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Dimension reduction and homogenization of random degenerate
operators. Part I

Abdelaziz Aı̈t Moussa and Loubna Zläıji

Abstract

Our aim in this paper is to identify the limit behavior of the solutions of random degenerate
equations of the form −div Aε(x′,∇Uε) + ρε

ω(x′)Uε = F with mixed boundary conditions on Ωε

whenever ε→ 0, where Ωε is an N -dimensional thin domain with a small thickness h(ε), ρε
ω(x′) =

ρω(x′/ε), where ρω is the realization of a random function ρ(ω), and Aε(x′, ξ) = a(Tx′/εω, ξ), the
map a(ω, ξ) being measurable in ω and satisfying degenerated structure conditions with weight
ρ in ξ. As usual in dimension reduction problems, we focus on the rescaled equations and we
prove that under the condition h(ε)/ε→ 0, the sequence of solutions of them converges to a
limit u0, where u0 is the solution of an (N − 1)-dimensional limit problem with homogenized
and auxiliary equations.

1. Introduction

The present work is concerned with stationary heat diffusion problems taking general form,
which cover in particular the following Poisson equation:

− div(ρεω(x′)∇Uε) + ρεω(x′)Uε = F in Ωε (1.1)

with mixed boundary data in a microscopically heterogeneous thin plate filling the cylinder

Ωε = Σ×]− h(ε), h(ε)[,

Σ being an open bounded connected subset of RN−1, N > 2, with Lipchitz boundary ∂Σ, and
h(ε) being a real positive number which goes to zero as ε→ 0 and such that

l := lim
ε→0

h(ε)
ε

= 0. (1.2)

The local characteristics of the body are represented by the randomly rapidly oscillating
function

ρεω(x′) = ρω

(
x′

ε

)
, x′ ∈ RN−1,

ρω being a weight, that is, a function that allows it to approach zero or infinity. Here, the
variable ω belongs to a probability space (X, F , µ) and the function F is defined on Ωε.

In the homogenization context, such problems were considered by Engström et al. [15], where
the authors have investigated random nonlinear monotone operators in divergence form which
satisfy weighted structure conditions by assuming that the function ρω fulfils some uniform
integrability condition of Muckenhoupt type [15, Definition 2.2], and they used a compensated
compactness lemma adapted to the framework of weighted spaces.

In this paper, we consider more precisely the following boundary value problem:{
−div a(Tx′/εω,∇Uε) + ρεω(x′)Uε = F in Ωε,
Uε|Γlat

ε

= 0, a(Tx′/εω,∇Uε) · νε|(∂Ωε\Γlat
ε )

= 0, (1.3)
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2 A. A. MOUSSA AND L. ZLAÏJI

where x= (x′, xN ) = (x1, . . . , xN−1, xN ) will denote a generic point of RN , νε is the unitary
outward normal vector to Ωε, ∂Ωε is the boundary of Ωε and

Γlat
ε = ∂Σ× [−h(ε), h(ε)]

its lateral boundary, Tz is a dynamical system associated to the probability space (X, F , µ),
that is, a group of measurable maps Tz :X →X such that:

– Tz1+z2 = Tz1 · Tz2 , z1, z2 ∈ RN−1, T0 = Id;
– µ((T )−1

z A) = µ(A) for every z ∈ RN−1, A ∈ F ;
– Tz(ω) is a measurable map from (RN−1 ×X, B × F) to (X, F), where B is the Borel
σ-algebra on RN−1

and we assume furthermore that X is a compact metric space, F is a Borel σ-algebra on X
and Tz is a map from RN−1 ×X to X continuous in this metric, and also that Tz is ergodic,
that is, for every subset A ∈ F ,

Tz(A) =A ∀z ∈ RN−1⇒ µ(A) = 0 or µ(A) = 1.

In the following, for a random field g :X → R and a fixed ω ∈X, the function

gω(z) = g(Tzω), z ∈ RN−1

will be called a realization of g. Then we will suppose that the weight ρω is a realization of a
random field ρ :X → R which is a measurable function such that ρ > 0 almost surely and

ρ ∈ L1(X, µ), ρ−1 ∈ L1(X, µ). (1.4)

By Fubini’s theorem, for almost every ω ∈X, ρω(z) = ρ(Tzω) is such that ρω(z)> 0 almost
everywhere on RN−1 and

ρω ∈ L1
loc(RN−1), ρ−1

ω ∈ L1
loc(RN−1). (1.5)

The vector-valued function a= (a′, aN ) = (a1, . . . , aN−1, aN ) :X × RN → RN satisfies the
random degenerate structure conditions:
(H1) for every ξ ∈ RN , a(·, ξ) is F−measurable;
(H2) for almost every ω ∈X, for every ξ′ ∈ RN−1,

a′(ω, 0) = 0 = aN (ω, ξ′, 0); (1.6)

(H3) there exist constants c1 > 0 and 0< α6 1 such that

|a(ω, ξ1)− a(ω, ξ2)|6 c1ρ(ω)(1 + |ξ1|+ |ξ2|)1−α|ξ1 − ξ2|α (1.7)

for almost every ω ∈X, for every ξ1, ξ2 ∈ RN ;
(H4) there exist constants c2 > 0 and 2 6 β <∞ such that

(a(ω, ξ1)− a(ω, ξ2)) · (ξ1 − ξ2) > c2ρ(ω)(1 + |ξ1|+ |ξ2|)2−β |ξ1 − ξ2|β (1.8)

for almost every ω ∈X, for every ξ1, ξ2 ∈ RN .
Condition (H2) implies in particular that

a(ω, 0) = (a′(ω, 0), aN (ω, 0)) = 0.

Furthermore, as consequences of conditions (H2)–(H4) there are constants c3, c4, c5 > 0 such
that the following growth condition holds:

|a(ω, ξ)|6 c3ρ(ω)(1 + |ξ|), (1.9)

and also the coercivity condition

a(ω, ξ) · ξ > c5ρ(ω)(|ξ|2 − c4). (1.10)

We are interested in the asymptotic behavior of the solutions of the original problem (1.3)
whenever the parameter of thickness of the plate h(ε) and the one of oscillation of
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RANDOM DEGENERATE OPERATORS 3

degeneracy ε go simultaneously to zero. Actually, we will consider only the case described
in (1.2) to simplify analysis, and the cases 0< l <∞ and l =∞ will be addressed in a
forthcoming paper (there is usually a distinction between the three cases).

As usual in the study of structures with thin thickness, it is better to work in a domain with
fixed thickness by rescaling the original problem (1.3) (see for example [7, 17]), which permits
us to simplify the derivation of a priori estimates. The resulting problem takes the form{

−divεa(Tx′/εω,∇εuε) + ρεω(x′)uε = f in Ω,
uε|Γlat

= 0, a(Tx′/εω,∇εuε) · ν|(∂Ω\Γlat)
= 0, (1.11)

where
Ω = Σ×]−1,+1[ (1.12)

with boundary ∂Ω and lateral boundary

Γlat = ∂Σ× [−1, 1],

ν being the unitary outward normal vector to Ω, and

divε A=
N−1∑
i=1

(
∂Ai
∂xi

)
+

1
h(ε)

∂AN
∂xN

, A= (Ai)16i6N

being any function for which the weak derivatives here make sense,

∇ε =
(

∂

∂x1
, . . . ,

∂

∂xN−1
,

1
h(ε)

∂

∂xN

)
and f ∈ L∞(Ω).

From now on, our purpose will be to characterize the asymptotic behavior of the sequence
of solutions of (1.11) as ε→ 0 and to identify the limiting equations by means of the
stochastic version of the singular measure method available in Zhikov and Piatnitski [28]
(see [9, 20, 24, 25] for the periodic case), taking advantage of this approach to make the
so-called Muckenhoupt condition not necessary (as it is known in the periodic setting). In this
context, we extend some properties from the linear stochastic case (cf. [28]) and those from
the monotone periodic case (cf. [20]) to pass to the monotone stochastic one.

The other subject of this work consists in coupling simultaneously a dimension reduction
analysis together with the stochastic homogenization process (only the latter is considered
in [15]), which will be more complicated. It is proved that the sequence (uε) of solutions
of (1.11) converges in a sense which will be described later to a function u0 which solves the
following homogenized limit problem:{

−divx′B(∇x′u0) + 2P(X)u0 = g in Σ,
u0 = 0 on ∂Σ, (1.13)

where

∇x′ =
(

∂

∂x1
, . . . ,

∂

∂xN−1

)
, divx′ =

N−1∑
i=1

∂

∂xi
,

the function B(∇x′u0) having been determined (see equations (3.9) and (3.10)), P is the
measure on X defined as follows:

dP (ω) = ρ(ω) dµ(ω) (1.14)

and g is the function defined in (3.11). This means that the dimension reduction occurs in the
limit problem (compare with problem (1.11), which is N dimensional). Moreover, we obtain an
auxiliary problem in which the probability space plays the role of the cell (see equation (3.10)).

For various dimension reduction problems, see for example [6, 7, 16–18], and for the
homogenization of partial differential equations in the random context, see for example [4,
5, 11, 12, 27, 28] and the references therein.
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4 A. A. MOUSSA AND L. ZLAÏJI

The outline of the paper is the following: in Section 2, some definitions and preliminary
results are formulated, namely, we discuss the notion of derivation in the stochastic sense, we
invoke some useful ergodic theorems and we introduce the stochastic two-scale convergence with
respect to random measures. The principal theorem of the paper will be given in Section 3, and
the final section will contain the proof through several steps. In Step 1 we derive some a priori
estimates and we use them in Step 2 to get compactness results by means of the stochastic
two-scale convergence. In Step 3 we prove the convergence of energies and make use of it in
Step 4 together with a Minty argument. Step 5 will accomplish the proof of Theorem 3.1 by
an identification of the homogenized and auxiliary problems.

2. Preliminaries

The purpose of this section is to state some concepts and results that are used throughout
this work. Some of these results are given without proofs as they can be readily found in the
references given below.

2.1. Lebesgue and Sobolev spaces with respect to a measure defined on Rd

Let d> 2, G be a bounded domain in Rd with Lipchitz boundary and λ be a measure in Rd.
We denote by L2(G, λ) the set of functions defined by

L2(G, λ) :=
{
f :G→ R : f is measurable and

∫
G

|f |2 dλ(x)<∞
}
. (2.1)

We give now a brief review of Sobolev spaces with respect to a measure; for more details the
reader can see the Zhikov bibliography [23–26, 28] and also Bouchitté et al. [8–10].

Definition 2.1. Let S be a closed subset of ∂G with Lipchitz boundary. We say that
u ∈ L2(G, λ) belongs to H1(G, S, λ) and z ∈ L2(G, λ)d is a gradient of this function if there
exist a sequence of functions uk ∈ C∞0 (G\S) such that

uk→ u strongly in L2(G, λ), (2.2)
∇uk→ z strongly in L2(G, λ)d (2.3)

as k→+∞. We shall denote a gradient of u by ∇u. The space H(G, S, λ) will be the set of
pairs (u, z) endowed with the natural norm

‖(u, z)‖2H(G,S,λ) := ‖u‖2L2(G,λ) + ‖z‖2L2(G,λ)d .

In other words, it is the closure of the set of vector-valued functions {(ϕ,∇ϕ) : ϕ ∈ C∞0 (G\S)}
in the norm of L2(G, λ)d+1.

Remark 2.1. The gradient of a function u ∈ L2(G, λ) is not necessarily unique. It is defined
to within the set of gradients of the zero function. Nevertheless, there are exceptions. For
instance, if the measure λ is absolutely continuous with respect to the Lebesgue measure,
that is, dλ(x) = w(x) dx, where w > 0 almost everywhere in Rd with w, w−1 ∈ L1(G), then
H1(G, S, λ)⊂W 1,1(G) and any gradient of a function u ∈H1(G, S, λ) in the sense of
Definition 2.1 coincides with the usual gradient in the W 1,1 sense. To show this, let us take
a sequence of functions uk ∈ C∞0 (G\S) such that (2.2) and (2.3) hold true for u ∈H1(G, S, λ)
and a gradient z; because of the Hölder inequality,∫

G

|uk − u| dx 6

(∫
G

w−1 dx

)1/2(∫
G

|uk − u|2 dλ(x)
)1/2

, (2.4)

k−−→ 0 (2.5)
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and, in the same manner, we obtain that
∫
G
|∇uk − z| dx

k−−→ 0. Hence, we have proved that
‖uk − u‖W 1,1(G)→ 0 as k→∞. The uniqueness of z follows as the gradient of u in the W 1,1

sense. This is important if one needs H1(G, S, λ) to be a Banach space, equipped with the
norm

‖u‖2H1(G,S,λ) := ‖u‖2L2(G,λ) + ‖∇u‖2L2(G,λ)d .

Moreover, the separability and reflexivity are also fulfilled for the space H1(G, S, λ) in that
particular case, and can be proved exactly as for the classical Sobolev spaces.

2.2. The derivation in a stochastic sense

For the remainder of this section, (X, F , µ) is the probability space with dynamical system Tz
as introduced in the beginning of Section 1 but with z ∈ Rd, d> 2, and P the measure defined
in (1.14).

In the stochastic homogenization framework, the probability space X may be compared with
the periodicity cell Y in the periodic homogenization and, likewise, the derivation with respect
to ω ∈X plays the same role as for a point y of Y . So, also here it is fundamental that the
differentiation with respect to a variable ω ∈X makes sense (for more about the stochastic
differentiation, see [3, 12, 28]). Let us consider the set of continuous functions defined on X
such that the limits

(∂iu)(ω) = lim
δ→0

u(Tδei
ω)− u(ω)
δ

exist for every ω ∈X and i ∈ {1, 2, . . . , d} and are continuous on X, where (e1, . . . , ed) is the
Euclidean canonical basis of Rd. We denote this set by C1(X) and we use the notation

∇ωu= (∂iu)16i6d.

Remark 2.2. The set C1(X) is dense in L2(X, P), since C(X) is dense in L2(X, P) and,
for every ϕ ∈ C(X), we take the family of functions

ϕδ(ω) = δ−d
∫

Rd

K

(
z

δ

)
ϕ(Tzω) dz, (2.6)

where K is a C∞0 -function with integral equal to 1. The properties of the function ϕδ are derived
from the continuity of the dynamical system Tz.

Definition 2.2. L2
pot(X, P) is the space of potential vectors defined to be the closure of

the set {∇ωb : b ∈ C1(X)} in L2(X, P)d.

2.3. Ergodic theorems

Let g ∈ L1
loc(Rd). The number M{g} is called the mean value of g if

lim
ε→0

1
|K|

∫
K

g

(
z

ε

)
dz =M{g}

for any Lebesgue measurable bounded set K ∈ Rd; here and in all the following, |K| stands for
the Lebesgue measure of K.

Let us now recall the well-known Birkhoff ergodic theorem (see [27]).

Theorem 2.1. Let g ∈ Lp(X, µ), p> 1. Then, for almost all ω ∈X, the realization g(Tzω)
possesses a mean value in the following sense:

g(Tz/εω)⇀M{g(Tzω)} weakly in Lploc. (2.7)
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6 A. A. MOUSSA AND L. ZLAÏJI

Moreover, the mean value M{g(Tzω)}, considered as a function of ω ∈X, is invariant and

〈g〉 :=
∫
X

g(ω) dµ=
∫
X

M{g(Tzω)} dµ.

Since the system Tz is ergodic,

M{g(Tzω)}= 〈g〉 for almost all ω ∈X.

There is also a generalized version of the Birkhoff ergodic theorem in terms of stationary
random measures with finite intensity (see [14] and [28, Theorem 1.1]).

Let σ :X → R be a measurable function such that σ > 0 almost surely in X and

σ ∈ L1(X, µ), σ−1 ∈ L1(X, µ). (2.8)

For every ω ∈X, let us consider the random function defined for every z ∈ Rd by

σω(z) = σ(Tzω), (2.9)

and define the measures F and τω respectively on X and Rd by

dF(ω) = σ(ω) dµ(ω), (2.10)
dτω(z) = σω(z) dz. (2.11)

Remark 2.3. The measure F is called the Palm measure associated to the random measure
τω. Conversely, the last one is considered as a realization of the first. Palm theory is concerned
in particular with stationary random measures; a family of Radon measures µω on Rd, ω ∈X,
is called a stationary random measure if for every ϕ ∈ C∞0 (Rd) the random function

Fϕ(z, ω) =
∫

Rd

ϕ(y − z) dµω(y)

is measurable and stationary, that is,

Fϕ(z, ω) = Fϕ(Tzω), (2.12)

where Fϕ(ω) =
∫

Rd ϕ(y) dµω(y). In general, a stationary random measure µω and its Palm
measure P are related by the Campbell formula∫

X

∫
Rd

f(z, Tzω) dµω(z) dµ(ω) =
∫

Rd

∫
X

f(z, ω) dP(ω) dz (2.13)

for all functions f = f(z, ω) which are integrable with respect to dz × P or non-negative
measurable. A detailed exposition of all these notions is given in [28].

Theorem 2.2 (The ergodic theorem). We have

lim
t→+∞

1
td|A|

∫
tA

g(Tzω̃) dτω̃(z) =
∫
X

g(ω) dF(ω), a.s. with respect to µ, (2.14)

for all bounded Borel sets A⊂ Rd, |A|> 0, and all g ∈ L1(X, F).

2.4. Stochastic two-scale convergence with respect to random measures

The concept of two-scale convergence was introduced firstly in the periodic setting by
Nguetseng [21] and developed by Allaire (see [1, 2]; see also [19]). An extension of this method
in the stochastic framework has been elaborated by Bourgeat et al. [12] and generalized in
spaces with random measures by Zhikov and Piatnitski [28]. The present paragraph will be
formulated by collecting some results from [28] and completing them by adapting others from
the periodic two-scale convergence setting [19, 20].
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The two-scale convergence associated to a random measure as exploited in [28] depends
on the notion of typical trajectory, which is related to the validity of the ergodic theorem
(Theorem 2.2). A point ω ∈X is said to be typical if (2.14) holds at this point for all g ∈ C(X).
The set of typical points will be denoted by X̃ and it satisfies µ(X̃) = 1. As pointed out in [28],
every function g ∈ L1(X, F) can be changed on a set of F-measure zero in such a way as to be
defined on X̃, and (2.14) holds for all ω̃ ∈ X̃ and then almost surely in X. So, in what follows,
we identify functions belonging to L2(X, F) with modifications of them for which (2.14) holds.

Let ε > 0 and σεω be the function defined on RN−1 by

σεω(z) = σω

(
z

ε

)
,

where σω is the random function defined in (2.9), and τεω and νεω be the measures defined
respectively on RN−1 and RN by

dτεω(z) = σεω(z) dz, (2.15)
dνεω(x) = dτεω(x′)⊗ dxN . (2.16)

Let G be a Lipchitz domain in RN and ω̃ ∈ X̃. A family of functions (vε) in L2(G, νεω̃) is
bounded if

lim sup
ε→0

∫
G

|vε|2 dνεω̃(x)<+∞. (2.17)

Definition 2.3. Let (vε) be a bounded sequence of functions in L2(G, νεω̃). Then we say
that vε two-scale converges weakly to a limit v ∈ L2(G×X, dx× dF(ω)), and we write vε

2·e
⇀ v

if

lim
ε→0

∫
G

vε(x)ϕ(x)b(Tx′/εω̃) dνεω̃(x) =
∫
G×X

v(x, ω)ϕ(x)b(ω) dF(ω) dx (2.18)

for every ϕ ∈ C∞0 (G) and b ∈ C1(X). If (Vε) is a bounded sequence of functions in L2(G, νεω̃)N

with Vε = (V iε ), i= 1, . . . , N , then we say that Vε two-scale converges weakly to a limit
V = (V i) ∈ L2(G×X, dx× dF(ω))N , and we write Vε

2·e
⇀V if V iε

2·e
⇀V i for every i= 1, . . . , N .

Remark 2.4. In the above definition, we can take any test function φ(x, ω) ∈R, where R
is the space of functions defined as

R :=
{
φ(x, ω) =

∑
j∈J

ϕj(x)bj(ω) : J finite, ϕj ∈ C∞0 (G), bj ∈ C1(X) ∀j ∈ J
}
, (2.19)

endowed with the norm

‖φ‖R = sup
G×X

|φ(x, ω)|.

We can also define strong two-scale convergence in the variable space L2(G, νεω̃).

Definition 2.4. We say that a bounded sequence (vε) in L2(G, νεω̃) two-scale converges

strongly to a function v ∈ L2(G×X) as ε→ 0 and we denote it by vε
2·e−−−→ v if

lim
ε→0

∫
G

vε(x) · wε(x) dνεω̃(x) =
∫
G×X

v(x, ω) · w(x, ω) dF(ω) dx (2.20)

for every sequence (wε) for which we have weak two-scale convergence to w(x, ω) in L2(G, νεω̃).
If (Vε) is a bounded sequence of functions in L2(G, νεω̃)N with Vε = (V iε ), i= 1, . . . , N , then
we say that Vε two-scale converges strongly to a limit V = (V i) ∈ L2(G×X, dx× dF(ω))N ,
and we write Vε

2·e−−−→ V if V iε
2·e−−−→ V i for every i= 1, . . . , N .
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8 A. A. MOUSSA AND L. ZLAÏJI

Now, we want to incorporate a more general class of test functions in Definition 2.3. Namely,
the set B2 in the following definition.

Definition 2.5. We say that a function v :G×X → R belongs to the set B(F) if:
(a) the function x 7→ v(x, ω) is continuous for µ-almost every ω ∈X;
(b) the function ω 7→ v(x, ω) is F-measurable for every x ∈G;
(c) the function ω 7→ supx∈G |v(x, ω)| is in L1(X, F).

We say that a function v :G×X → R belongs to the set B2(F) if v ∈ B(F) and ω 7→
supx∈G |v(x, ω)| ∈ L2(X, F).

To this aim, the ergodic theorem (Theorem 2.2) must be extended as follows.

Theorem 2.3. Let v ∈ B(F). Then, almost surely in X,

lim
ε→0

∫
G

v(x, Tx′/εω̃) dνεω̃(x) =
∫
G×X

v(x, ω) dF(ω) dx. (2.21)

Proof. Let ω ∈X and set

bω(x, z) = v(x, Tzω), x ∈G, z ∈ RN−1.

It is clear by assertions (a) and (b) satisfied by the function v and the measurability of the
map z ∈ (RN−1, B) 7→ Tzω ∈ (X, F) that bω(·, z) is continuous for almost every z ∈ RN−1 and
bω(x, ·) is measurable for every x ∈G, which asserts that the function bω is of Caratheodory
type and the measurability of the function x 7→ bω(x, x′/ε) is then ensured. Now, we divide the
remaining of the proof into two steps.

Step 1. We prove (2.21) for step functions. Let 2 = [0, 1[N and fix an integer n ∈ N. For every
k ∈ ZN , we set 2n,k = 1/n(2 + k) and we consider the following partition of RN :

RN =
⊔
k∈ZN

2n,k. (2.22)

Let vn :G×X → R be a step function defined by

vn(x, ω) =
∑

{k:2n,k⊂G}

v(xk, ω)Xk(x),

where xk is an arbitrary point in 2n,k and Xk(x) = X2n,k
(x). Then, for every ω̃ ∈ X̃, we have

lim
ε→0

∫
G

vn(x, Tx′/εω̃) dνεω̃(x) =
∫
G×X

vn(x, ω) dF(ω) dx. (2.23)

Indeed, the condition (c) which v satisfies implies that v(xk, ·) ∈ L1(X, F) for each xk ∈G. So,
by the change of scale z = x′/ε and the ergodic theorem (Theorem 2.2),

lim
ε→0

∫
2n,k

vn(x, Tx′/εω̃) dνεω̃(x) = |2N
n,k| lim

ε→0

∫
2′n,k

v(xk, Tx′/εω̃) dτεω̃(x′)

= |2n,k| lim
ε→0

1
|(1/ε)2′n,k|

∫
(1/ε)2′n,k

v(xk, Tzω̃) dτω̃(z)

= |2n,k|
∫
X

v(xk, ω) dF(ω)

=
∫
2n,k

∫
X

vn(x, ω) dF(ω) dx, (2.24)
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where by notation, if A⊂ RN ,

A′ = {x′ ∈ RN−1 : (x′, xN ) ∈A},
AN = {xN ∈ R : (x′, xN ) ∈A}.

We get (2.23) by summing in (2.24) over the set of numbers {k : 2n,k ⊂G} (which is finite).

Step 2. We write

lim
ε→0

∫
G

v(x, Tx′/εω̃) dνεω̃(x)

= lim
ε→0

∫
G

(v(x, Tx′/εω̃)− vn(x, Tx′/εω̃)) dνεω̃(x)

+ lim
ε→0

∫
G

vn(x, Tx′/εω̃) dνεω̃(x)−
∫
G×X

vn(x, ω) dF(ω) dx

+
∫
G×X

(vn(x, ω)− v(x, ω)) dF(ω) dx

+
∫
G×X

v(x, ω) dF(ω) dx= Ln1 + Ln2 + Ln3 + L4, (2.25)

where, for each i, Lni and L4 are the terms corresponding to each line of the right-hand side
of (2.25). According to Step 1,

Ln2 = 0. (2.26)

In what concerns the terms Ln1 and Ln3 , let us define a function Cn :X → R by

Cn(ω) = sup
x∈G
|v(x, ω)− vn(x, ω)|.

Since the function v(x, ω) is continuous in x for almost every ω ∈X, Cn(ω)→ 0 for almost
every ω ∈X. Moreover, Cn(ω) 6 2 supx∈G |v(x, ω)| ∈ L1(X, F). So, applying the Lebesgue
dominated convergence theorem,

Cn→ 0 strongly in L1(X, F).

On the one hand, we have

|Ln3 |6 |G|
∫
X

Cn(ω) dF(ω)→ 0 (2.27)

and, on the other, like in (2.24), by the ergodic theorem (Theorem 2.2),

|Ln1 | 6 lim sup
ε

∫
G

Cn(Tx′/εω̃) dνεω̃(x)

= |G|
∫
X

Cn(ω) dF(ω)→ 0, (2.28)

(2.21) is deduced by gathering (2.25)–(2.28).

Remark 2.5. If v ∈ B(F), then, for every ϕ ∈ C∞0 (G) and b ∈ C1(X), the function (x, ω) 7→
v(x, ω) · ϕ(x) · b(ω) ∈ B(F). So, Theorem 2.3 implies that almost surely in X,

lim
ε→0

∫
G

v(x, Tx′/εω̃) · ϕ(x) · b(Tx′/εω̃) dνεω̃(x) =
∫
G×X

v(x, ω) · ϕ(x) · b(ω) dF(ω) dx (2.29)

and then the sequence v(x, Tx′/εω̃) weakly two-scale converges to v.

A consequence of the strong two-scale convergence is the convergence of the norms

lim
ε→0

∫
G

|vε(x)|2 dνεω̃(x) =
∫
G×X

|v(x, ω)|2dF(ω) dx.
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In fact, this relation can be used instead of (2.20) in the definition of strong two-scale
convergence. This is shown by the following theorem.

Theorem 2.4. The weak two-scale convergence of the sequence (vε) in L2(G, νεω̃) to
v ∈ L2(G×X) together with

lim
ε→0

∫
G

|vε(x)|2 dνεω̃(x) =
∫
G×X

|v(x, ω)|2 dF(ω) dx (2.30)

is equivalent to strong two-scale convergence of (vε) to v.

The proof of this theorem is similar to that of [20, Theorem 5], and uses the following
theorem.

Theorem 2.5. Let (vε) be a sequence in L2(G, νεω̃) which two-scale converges weakly to
v ∈ L2(G×X). Then

lim inf
ε→0

‖vε‖L2(G,νε
ω̃) > ‖v‖L2(G×X).

Proof. Let (φm) be a sequence in R (R defined as in (2.19)) such that φm converges to v
strongly in L2(G×X) (by density of R in L2(G×X)). The Young inequality for real numbers
a and b states that ab6 |a|2/2 + |b|2/2, which implies that∫

G

|vε|2 dνεω̃(x) > 2
∫
G

vε(x) · φm(x, Tx′/εω̃) dνεω̃(x)−
∫
G

|φm(x, Tx′/εω̃)|2 dνεω̃(x).

By passing to the limit in ε, we get

lim inf
ε→0

‖vε‖2L2(G,νε
ω̃) > 2

∫
G×X

v(x, ω) · φm(x, ω) dF(ω) dx

−
∫
G×X

|φm(x, ω)|2 dF(ω) dx.

Hence, by passing to the limit in m, we obtain

lim inf
ε→0

‖vε‖2L2(G,νε
ω̃) > 2

∫
G×X

|v(x, ω)|2 dF(ω) dx−
∫
G×X

|v(x, ω)|2 dF(ω) dx

= ‖v‖2L2(G×X). 2

In the next proof and also in the others throughout this paper, C will stand for any constant
independent of ε and it may be different from line to line.

Proof of Theorem 2.4. (i) We start by proving that weak two-scale convergence together
with (2.30) imply strong two-scale convergence. Let (φm) be a sequence in R such that φm
converges to v strongly in L2(G×X) and (wε) be a sequence in L2(G, νεω̃) which two-scale
converges weakly to a function w ∈ L2(G×X). Then

lim
m→∞

lim
ε→0

∫
G

φm(x, Tx′/εω̃) · wε(x) dνεω̃(x) =
∫
G×X

v(x, ω) · w(x, ω) dF(ω) dx. (2.31)
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However, ∣∣∣∣∫
G

vε(x) · wε(x) dνεω̃(x)−
∫
G×X

v(x, ω) · w(x, ω) dF(ω) dx
∣∣∣∣

6

∣∣∣∣∫
G

[vε(x)− φm(x, Tx′/εω̃)] · wε(x) dνεω̃(x)
∣∣∣∣

+
∣∣∣∣∫
G

φm(x, Tx′/εω̃) · wε(x) dνεω̃(x)

−
∫
G×X

v(x, ω) · w(x, ω) dF(ω) dx
∣∣∣∣. (2.32)

Equations (2.31) and (2.32) imply that

lim sup
ε→0

∣∣∣∣∫
G

vε(x) · wε(x) dνεω̃(x)−
∫
G×X

v(x, ω) · w(x, ω) dF(ω) dx
∣∣∣∣

6 lim sup
m→∞

lim sup
ε→0

∣∣∣∣∫
G

[vε(x)− φm(x, Tx′/εω̃)] · wε(x) dνεω̃(x)
∣∣∣∣. (2.33)

By this last result, it follows that to get (2.20) it is sufficient to prove that

lim sup
m→∞

lim sup
ε→0

∣∣∣∣∫
G

[vε(x)− φm(x, Tx′/εω̃)] · wε(x) dνεω̃(x)
∣∣∣∣= 0. (2.34)

The Hölder inequality and the fact that each weakly two-scale convergent sequence is bounded
imply ∣∣∣∣∫

G

[vε(x)− φm(x, Tx′/εω̃)] · wε(x) dνεω̃

∣∣∣∣
6

(∫
G

|vε(x)− φm(x, Tx′/εω̃)|2 dνεω̃
)1/2

×
(∫

G

|wε(x)|2 dνεω̃(x)
)1/2

6 C‖vε(x)− φm(x, Tx′/εω̃)‖L2(G,νε
ω̃). (2.35)

The triangle inequality gives

‖vε(x)− φm(x, Tx′/εω̃)‖2 6 2‖vε‖2 + 2‖φm(x, Tx′/εω̃)‖2 − ‖vε(x) + φm(x, Tx′/εω̃)‖2,

where all norms are the usual norm in L2(G, νεω̃). However, since φm ∈ B(F) and by Remark 2.5,

φm(x, Tx′/εω̃) 2·e
⇀φm.

This, together with Remark 2.4, yield

lim
ε→0
‖φm(x, Tx′/εω̃)‖L2(G,νε

ω̃) = ‖φm(x, ω)‖L2(G×X). (2.36)

Therefore, thanks to (2.30), (2.36) and Theorem 2.5 applied to the sequence vε(x) +
φm(x, Tx′/εω̃), which two-scale converges weakly to v + φm, it follows that

lim sup
ε→0

‖vε(x)− φm(x, Tx′/εω̃)‖2L2(G,νε
ω̃)

6 2‖v‖2L2(G×X) + 2‖φm‖2L2(G×X) − ‖v + φm‖2L2(G×X). (2.37)

Passing to the limit m→∞ in (2.37) and taking into account that φm converges to v strongly
in L2(G×X), we obtain

lim sup
m→∞

lim sup
ε→0

‖vε(x)− φm(x, Tx′/εω̃)‖2 = 0. (2.38)

We deduce (2.34) by letting ε→ 0 and m→∞ in (2.35) and making use of (2.38).
(ii) Conversely, if a sequence vε two-scale converges strongly to v(x, ω), then taking wε(x) =

ϕ(x) · b(Tx′/εω̃) and w(x, ω) = ϕ(x) · b(ω) in (2.20), where ϕ ∈ C∞0 (G) and b ∈ C1(X), we see
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that vε also weakly two-scale converges to v. Equation (2.30) follows directly from (2.20) by
taking vε = wε and v = w, which ends the proof of Theorem 2.4.

Let us recall our subject, that is, to include the set B2(F) as a space of test functions in
Definition 2.3. This is done through the following corollary.

Corollary 2.1. If a sequence (vε) in L2(G, νεω̃) two-scale converges weakly to v ∈
L2(G×X), then

lim
ε→0

∫
G

vε(x) · φ(x, Tx′/εω̃) dνεω̃(x) =
∫
G×X

v(x, ω) · φ(x, ω) dF(ω) dx (2.39)

for all φ ∈ B2(F).

Proof. If φ ∈ B2(F), then |φ| ∈ B2(F), and hence |φ|2 ∈ B(F). So, by Theorem 2.3,

lim
ε→0

∫
G

|φ(x, Tx′/εω̃)|2 dνεω̃(x) =
∫
G×X

|φ(x, ω)|2 dF(ω) dx. (2.40)

Moreover, Remark 2.5 implies that φ(x, Tx′/εω̃) two-scale converges weakly to φ. Hence, taking
into account this last result together with (2.40) and applying Theorem 2.4, (2.39) follows.

Below are some important properties of stochastic two-scale convergence with respect to
random measures collected from [28].

Proposition 2.1. (i) For every bounded sequence (vε) in L2(G, νεω̃), there exist a
subsequence and a function v ∈ L2(G×X) such that the subsequence two-scale converges
to v.

(i) Let S be a closed subset of ∂G with Lipchitz boundary and let (vε) be a sequence in
H1(G, S, νεω̃) such that

‖vε‖L2(G,νε
ω̃) 6 C(ω̃), ‖∇vε‖L2(G,νε

ω̃)N 6 C(ω̃). (2.41)

Then, for a subsequence

vε
2·e
⇀ v0(x), (2.42)

∇vε
2·e
⇀∇v0(x) + V1(x, ω), (2.43)

where v0 belongs to the space

H1(G, S) := {v ∈H1(G) : v = 0 on S},

V1 = (v1, 0) with v1 ∈ L2(G; L2
pot(X, F)), which is the space of measurable functions u : x ∈

G→ u(x) ∈ L2
pot(X, F) such that

‖u(x)‖L2(X,F) ∈ L2(G), (2.44)

where L2
pot(X, F) is the space given in Definition 2.2 for d=N − 1.

Remark 2.6. We may also define H1(G, S) as the closure of C∞0 (G\S) in H1(G).

Remark 2.7. L2(G; L2
pot(X)) is a Banach space endowed with the norm

‖u‖L2(G;L2
pot(X,F)) =

(∫
Ω

‖u(x)‖2L2(X,F)dx

) 1
2

.
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Remark 2.8. Assertion (ii) of this proposition is nothing else than (5.12) and (5.13) in [28,
Corollary 5.1], which we can use also here since it was proved in [28, Section 8] that the measure
dτω(z) = σ(Tzω) dz is non-degenerate. Let us remark also that the structure of the function V1

comes from the fact that the dynamical system Tz is independent of the variable xN .

3. Main result

For a fixed ε > 0 and ω ∈X, let µεω, λ
ε
ω be the measures defined by

dµεω(x′) = ρ(Tx′/εω) dx′, x′ ∈ RN−1, (3.1)

dλεω(x) = dµεω(x′)⊗ dxN , x= (x′, xN ) ∈ RN , (3.2)

with ρ satisfying (1.4).
In the following, a weak solution of problem (1.11) is a solution of the variational formulationfind uε ∈H1(Ω, Γlat, λεω) such that∫

Ω

aεω(x′,∇εuε) · ∇εv dx+
∫
Ω

uε · v dλεω(x) =
∫
Ω

f.v dx, ∀v ∈H1(Ω, Γlat, λεω), (3.3)

where, for a fixed ε > 0 and ω ∈X, the function aεω is defined for every z ∈ RN−1 and ξ ∈ RN
by

aεω(z, ξ) = a(Tz/εω, ξ).

Remark 3.1. As H1(Ω, Γlat, λεω) is a reflexive Banach space (see Remark 2.1) and under
hypotheses (H1)–(H4) we can apply the Minty–Browder theorem (see [22, Theorem 26.A,
p. 557]) to prove existence and uniqueness of the solution uε ∈H1(Ω, Γlat, λεω) of problem (3.3)
for each ε > 0 and ω ∈X (see also [20, proof of Theorem 13]).

Before the statement of the main theorem, it will be convenient to notice at first that we shall
identify the space H1

0 (Σ) with the space of functions u ∈H1(Ω, Γlat) such that ∂u/∂xN = 0,
and also that all the convergence results in the stochastic sense contained in the theorem below
are given with respect to the measure λεω̃.

The main result is stated as follows.

Theorem 3.1. Assume hypotheses (H1)–(H4) and let uε be the weak solution of
problem (1.11). Then, µ-almost surely in X, as ε→ 0,

∂uε
∂xN

2·e−−−→→0 (3.4)

and, up to a subsequence,

uε
2·e
⇀u0, (3.5)

∇x′uε
2·e
⇀∇x′u0(x′) + u1(x, ω), (3.6)

1
h(ε)

∂uε
∂xN

2·e
⇀ 0, (3.7)

where u0 ∈H1
0 (Σ) is the weak solution of the homogenized problem{

−divx′B(∇x′u0) + 2P(X)u0 = g in Σ,
u0 = 0 on ∂Σ. (3.8)

Here B is given by

B(∇x′u0(x′)) =
∫
]−1,1[×X

a′0(ω,∇x′u0(x′) + u1(x, ω)) dµ(ω) dxN , (3.9)
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with, by notation,

a′0(ω, ξ) := a′(ω, ξ, 0), ω ∈X, ξ ∈ RN−1

and u1 ∈ L2(Ω; L2
pot(X, P)) is the unique solution of the following equation:∫

X

(∫
]−1,1[

a′0(ω,∇x′u0(x′) + u1(x, ω)) dxN

)
· φ(ω) dµ(ω) = 0, ∀φ ∈ L2

pot(X, P). (3.10)

The function g is defined on Σ as follows:

g(x′) =
∫
]−1,1[

f(x) dxN . (3.11)

Remark 3.2. Under hypotheses (H1)–(H4) on the function a and by applying the
Browder–Minty theorem, equation (3.10) admits a unique solution u1. Hence, the function
B is well defined. Its properties and the uniqueness of the solution of (3.8) can be derived as
in [20] (see Theorem 17), and so we have convergence of the whole sequence.

4. Proof of Theorem 3.1

It will be given through several steps.

4.1. Step 1. The a priori estimates

For a fixed ε > 0 and ω ∈X, define the measures [µεω]−1, [λεω]−1 as follows:

d[µεω]−1(x′) = ρ−1(Tx′/εω) dx′, x′ ∈ RN−1, (4.1)

d[λεω]−1(x) = d[µεω]−1(x′)⊗ dxN , x= (x′, xN ) ∈ RN , (4.2)

with ρ−1 defined as in (1.4), and also recall the measure λεω given in (3.2). The main estimates
on the solution of (3.3) are contained in the following proposition.

Proposition 4.1. Assume (H1)–(H4) and let uε be the solution of (3.3). Then, almost
surely in X,

‖uε‖H1(Ω,Γlat,λε
ω̃) 6 C, (4.3)

1
h(ε)

∥∥∥∥ ∂uε∂xN

∥∥∥∥
L2(Ω,λε

ω̃)

6 C, (4.4)

‖aεω̃(·,∇εuε)‖[L2(Ω,[λε
ω̃]−1)]N 6 C. (4.5)

Proof. We start by proving estimates (4.3) and (4.4). If we take v = uε in (3.3) and use
hypothesis (1.10), we get∫
Ω

[|∇εuε|2 + |uε|2] dλεω̃(x) 6
∫
Ω

aεω̃(x′,∇εuε) · ∇εuε dx+
∫
Ω

|uε|2 dλεω̃(x) + c4

∫
Ω

dλεω̃(x)

=
∫
Ω

f · uε dx+ c4

∫
Ω

dλεω̃(x). (4.6)

The Hölder inequality gives ∫
Ω

f · uε dx6 ‖f‖L∞(Ω) · ‖uε‖L1(Ω). (4.7)

Applying it again this time with respect to the measure λεω̃,∫
Ω

|uε| dx 6

(∫
Ω

|uε|2 dλεω̃
)1/2

·
(∫

Ω

ρ−1(Tx′/εω̃) dx
)1/2

. (4.8)
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By the change of scale z = x′/ε and the Birkhoff theorem (Theorem 2.1) applied to the function
ρ−1, we get

lim
ε→0

∫
Ω

ρ−1(Tx′/εω̃) dx = 2 lim
ε→0

∫
Σ

ρ−1(Tx′/εω̃) dx′

= 2|Σ| lim
ε→0

1
|1/εΣ|

∫
1/εΣ

ρ−1(Tzω̃) dz

= 2|Σ|
∫
X

ρ−1(ω) dµ(ω)<+∞. (4.9)

Making use of (4.7)–(4.9), it follows that∫
Ω

f · uε dx6 C · ‖uε‖L2(Ω,λε
ω̃). (4.10)

As in (4.9), we have

lim
ε→0

∫
Ω

dλεω̃(x) = 2 lim
ε→0

∫
Σ

ρ(Tx′/εω̃) dx′

= 2|Σ|
∫
X

ρ(ω) dµ(ω)<+∞. (4.11)

Hence, (4.6), (4.10) and (4.11) provide∫
Ω

[|∇εuε|2 + |uε|2] dλεω̃(x) 6 C(‖uε‖L2(Ω,λε
ω̃) + 1), (4.12)

which implies necessarily (4.3) and (4.4). It remains now to estimate the function

Aε(x) = aεω̃(x′,∇εuε(x)).

By definition, d[λεω̃]−1(x) = ρ−1(Tx′/εω̃) dx; hence, from (1.9), (4.3) and (4.4), it is
straightforward that∫

Ω

|Aε(x)|2 d[λεω̃]−1(x) =
∫
Ω

|Aε(x)|2ρ−1(Tx′/εω̃) dx

6 C

∫
Ω

(1 + |∇εuε|2)ρ2(Tx′/εω̃)ρ−1(Tx′/εω̃) dx

= C

∫
Ω

(1 + |∇εuε|2) dλεω̃(x),

6 C,

which gives (4.5) and ends the proof of this proposition.

4.2. Step 2. Compactness results

In the following, we suppose that the convergence results hold true for the same subsequence
(otherwise we pass to a smaller one), and to simplify we use the same notation for the sequence
and its subsequence.

Firstly, let us prove (3.4)–(3.7). We proceed by proving (3.4). Let uε be the solution of (3.3).
Then, according to (4.4) and the Hölder inequality, for every function wε which two-scale
converges weakly, we have∣∣∣∣∫

Ω

∂uε
∂xN

(x) · wε(x) dλεω̃(x)
∣∣∣∣ 6

∥∥∥∥ ∂uε∂xN

∥∥∥∥
L2(Ω,λε

ω̃)

· ‖wε‖L2(Ω,λε
ω̃)

6 Ch(ε).

Hence, we obtain (3.4) by taking the limit as ε→ 0 in the above inequality (3.5) and (3.6) are
straightforward consequences of (4.3) and assertion (ii) of Proposition 2.1 applied to νεω = λεω
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and F = P, but with the function u0 dependent on xN . To show the independence with respect
to this variable, from (3.5) and applying the two-scale convergence definition to a test function
ϕ ∈ C∞0 (Ω) and b(ω) = C, where C is a constant independent of ω, we get

P(X)
∫
Ω

u0(x) · ∂ϕ(x)
∂xN

dx =
∫
Ω×X

u0(x) · ∂ϕ(x)
∂xN

dP(ω) dx

= lim
ε→0

∫
Ω

uε(x) · ∂ϕ(x)
∂xN

dλεω̃(x)

= − lim
ε→0

∫
Ω

∂uε(x)
∂xN

· ϕ(x) dλεω̃(x), (4.13)

with P defined as in (1.14). By the Hölder inequality and estimate (4.4), we obtain∫
Ω

∣∣∣∣∂uε(x)
∂xN

· ϕ(x)
∣∣∣∣ dλεω̃(x) 6

(∫
Ω

∣∣∣∣∂uε(x)
∂xN

∣∣∣∣2 dλεω̃(x)
)1/2

·
(∫

Ω

|ϕ(x)|2 dλεω̃(x)
)1/2

6 h(ε)
(∫

Ω

|ϕ(x)|2 dλεω̃(x)
)1/2

.

With a majoration of the function ϕ and use of (4.11), after letting ε→ 0 in the above inequality
the right-hand side of (4.13) will be equal to zero, that is,∫

Ω

u0(x) · ∂ϕ(x)
∂xN

dx= 0 (4.14)

for every ϕ ∈ C∞0 (Ω), which means that the function u0 is independent of xN . To show (3.7),
let us set

vε =
1

h(ε)
∂uε
∂xN

. (4.15)

By virtue of (4.4), the sequence vε is bounded in L2(Ω, λεω̃). Hence, by assertion (i) of
Proposition 2.1, up to a subsequence there exists a function v0 ∈ L2(G×X, dx× dP(ω)) so
that

vε
2·e
⇀ v0(x, ω) with respect to λεω̃. (4.16)

To complete the proof of (3.7), it remains to show that v0(x, ω) = 0, which is carried out in
Step 5 (see the proof of (4.38)).

Remark 4.1. It can also be proved that the function u1 in (3.6) is independent of xN ,
using (3.7) and [28, Theorem 2.2] applied to the measure µω(x′) = ρ(Tx′ω) dx′. The details of
the proof will be given in a forthcoming paper when dealing with l ∈ ]0,+∞], l defined in (1.2).

Let us set

d[P]−1(ω) = ρ−1(ω) dµ(ω), (4.17)

the function ρ−1 being defined as in (1.4).

Proposition 4.2. Assume (H1)–(H4) and let uε be the solution of (3.3). Then, almost
surely in X, up to a subsequence there exists a function A= (A′, AN ) ∈ L2(G×X, dx×
d[P ]−1(ω))N such that

aεω̃(x′,∇εuε(x)) 2·e
⇀A(x, ω) with respect to [λεω̃]−1. (4.18)

Moreover, for almost every x ∈ Ω and almost every ω ∈X,

AN (x, ω) = 0, (4.19)
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and, for almost every x′ ∈ Σ,∫
]−1,1[×X

A′(x, ω) · b(ω) dµ(ω) dxN = 0, ∀b ∈ L2
pot(X, P). (4.20)

Before we proceed with the proof of this proposition, we need the following lemmas.

Lemma 4.1 (Ciarlet [13, p. 37]). Let w ∈ Lp(Ω), p> 1, be such that∫
Ω

w(x) · ∂

∂xN
v(x) dx= 0, ∀v ∈ C∞(Ω) with v = 0 on Γlat;

then w = 0.

Proof. Let ϕ ∈ C∞0 (Ω) and v : Ω→ R be the function defined by

v(x′, xN ) :=
∫xN

−1

ϕ(x′, t) dt.

Then v ∈ C∞(Ω) and v = 0 on Γlat. Hence,∫
G

w(x) · ϕ(x) dx=
∫
Ω

w(x) · ∂

∂xN
v(x) dx= 0,

and consequently w = 0.

Lemma 4.2. If a function v belongs to B2(P) (cf. Definition 2.5), then the function
(x, ω) 7→ v(x, ω) · ρ(ω) belongs to B2(P−1). Likewise, if v belongs to B2(P−1), then the function
(x, ω) 7→ v(x, ω) · ρ−1(ω) belongs to B2(P).

Proof. It is sufficient to prove the first part of this lemma. Let us set

w(x, ω) = v(x, ω) · ρ(ω).

Firstly, assertions (a) and (b) of Definition 2.5 are clear for the function w. Now, it remains to
show that the function

g(ω) = sup
x∈Ω
|w(x, ω)|

belongs to L2(X, P−1), which is true because we have∫
X

g(ω)2 dP−1(ω) =
∫
X

sup
x∈Ω
|v(x, ω)|2 dP(ω).

Proof of Proposition 4.2. Let us denote

Aε = (A′ε, AεN ) = aεω̃(x′,∇εuε(x)). (4.21)

Estimation (4.5) and assertion (i) of Proposition 2.1 ensure the existence of a subsequence
and a function A in [L2(G×X, dx× d[P ]−1(ω))]N such that (4.18) holds true. In order to
prove (4.19), let φ ∈ C∞(Ω) be such that φ= 0 on Γlat, b ∈ C1(X) and let us take v(x) =
h(ε)φ(x)b(Tx′/εω̃) as a test function in (3.3), which reads as follows:∫

Ω

A′ε ·
[
h(ε)∇x′φ(x) · b(Tx′/εω̃) +

h(ε)
ε
φ(x) · ∇ωb(Tx′/εω̃)

]
dx

+
∫
Ω

Aε,N ·
∂

∂xN
φ(x) · b(Tx′/εω̃) dx+ h(ε)

∫
Ω

uε(x) · φ(x) · b(Tx′/εω̃) dλεω̃(x)

= h(ε)
∫
Ω

f(x) · φ(x) · b(Tx′/εω̃) dx. (4.22)
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Taking into account that dx= ρ(Tx′/εω̃) d[λεω̃]−1(x) and recalling Lemma 4.2,
Corollary 2.1, (3.5) and (4.18), we pass to the two-scale limit with respect to [λεω̃]−1 in the first
and second integral terms in the left-hand side of (4.22), and to the two-scale limit with respect
to λεω̃ in the third integral term. For the integral term in the right-hand side of equation (4.22),
we apply the Birkhoff theorem (Theorem 2.1). As a result, we obtain∫

Ω×X
AN (x, ω)

∂

∂xN
φ(x) · b(ω) dµ(ω) dx= 0

for every b ∈ C1(X). So, almost surely in X,∫
Ω

AN (x, ω)
∂

∂xN
φ(x) dx= 0

for every function φ ∈ C∞(Ω) such that ϕ= 0 on Γlat. Therefore, (4.19) follows in view of
Lemma 4.1. As regards (4.20), we take v(x) = εφ(x′)b(Tx′/εω̃) as a test function in (3.3), where
φ ∈ C∞0 (Σ) and b ∈ C1(X), which entails∫

Ω

A′ε · [ε∇x′φ(x′) · b(Tx′/εω̃) + φ(x′) · ∇ωb(Tx′/εω̃)] dx

+ ε

∫
Ω

uε(x) · φ(x′) · b(Tx′/εω̃) dλεω̃(x)

= ε

∫
Ω

f(x) · φ(x′) · b(Tx′/εω̃) dx.

After letting ε→ 0 in the above equation as before, we get∫
Ω×X

A′(x, ω) · φ(x′) · ∇ωb(ω) dµ(ω) dx= 0

for every function φ ∈ C∞0 (Σ). Consequently, almost everywhere in Σ,∫
]−1,1[×X

A′(x, ω) · ∇ωb(ω) dµ(ω) dxN = 0

for every b ∈ C1(X). Hence, (4.20) is obtained by density of the set {∇ωb : b ∈ C1(X)} in
L2

pot(X, P) (by definition).

4.3. Step 3. Convergence of energies

Let Aε be defined in (4.21) and A be the function given in Proposition 4.2. Define the
vector-valued function

U0(x, ω) = (∇x′u0(x′) + u1(x, ω), v0(x, ω)), x ∈ Ω, ω ∈X (4.23)

with v0 defined as in (4.16). At this step, we prove that

lim
ε→0

∫
Ω

Aε · ∇εuε dx+
∫
Ω

u2
ε dλ

ε
ω̃(x)

=
∫
Ω×X

A(x, ω) · U0(x, ω) dµ(ω) dx+ 2P(X)
∫
Σ

u0(x′)2 dx′. (4.24)

To do so, we take v = uε in (3.3) and we pass to the limit making use of (3.5) and the fact that

f(x) · ρ−1(Tx′/εω̃) 2·e−−−→ f(x) · ρ−1(ω) with respect to λεω̃
(we apply Theorem 2.4). Hence,

lim
ε→0

∫
Ω

Aε · ∇εuε dx+
∫
Ω

u2
ε dλ

ε
ω̃(x) = lim

ε→0

∫
Ω

f(x) · uε(x) dx

=
∫
Ω

f(x) · u0(x′) dx. (4.25)
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Let ϕ be a function in C∞0 (Σ). If we take v(x) = ϕ(x′) in (3.3) and we pass to the two-scale
limit as before, by virtue of (3.5) and (4.18) it follows that∫

Ω

f(x) · ϕ(x′) dx=
∫
Ω×X

A′(x, ω) · ∇ϕ(x′) dµ(ω) dx+ 2P(X)
∫
Σ

u0(x′) · ϕ(x′) dx′.

(4.26)

A density argument yields∫
Ω

f(x) · u0(x′) dx =
∫
Ω×X

A′(x, ω) · ∇u0(x′) dµ(ω) dx+ 2P(X)
∫
Σ

u0(x′)2 dx′. (4.27)

Now, taking into account (4.19) and (4.20), it turns out that∫
Ω×X

A′(x, ω) · ∇u0(x′) dµ(ω) dx=
∫
Ω×X

A(x, ω) · U0(x, ω) dµ(ω) dx. (4.28)

Applying (4.27) and (4.28) in (4.25) gives us the convergence of energies (4.24).

4.4. Step 4. Identification of the function A

This step aims at showing that

A(x, ω) = a(ω, U0(x, ω)) a.e. in Ω×X, (4.29)

and the tool will be the well-known Minti argument. Let η(x, ω) ∈RN , the space R being
defined by (2.19), and let us denote ηε(x) = η(x, Tx′/εω̃). Since R⊂ B2(P), by Corollary 2.1
and Lemma 4.2,

ηε(x) 2·e−−−→ η(x, ω) with respect to λεω̃, (4.30)

ηε(x) · ρ(Tx′/εω̃) 2·e−−−→ η(x, ω) · ρ(ω) with respect to [λεω̃]−1. (4.31)

According to the monotonicity condition (H4), we have∫
Ω

[Aε(x)− aεω̃(x′, ηε)] · (∇εuε − ηε) dx> 0 (4.32)

and equivalently∫
Ω

Aε · ∇εuε dx−
∫
Ω

Aε · ηε dx−
∫
Ω

aεω̃(x′, ηε) · (∇εuε − ηε) dx> 0. (4.33)

Letting ε→ 0 in the second integral term of the left-hand side of (4.33) and by virtue of (4.18)
and (4.31), we get

lim
ε→0

∫
Ω

Aε(x) · ηε(x) dx = lim
ε→0

∫
Ω

Aε(x) · ηε(x) · ρ(Tx′/εω̃) d[λεω̃]−1(x)

=
∫
Ω×X

A(x, ω) · η(x, ω) dµ(ω) dx. (4.34)

On the other hand, we want to prove that the third integral term of the left-hand side of
inequality (4.33) converges toward∫

Ω×X
a(ω, η(x, ω)) · (U0(x, ω)− η(x, ω)) dµ(ω) dx (4.35)

as ε→ 0. To do so, set
v(x, ω) = a(ω, η(x, ω)), x ∈ Ω, ω ∈X.

Then v ∈ B2(P−1). Indeed, the conditions (H1) and (H3) on a and the continuity of η provide
immediately (a) and (b) in Definition 2.5. Moreover, since a(ω, ·) is continuous and satisfies
(H2) and η(·, ω) is continuous on Ω (it vanishes outside Ω), the supx∈Ω |v(x, ω)| is attained.
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Therefore, making use of (1.9), there exists a point x0 ∈ Ω such that

sup
x∈Ω
|v(x, ω)|= |v(x0, ω)|= |a(ω, η(x0, ω))|6 c3 ρ(ω) · (1 + |η(x0, ω)|) ∈ L2(X, P−1)

(since ρ ∈ L2(X, P−1) and η is bounded). So, v ∈ B2(P−1) and hence, by Corollary 2.1 and
Lemma 4.2,

aεω̃(x′, ηε(x)) · ρ−1(Tx′/εω̃) 2·e−−−→ a(ω, η(x, ω)) · ρ−1(ω) with respect to λεω̃.

Since, by (3.6) and (4.16),

∇εuε
2·e
⇀U0(x, ω) with respect to λεω̃,

the last two results together with (4.30) and the fact that dx= ρ−1(Tx′/εω̃) dλεω̃(x)
provide (4.35). However, as we know by (4.24) and Theorem 2.5 applied to the sequence (uε),
which by (3.5) weakly two-scale converges to u0 with respect to λεω̃,

lim sup
ε→0

∫
Ω

Aε · ∇εuε dx 6
∫
Ω×X

A(x, ω) · U0(x, ω) dµ(ω) dx

+ 2P(X)
∫
Σ

u0(x′)2 dx′ − lim inf
ε→0

∫
Ω

u2
ε dλ

ε
ω̃(x)

6
∫
Ω×X

A(x, ω) · U0(x, ω) dµ(ω) dx. (4.36)

Now, if we pass to the limit superior in inequality (4.33) whenever ε→ 0 making use
of (4.34)–(4.36), we get as a result∫

Ω×X
[A(x, ω)− a(ω, η(x, ω))] · (U0(x, ω)− η(x, ω)) dµ(ω) dx> 0 (4.37)

for every function η(x, ω) ∈RN . But, since C∞0 (Ω) is dense in L2(Ω) and C1(X) is dense
in L2(X, P), we have also the density of R in L2(Ω×X). So, there exists a sequence of
functions (Uk)k in RN such that Uk→ U0 strongly in [L2(Ω×X)]N as k→∞. If we take
η(x, ω) = Uk(x, ω)− tψ(x, ω) in (4.37), where ψ(x, ω) = φ(x) · b(ω), φ ∈ [C∞0 (Ω)]N , b ∈ C1(X)
and t > 0, and, by the continuity of the function a with respect to its variable ξ (by
hypothesis (H3)), firstly we pass to the limit as k→+∞ in (4.37), then we divide the whole
by t and we pass to the limit as t→ 0. This procedure leads to∫

Ω×X
[A(x, ω)− a(ω, U0(x, ω))] · φ(x) · b(ω) dµ(ω) dx> 0

for every φ ∈ [C∞0 (Ω)]N and b ∈ C1(X), which provides that A(x, ω) = a(ω, U0(x, ω)) almost
everywhere in Ω×X and so proves (4.29).

4.5. Step 5. Homogenized and auxiliary equations

To finish the proof of Theorem 3.1, it remains to verify the equations satisfied by u0 and u1.
At first, we end the proof of (3.7) by claiming that

v0(x, ω) = 0, a.e. x ∈ Ω and ω ∈X. (4.38)

Indeed, condition (H2) implies that

aN (ω,∇u0(x′) + u1(x, ω), 0) = 0 (4.39)

and (4.19), (4.23) and (4.29) mean that

aN (ω,∇u0(x′) + u1(x, ω), v0(x, ω)) = 0. (4.40)
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So, taking ξ1 = (∇u0(x′) + u1(x, ω), v0(x, ω)) and ξ2 = (∇u0(x′) + u1(x, ω), 0) in condition
(H4) and making use of (4.39) and (4.40), it follows that

0 > Cρ(ω)(1 + |∇u0(x′) + u1(x, ω)|+ |v0(x, ω)|)2−β · |v0(x, ω)|β ,

which gives (4.38). Now, by (4.20), (4.23) and (4.29) we see immediately that the function u1

solves equation (3.10) and, by (3.9), we have

B(∇x′u0(x′)) =
∫
]−1,1[×X

a′(ω, U0(x, ω)) dµ(ω) dxN

=
∫
]−1,1[×X

A′(x, ω) dµ(ω) dxN .

Now, integrating (4.26) by parts and by (3.11), it follows directly that u0 is the variational
solution of the homogenized system (3.8) and the proof of Theorem 3.1 is then accomplished.
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