n,X) holds. By Lemma 3.9, it suffices to show that there are only finitely many
i such that ϕ(n, fGi) holds. As above, fix p ∈ G such that 〈n〉 ∈ Tp. For each i, we
claim that if i /∈ dom(fp), then 〈n〉 �⊆ fGi . Suppose to the contrary that there is some
i /∈ dom(fp) such that 〈n〉 ⊆ fGi . Fix some q ∈ G such that q � 〈n〉 ⊆ fi . Let r ∈ G
be a common refinement of p and q. Then 〈n〉 ⊆ fr(i). But then fr(i) ∩ Tp �= ∅,
violating (E3) for r ≤ p.

This shows that ϕ(n,X) is an instance of finite choice in M∞. By Lemma 3.9,
M∞ does not contain any infinite sequence of distinct branches throughTG , soM∞
does not contain any finite choice solution to ϕ(n,X). �

3.6. Analyzing the forcing relation for Σ-over-LF formulas. In order to show that
M∞ |= Δ1

1-CA0 (Section 3.7), we need to analyze the forcing relation for Σ-over-LF
formulas �. We begin by considering formulas � where < �CK1 . Note that such
formulas may not lie in any LF ′ because they may contain (existential) quantifiers
over set variables of the form X.

To this end we exploit automorphisms of P, as was done in [16, Lemma 10]. Each
permutation � : N → N induces an automorphism �̂ of P by permuting the finite
paths in each condition: T �̂(p) = Tp, h�̂(p) = hp, and f�̂(p)(�(i)) = fp(i). Each
permutation � also induces an automorphism of L∞: For each formula �, let ��
denote the formula obtained from � by replacing each fi by f�(i) and each S	,F,e
by S	,�“F,e . (In the proof below, we will denote S	,�“F,e by �S	,F,e .) By induction on
rk(�), one can show that p � � if and only if �̂(p) � ��.

Lemma 3.11. Suppose � is Σ-over-LF , p � ��, and dom(fp) ⊆ F . If p and p∗

are (� · rk(��) + �2)-F-retaggings, then p∗ � �� as well.

Proof. We prove by induction on k that if � is built from ranked, F-restricted
formulas using k steps and p is a condition such that p � ��, dom(fp) ⊆ F , and p
and p∗ are (� · rk(��) + � · 2k)-F-retaggings, then p∗ � ��. The base case holds
by Lemma 3.6.

The only nontrivial inductive step is if� has the form ∃Xϕ(X). We want to prove
that for all q∗ ≤ p∗, there is some r∗ ≤ q∗ and some S ∈ C� such that r∗ � ϕ�(S).
Our plan for doing so is illustrated in Figure 1.

Given q∗ ≤ p∗, there is some q ≤ p such that q and q∗ are (� · rk(��) + � ·
(2k + 1))-F-retaggings. Furthermore, since dom(fp) ⊆ F , we can choose such q
with fq ⊆ fq∗ (by the second part of Lemma 3.5).

https://doi.org/10.1017/jsl.2023.39 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.39

1380 JUN LE GOH

p p∗

q q∗

r r∗

Figure 1. Illustration of the proof of Lemma 3.11. Arrows correspond to extension
in the forcing. Dotted lines correspond to retaggings.

Since p � �� and q ≤ p, there is some r ≤ q and some S ∈ C� such that r �
ϕ�(S). By extending r, we may assume that F ∪ dom(S) ⊆ dom(fr). To complete
the inductive step, we want to define r∗ ≤ q∗ such that r and r∗ are (� · rk(��) + � ·
2k)-dom(fr)-retaggings. By inductive hypothesis, it would follow that r∗ � ϕ�(S)
as desired.

The naive definition of r∗ fails because there may be conflict between fr and
fq

∗
. In order to avoid this conflict, we use an automorphism of P to permute r

and S as follows. Consider a permutation � which fixes F ∪ dom(fq) and moves
dom(fr)\(F ∪ dom(fq)) to some set which is disjoint with dom(fq

∗
). Since � fixes

dom(fq), we have �̂r ≤ q. Since � fixes F and ϕ is Σ-over-LF , we have �ϕ� = ϕ�.
So �̂r � ϕ�(�S). Therefore, by replacing r and S with �̂r and �S, we may assume
that dom(fr)\(F ∪ dom(fq)) and dom(fq

∗
) are disjoint.

We claim that q and q∗ are (� · rk(��) + � · (2k + 1))-dom(fr)-retaggings. Since
fq ⊆ fq∗ , this reduces to showing that dom(fq

∗
) ∩ dom(fr) ⊆ dom(fq). Suppose

i ∈ dom(fq
∗
) ∩ dom(fr). By assumption on r, it follows that i ∈ F ∪ dom(fq). If

i ∈ dom(fq), then we are done. Otherwise i ∈ F , but since i ∈ dom(fq
∗
) and q

and q∗ are (� · rk(��) + � · (2k + 1))-F-retaggings, it follows that i ∈ dom(fq) as
well. This proves the claim.

By Lemma 3.5, there is some r∗ ≤ q∗ such that r and r∗ are (� · rk(��) + � · 2k)-
dom(fr)-retaggings. Since F ∪ dom(S) ⊆ dom(fr), we may apply the inductive
hypothesis and the fact that r � ϕ�(S) to conclude that r∗ � ϕ�(S) as desired. �

The following lemma is not stated in [10] but some form of it is used in the proof
of [10, Lemma 2.9(1)].

Lemma 3.12. Given a condition p, a formula � which is Σ-over-LF , and some
 < �CK1 , ∅(rk(�)) can decide whether p � � uniformly in p, �, and .

Proof. We proceed by induction on the number of steps it takes to construct �
from ranked F-restricted formulas. The base case holds by Corollary 3.8.

For the inductive step, the only nontrivial case is when� has the form∃Xϕ(X). Fix
any � ≥ � · rk(ϕ(S)) + �2 + � such that p ∈ P�. We claim that p � ∃X�(X)
if and only if for every q ≤ p in P�, there is some r ≤ q in P� and some S ∈ C such
that r � ϕ(S). This claim suffices for proving this case of the inductive step.

To prove the forward direction, suppose we are given q ≤ p in P�. By assumption,
there is some r ≤ q and some S ∈ C such that r � ϕ(S). We can retag r to some

https://doi.org/10.1017/jsl.2023.39 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.39

THE STRENGTH OF AN AXIOM OF FINITE CHOICE FOR BRANCHES IN TREES 1381

p

q∗ q

r∗ r

Figure 2. Illustration of the proofs of Lemmas 3.12 and 3.13. Arrows correspond
to extension in the forcing. Dotted lines correspond to retaggings.

r∗ ≤ q in P� such that r and r∗ are �-(F ∪ dom(fr))-retaggings (Lemma 3.4). Since
� ≥ � · rk(ϕ(S)) + �2, it follows from Lemma 3.11 that r∗ � ϕ(S) as desired.

To prove the backward direction, suppose we are given q ≤ p. In order to
construct some r ≤ q and some S ∈ C such that r � ϕ(S), we follow Figure 2. We
begin by retagging q to some q∗ ≤ p in P� such that q and q∗ are �-F ′-retaggings
for every F ′ ⊂f N (Lemma 3.4). By assumption, there is some r∗ ≤ q∗ in P� and
some S ∈ C such that r∗ � ϕ(S).

To complete the proof of the backward direction, we want to produce some r ≤ q
which is a retagging of r∗. Define F ′ to be the union of F, dom(fr

∗
) and dom(S)

(recall that dom(S	,D,e) is defined to be D.) Then ϕ(S) is Σ-over-LF ′ . Since � ≥
� · rk(ϕ(S)) + �2 + �, there is some r ≤ q such that r and r∗ are (� · rk(ϕ(S)) +
�2)-F ′-retaggings (Lemma 3.5). It follows from Lemma 3.11 that r � ϕ(S) as
desired. �

Next, we shall show that in order to understand the forcing relation for Σ-over-LF
formulas ϕ, it suffices to consider formulas ϕ where < �CK1 . This will be useful
for showing thatM∞ |= Δ1

1-CA0.

Lemma 3.13. Suppose � is Σ-over-LF . If p � �, then there is some � < �CK1 such
that for all ∈ [�,�CK1), p � �.

Proof. We proceed by induction on the number of steps it takes to construct �
from ranked F-restricted formulas. The base case is trivial. For the inductive step,
the only nontrivial case is when � has the form ∃Xϕ(X). Since p � ∃Xϕ(X), for
every q ≤ p, there exist r ≤ q and S such that r � ϕ(S). By the inductive hypothesis,
r � ϕ(S) for all sufficiently large < �CK1 .

Hence, for each q ≤ p, there exist �q < �CK1 , a condition r ≤ q inP�q , and S ∈ C�q
such that r � ϕ�q (S). By Lemma 3.12, we can hyperarithmetically search for the least
such �q , r and S.

By boundedness, for each � < �CK1 , there is some � < �CK1 such that for every
q ≤ p in P� , there exists �q < � as above. For later purposes, we will choose � < �CK1
sufficiently large such that � · rk(ϕ�q (S)) + �2 + � ≤ � for every q ≤ p in P� .

Since we can find � from� hyperarithmetically, by boundedness, there is some limit
� < �CK1 such that (1) p ∈ P�; (2) for every � < �, there is some � < � satisfying
the previous paragraph.

We shall show that p � ∃X�ϕ�(X�). Given q ≤ p, we want to construct r ≤ q
and S ∈ C� such that r � ϕ�(S). Our plan for doing so is illustrated in Figure 2.

https://doi.org/10.1017/jsl.2023.39 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.39

1382 JUN LE GOH

We begin by retagging q to some q∗ ≤ p in P� such that q and q∗ are �-F ′-
retaggings for everyF ′ ⊂f N (Lemma 3.4). Since� is a limit and dom(hq

∗
) = Tq

∗
is

finite, we have q∗ ∈ P� for some � < �. By construction of�, there exist �q∗ < � < �,
a condition r∗ ≤ q∗ in P�q∗ , and S ∈ C�q∗ such that � · rk(ϕ�q∗ (S)) + �2 + � ≤ �
and r∗ � ϕ�q∗ (S).

Define F ′ to be the union of F, dom(fr
∗
), and dom(S). Since � · rk(ϕ�q∗ (S)) +

�2 + � ≤ � < � and q and q∗ are �-F ′-retaggings, by Lemma 3.5, there is some
r ≤ q such that r and r∗ are (� · rk(ϕ�q∗ (S)) + �2)-F ′-retaggings. By Lemma 3.11,
we have r � ϕ�q∗ (S) and so r � ϕ�(S) as desired. �

Following [10, Lemma 2.9(2)], we conclude the following corollary.

Corollary 3.14. For each F ⊂f N, MF |= Σ1
1-AC0. It follows that MF =

HYP(TG ⊕ 〈fGi 〉i∈F).

Proof. Suppose that MF |= ∀n∃Xϕ(n,X), where ϕ(n,X) is arithmetic with
parameters from MF . Fix some p ∈ G such that p � ∀n∃Xϕ(n,X). By Lemma
3.13, fix some � < �CK1 (greater than the rank of every constant symbol in ϕ) such
that p � ∀n∃X�ϕ(n,X�). It follows thatMF |= ∀n∃X�ϕ(n,X�).

For each n, let en be least such that MF |= ϕ(n, S�,F,en). For each e, H�+�,F

computes whetherMF |= ϕ(n, S�,F,e), so 〈S�,F,en 〉n is a Σ1
1-AC0 solution which lies in

MF . �

We are ready to prove thatM∞ satisfies Δ1
1-CA0. The overall strategy follows [16,

Lemma 12], with modifications in order to account for (C2).

3.7. Proof that M∞ satisfies Δ1
1-comprehension. Suppose ϕ(n) and �(n) are

Σ-over-LF with only n free and M∞ |= ∀n(�(n) ↔ ¬ϕ(n)). We want to define
D ∈M∞ such that

M∞ |= ∀n(�(n) ↔ n ∈ D).

A naive attempt is to consider

{n ∈ N : ∃q ∈ G(q � �(n))},

but there are two obstacles preventing us from showing that the above set lies in
M∞:

– M∞ does not contain G so we cannot search over q ∈ G ;
– deciding whether q � �(n) is not hyperarithmetic in general.

The second obstacle is overcome using Lemma 3.13. To overcome the first obstacle,
we shall use retagging to change the scope of our search to a class of conditions
which look like they might lie in G, based on information fromTG and finitely many
branches fGi (all of which lie inM∞, unlike G).

Recall that (by genericity) hG is the well-founded rank function of TG . We say
that a rank function h : T → �CK1 ∪ {∞} is 	-good if T ⊂ TG and for all � ∈ T :

hG(�) < 	 ⇒ h(�) = hG(�),

hG(�) ≥ 	 ⇔ h(�) ≥ 	.

We will use the notion of 	-goodness in our definition of D.

https://doi.org/10.1017/jsl.2023.39 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.39

THE STRENGTH OF AN AXIOM OF FINITE CHOICE FOR BRANCHES IN TREES 1383

We begin the proof by fixing p ∈ G such that p � ∀n(�(n) ↔ ¬ϕ(n)). By
genericity and by expanding F if necessary, we may assume thatF = dom(fp). Since
p � ∀n(�(n) ∨ ϕ(n)) (which is Σ-over-LF), by Lemma 3.13, we may fix � < �CK1
large enough such that p � ∀n(��(n) ∨ ϕ�(n)) and � is greater than the rank of
any constant in ϕ and �. Since p � ∀n(¬�(n) ∨ ¬ϕ(n)) and � is large enough, we
also have p � ∀n(¬��(n) ∨ ¬ϕ�(n)) and so p � ∀n(��(n) ↔ ϕ�(n)).

Next, fix 	 < �CK1 large enough such that p ∈ P	 and rk(ϕ�(d) ∨ ��(d)) < 	 for
all d ∈ N. Now we define D ⊆ N as follows: d ∈ D if and only if there is some
q ∈ P�	+�2+� extending p such that:

(1) q � ��(d);
(2) Tq ⊂ TG (this is implied by (3) but we include it for emphasis);
(3) hq is (�	 + �2 + �)-good;
(4) ∀i ∈ F (fq(i) = fGi ∩ Tq).
Note that if q ∈ G , then q satisfies (2) (by (E1)) and (4) (by (E2)). (3) must hold

as well, but even more is true: we must have hq ⊆ hG . Since M∞ does not have
access to hG , we make do with sufficiently good approximations. Observe that D
is hyperarithmetic in TG ⊕ 〈fGi 〉i∈F , so D ∈MF ⊆M∞. It remains to show that
M∞ |= �(d) if and only if d ∈ D.

The forward direction is straightforward: IfM∞ |= �(d), thenM∞ |= ��(d), so
we may fix q′ ∈ G extending p which forces ��(d). Using q′, we define q as we did
in the proof of Lemma 3.4: Tq = Tq

′
, fq = fq

′
, and

hq(�) =

{
∞, if hq

′
(�) ≥ �	 + �2 + �,

hq
′
(�), otherwise.

It is straightforward to check that q witnesses d ∈ D (using Lemma 3.11 to show
that q � ��(d)).

To prove the backward direction, suppose M∞ |= ϕ(d). Then M∞ |= ϕ�(d), so
we may fix r ∈ G extending p which forces ϕ�(d). Suppose towards a contradiction
that d ∈ D, as witnessed by some q. Our plan is to construct conditions q∗ extending
q, r∗ extending r, and s∗ extending p, as illustrated in Figure 3.

We begin by using an automorphism of P to avoid conflict between fq and
fr . Consider a permutation � which fixes F and moves dom(fq)\F to some
set which is disjoint with dom(fr). Since F = dom(fp), we have �̂q ≤ p. It is
straightforward to check that �̂q witnesses d ∈ D. Therefore, by replacing q with
�̂q, we may assume that dom(fq)\F and dom(fr) are disjoint. It follows that
dom(fq) ∩ dom(fr) = F .

Next, fix finite partial functions gq∗ and gr∗ on N such that:
– dom(gq∗), dom(gr∗), and dom(fq) ∪ dom(fr) are pairwise disjoint;
– range(gq∗) = {� ∈ Tr\Tq : |�| = 1};
– range(gr∗) = {� ∈ Tq\Tr : |�| = 1}.
We may now define q∗ as follows:
– Tq

∗
= Tq ∪ Tr ;

– fq
∗
(i) =

⎧⎪⎨
⎪⎩
fq(i), if i ∈ dom(fq)\F ;
fGi ∩ Tq∗ , if i ∈ F ;
gq∗(i), if i ∈ dom(gq∗);

https://doi.org/10.1017/jsl.2023.39 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.39

1384 JUN LE GOH

p

q r

q∗ r∗s∗

∀n(��(n) ↔ ¬ϕ�(n))

��(d) ∧ ϕ�(d)

��(d) ϕ�(d)

�

� �

�
Figure 3. p and r lie in G, while q “looks like” it lies in G.

– hq
∗

is defined by cases:

hq
∗
(�) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
hq(�), if � ∈ Tq,
∞, if ∃i(� ⊆ fq∗(i)),
hr(�), if hr(�) < �	 + �2,

�	 + �2 + |�|Q, otherwise,

where Q = {� ∈ Tr\Tq : hr(�) ≥ �	 + �2}.
Next, define r∗ as follows:

– Tr
∗

= Tq ∪ Tr ;

– fr
∗
(i) =

⎧⎪⎨
⎪⎩
fr(i), if i ∈ dom(fr)\F ;
fGi ∩ Tr∗ , if i ∈ F ;
gr∗(i), if i ∈ dom(gr∗);

– hr
∗

= hG � Tr∗ .
Finally, define s∗ as follows:

– Ts
∗

= Tq ∪ Tr ;
– fs

∗
= fq

∗ ∪ fr∗ ;

– hs
∗
(�) =

{
hG(�), if hG(�) < �	 + �2;
∞, otherwise.

One may verify that:
– q∗ is a condition which extends q;
– r∗ is a condition which extends r;
– s∗ is a condition which extends p;
– q∗ and s∗ are (�	 + �2)-dom(fq

∗
)-retaggings;

– r∗ and s∗ are (�	 + �2)-dom(fr
∗
)-retaggings.

The verification is the same as that for ordinary Steel forcing, with minor additions
in order to handle the new paths contributed by gq∗ and gr∗ . We only discuss gq∗
here; the argument for gr∗ is similar. First, note that gq∗ was defined to ensure
that q∗ satisfies (C2). Second, (E3) is satisfied for q∗ ≤ q because for each i ∈
dom(fq

∗
)\dom(fq) (= dom(gq∗)), we have gq∗ /∈ Tq and |gq∗(i)| = 1.

https://doi.org/10.1017/jsl.2023.39 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.39

THE STRENGTH OF AN AXIOM OF FINITE CHOICE FOR BRANCHES IN TREES 1385

With the above facts, we may complete the proof that ifM∞ |= ϕ(d), then d /∈ D.
Since q∗ ≤ q and q � ��(d), we have q∗ � ��(d). It follows from Lemma 3.11 that
s∗ � ��(d) (note F ⊆ dom(fq

∗
) so ��(d) is Σ-over-Ldom(fq∗)). Similarly, we have

s∗ � ϕ�(d). But since M∞ |= ∀n(��(n) → �(n)) and M∞ |= ∀n(ϕ�(n) → ϕ(n)),
it follows that s∗ � �(d) ∧ ϕ(d). This contradicts the fact that p � ∀n(�(n) ↔
¬ϕ(n)) and s∗ ≤ p.

This completes the proof thatM∞ satisfies Δ1
1-CA0.

Remark 3.15. We are unable to extend our proof to show that M∞ satisfies
the Π1

1-separation principle (studied by Montalbán [10]). We do not know if Π1
1-

separation implies finite choice. If there is a model of Π1
1-separation and IΣ1

1 (such
as an�-model of Π1

1-separation) which does not satisfy finite choice, then we would
obtain a negative answer to [2, Question 1.11] (using Theorem 1.5).

Acknowledgments. We thank Richard A. Shore, Antonio Montalbán, Linda
Brown Westrick, James Barnes, and the anonymous referees for many useful
discussions and suggestions.

Funding. This work was partially supported by National Science Foundation grant
DMS-1161175.

REFERENCES

[1] J. Barnes, J. L. Goh, and R. A. Shore, Halin’s infinite ray theorems: Complexity and reverse
mathematics, Journal of Mathematical Logic, to appear.

[2] C. J. Conidis, Comparing theorems of hyperarithmetic analysis with the arithmetic Bolzano–
Weierstrass theorem. Transactions of the American Mathematical Society, vol. 364 (2012), no. 9, pp.
4465–4494.

[3] R. Diestel, Graph Theory, fifth ed., Graduate Texts in Mathematics, vol. 173, Springer, Berlin–
Heidelberg, 2017.

[4] H. Friedman, Subsystems of set theory and analysis, Ph.D. thesis, Department of Mathematics,
Massachusetts Institute of Technology, 1967.

[5] ———, Some systems of second order arithmetic and their use, Proceedings of the International
Congress of Mathematicians (Vancouver, BC, 1974), (R. D. James, editor) Vol. 1, Canadian Mathematical
Congress, Montreal, QC, 1975, pp. 235–242.

[6] R. Halin, Über die Maximalzahl fremder unendlicher Wege in Graphen. Mathematische
Nachrichten, vol. 30 (1965), pp. 63–85.

[7] J. Harrison, Recursive pseudo-well-orderings. Transactions of the American Mathematical Society,
vol. 131 (1968), pp. 526–543.

[8] G. Kreisel, The axiom of choice and the class of hyperarithmetic functions. Koninklijke Nederlandse
Akademie van Wetenschappen Proceedings Series A = Indagationes Mathematicae, vol. 24 (1962), pp.
307–319.

[9] A. Montalbán, Indecomposable linear orderings and hyperarithmetic analysis. Journal of
Mathematical Logic, vol. 6 (2006), no. 1, pp. 89–120.

[10] ———, On the�1
1 -separation principle. Mathematical Logic Quarterly, vol. 54 (2008), no. 6, pp.

563–578.
[11] I. Neeman, The strength of Jullien’s indecomposability theorem. Journal of Mathematical Logic,

vol. 8 (2008), no. 1, pp. 93–119.
[12] ———, Necessary use of �1

1 induction in a reversal, Journal of Symbolic Logic, vol. 76 (2011),
no. 2, pp. 561–574.

[13] G. E. Sacks, Higher Recursion Theory, Springer, Berlin, 1990.

https://doi.org/10.1017/jsl.2023.39 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.39

1386 JUN LE GOH

[14] R. A. Shore, The Turing degrees: An introduction, Forcing, Iterated Ultrapowers, and Turing
Degrees (C. Chong, Q. Feng, T. A. Slaman, W. H. Woodin, and Y. Yang, editors), Lecture Notes
Series, Institute for Mathematical Sciences, National University of Singapore, vol. 29, World Scientific,
Hackensack, 2016, pp. 39–121.

[15] S. G. Simpson, Subsystems of Second Order Arithmetic, second ed., Cambridge University Press,
Cambridge, 2009.

[16] J. R. Steel, Forcing with tagged trees. Annals of Mathematical Logic, vol. 15 (1978), no. 1, pp.
55–74.

[17] R. A. Van Wesep, Subsystems of second-order arithmetic, and descriptive set theory under the
axiom of determinateness, Ph.D. thesis, University of California, Berkeley, 1977.

DEPARTMENT OF MATHEMATICS
NATIONAL UNIVERSITY OF SINGAPORE

10 LOWER KENT RIDGE ROAD, SINGAPORE 119076
E-mail: gohjunle@nus.edu.sg

https://doi.org/10.1017/jsl.2023.39 Published online by Cambridge University Press

mailto:gohjunle@nus.edu.sg
https://doi.org/10.1017/jsl.2023.39

	1 Introduction
	2 Arithmetic Bolzano–Weierstrass
	3 Δ11-comprehension does not imply finite choice
	3.1 The model
	3.2 The forcing language
	3.3 The forcing notion
	3.4 The forcing relation
	3.5 Analyzing the forcing relation for ranked formulas
	3.6 Analyzing the forcing relation for Σ-over-LF formulas
	3.7 Proof that M∞ satisfies Δ11-comprehension

