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Dimension reduction and homogenization of random degenerate
operators. Part I

Abdelaziz Ait Moussa and Loubna Zlaiji

ABSTRACT

Our aim in this paper is to identify the limit behavior of the solutions of random degenerate
equations of the form —div Ac(z, VU.) + pg,(z')U. = F with mixed boundary conditions on €.
whenever € — 0, where Q. is an N-dimensional thin domain with a small thickness h(¢), pS,(x') =
pw (2’ /€), where p,, is the realization of a random function p(w), and A (2, §) = a(Ty jew, &), the
map a(w, £) being measurable in w and satisfying degenerated structure conditions with weight
p in &. As usual in dimension reduction problems, we focus on the rescaled equations and we
prove that under the condition h(e)/e — 0, the sequence of solutions of them converges to a
limit o, where uo is the solution of an (N — 1)-dimensional limit problem with homogenized
and auxiliary equations.

1. Introduction

The present work is concerned with stationary heat diffusion problems taking general form,
which cover in particular the following Poisson equation:

—div(pS,(2")VU.) + p5,(2")U. =F in Q. (1.1)
with mixed boundary data in a microscopically heterogeneous thin plate filling the cylinder
Q. =Xx] — h(e), h(e)],

¥ being an open bounded connected subset of RV =1, N > 2, with Lipchitz boundary 9%, and
h(e) being a real positive number which goes to zero as € — 0 and such that

Lmtim P8 g, (1.2)
e—0 €

The local characteristics of the body are represented by the randomly rapidly oscillating

function
/

o5 (@) = pu () ¥ RV
P being a weight, that is, a function that allows it to approach zero or infinity. Here, the
variable w belongs to a probability space (X, F, 1) and the function F' is defined on (..

In the homogenization context, such problems were considered by Engstrom et al. [15], where
the authors have investigated random nonlinear monotone operators in divergence form which
satisfy weighted structure conditions by assuming that the function p,, fulfils some uniform
integrability condition of Muckenhoupt type [15, Definition 2.2], and they used a compensated
compactness lemma adapted to the framework of weighted spaces.

In this paper, we consider more precisely the following boundary value problem:

—div a(Ty jew, VU:) + pg,(2")U. = F in Q,
Us,., =0, a(Tyow, VU.) (1.3)

IpLas ’ VE‘(BQE\FI;“) =0,
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2 A. A. MOUSSA AND L. ZLAIJI

where z = (2/, xn) = (21, ...,2Nn_1, Tx) Will denote a generic point of R, v, is the unitary
outward normal vector to 2., 92 is the boundary of €. and

T = 9% x [~h(e), h(e)]

its lateral boundary, T. is a dynamical system associated to the probability space (X, F, ),
that is, a group of measurable maps T, : X — X such that:

~ Togny =To, T,y 21, 20 €ERNTL Ty = 1d;

— u((T);1A) = u(A) for every z e RN"1 A e F;

~ T.(w) is a measurable map from (RN¥~!x X, B x F) to (X, F), where B is the Borel

o-algebra on RV 1

and we assume furthermore that X is a compact metric space, F is a Borel o-algebra on X
and T, is a map from RV~ x X to X continuous in this metric, and also that T, is ergodic,
that is, for every subset A € F,

T.(A)=A YzeRV"'= y(A)=0or u(A)=1.
In the following, for a random field g : X — R and a fixed w € X, the function
9u(2) = g(Tow), zeRN7!

will be called a realization of g. Then we will suppose that the weight p,, is a realization of a
random field p: X — R which is a measurable function such that p > 0 almost surely and

pe L' (X,p), pteLl'(X,p). (1.4)

By Fubini’s theorem, for almost every w € X, p,(z) = p(T,w) is such that p,(z) >0 almost
everywhere on RV~ and

P € Lie R, p5t € Li (RVTY). (1.5)

The vector-valued function a = (a/,an) = (a,...,an_1,an): X x RYN = RN satisfies the
random degenerate structure conditions:

(Hy) for every £ € RV a(-, ) is F—measurable;

(Hs) for almost every w € X, for every ¢ € RV—1,

a'(w,0)=0=an(w,&,0); (1.6)
(Hs) there exist constants ¢c; > 0 and 0 < o < 1 such that
la(w, &1) — a(w, &) < cip(W)(1 + [&1] + [€2]) '~ ]&r — & (1.7)

for almost every w € X, for every &, & € RV,
(Hy) there exist constants ¢z >0 and 2 < 8 < oo such that

(a(w, &) = alw, &)) - (&1 — &) = c2p() (1 + [&a] + [€2)* 711 — &l (1.8)

for almost every w € X, for every &, & € RV,
Condition (Hs) implies in particular that

a(w, 0) = (a’(w, 0), ay(w, 0)) = 0.

Furthermore, as consequences of conditions (Hs)—(Hy) there are constants cs, ¢4, ¢c5 > 0 such
that the following growth condition holds:

la(w, §)| < esp(w)(1 +[£]), (1.9)

and also the coercivity condition

a(w, €) - € = csp(w)([€]* — ca)- (1.10)

We are interested in the asymptotic behavior of the solutions of the original problem (1.3)
whenever the parameter of thickness of the plate h(¢) and the one of oscillation of
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RANDOM DEGENERATE OPERATORS 3

degeneracy ¢ go simultaneously to zero. Actually, we will consider only the case described
in (1.2) to simplify analysis, and the cases 0 <l < oo and [ =oc0 will be addressed in a
forthcoming paper (there is usually a distinction between the three cases).

As usual in the study of structures with thin thickness, it is better to work in a domain with
fixed thickness by rescaling the original problem (1.3) (see for example [7, 17]), which permits
us to simplify the derivation of a priori estimates. The resulting problem takes the form

{—divsa(Tx//Ew, Veue) + p5 (a2 )ue = f in Q, (111)
Ue ., =0, a(Ty jew, Veue) - Y] panrlaty = 0,
where

Q=Xx]-1,+1] (1.12)

with boundary 0f2 and lateral boundary
rlat — 9% x [-1,1],

v being the unitary outward normal vector to €2, and

N-1
div. A — L OAN
1V ;(a{ﬁl) +h(5) (9:17]\77 ( 1)1<’L<N
being any function for which the weak derivatives here make sense,

) o 1 9 N
VE = (axl, ey axNil, h(g) 8xN) and f el (Q)

From now on, our purpose will be to characterize the asymptotic behavior of the sequence
of solutions of (1.11) as ¢ — 0 and to identify the limiting equations by means of the
stochastic version of the singular measure method available in Zhikov and Piatnitski [28]
(see [9, 20, 24, 25] for the periodic case), taking advantage of this approach to make the
so-called Muckenhoupt condition not necessary (as it is known in the periodic setting). In this
context, we extend some properties from the linear stochastic case (cf. [28]) and those from
the monotone periodic case (cf. [20]) to pass to the monotone stochastic one.

The other subject of this work consists in coupling simultaneously a dimension reduction
analysis together with the stochastic homogenization process (only the latter is considered
in [15]), which will be more complicated. It is proved that the sequence (u.) of solutions
of (1.11) converges in a sense which will be described later to a function uy which solves the
following homogenized limit problem:

—divy B(Vyug) +2P(X)up =g in X,
ug =0 on 9%,

(1.13)

where

a d , oo
Vg;’— (axl,...,ale), lew/— ; a$i7

the function B(V,ug) having been determined (see equations (3.9) and (3.10)), P is the
measure on X defined as follows:

dP(w) = plw) du(w) (1.14)

and ¢ is the function defined in (3.11). This means that the dimension reduction occurs in the
limit problem (compare with problem (1.11), which is N dimensional). Moreover, we obtain an
auxiliary problem in which the probability space plays the role of the cell (see equation (3.10)).

For various dimension reduction problems, see for example [6, 7, 16—18], and for the
homogenization of partial differential equations in the random context, see for example [4,
5, 11, 12, 27, 28] and the references therein.
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The outline of the paper is the following: in Section 2, some definitions and preliminary
results are formulated, namely, we discuss the notion of derivation in the stochastic sense, we
invoke some useful ergodic theorems and we introduce the stochastic two-scale convergence with
respect to random measures. The principal theorem of the paper will be given in Section 3, and
the final section will contain the proof through several steps. In Step 1 we derive some a priori
estimates and we use them in Step 2 to get compactness results by means of the stochastic
two-scale convergence. In Step 3 we prove the convergence of energies and make use of it in
Step 4 together with a Minty argument. Step 5 will accomplish the proof of Theorem 3.1 by
an identification of the homogenized and auxiliary problems.

2. Preliminaries

The purpose of this section is to state some concepts and results that are used throughout
this work. Some of these results are given without proofs as they can be readily found in the
references given below.

2.1. Lebesgue and Sobolev spaces with respect to a measure defined on R?

Let d > 2, G be a bounded domain in R? with Lipchitz boundary and A be a measure in R%.
We denote by L?(G, \) the set of functions defined by

L*(G,\) := {f :G — R f is measurable and J |f]? dA\(z) < oo}. (2.1)
G

We give now a brief review of Sobolev spaces with respect to a measure; for more details the
reader can see the Zhikov bibliography [23—26, 28] and also Bouchitté et al. [8—10].

DEFINITION 2.1. Let S be a closed subset of OG with Lipchitz boundary. We say that
u € L?(G, \) belongs to H*(G, S, \) and z € L?(G, \)? is a gradient of this function if there
exist a sequence of functions uy € C3°(G\S) such that

ug — u strongly in L*(G, \), (2.2)

Vuy, — z strongly in L*(G, \)? (2.3)
as k — +o0o. We shall denote a gradient of u by Vu. The space H(G, S, \) will be the set of
pairs (u, z) endowed with the natural norm

[ (u, Z)”%{(G,S,A) = ”UH%Z(G,)\) + HZH%Z(G,A)GI'

In other words, it is the closure of the set of vector-valued functions {(¢, V) : ¢ € C5°(G\S)}
in the norm of L2(G, \)4+1.

REMARK 2.1. The gradient of a function u € L?(G, \) is not necessarily unique. It is defined
to within the set of gradients of the zero function. Nevertheless, there are exceptions. For
instance, if the measure A is absolutely continuous with respect to the Lebesgue measure,
that is, d\(z) = w(z) dr, where w >0 almost everywhere in R? with w, w™! € L*(G), then
HYG, S,\) c WH(G) and any gradient of a function u€ H'(G,S,\) in the sense of
Definition 2.1 coincides with the usual gradient in the W' sense. To show this, let us take
a sequence of functions uy € C§°(G\S) such that (2.2) and (2.3) hold true for u € H*(G, S, \)
and a gradient z; because of the Holder inequality,

JG i — ul do < (JG w! dx) v (L g — uf? dA(x)) v (2.4)
LN (2.5)
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and, in the same manner, we obtain that fG |Vuy — z| dz LN Hence, we have proved that
|lur — ullwr1(q) — 0 as k — co. The uniqueness of z follows as the gradient of u in the W?
sense. This is important if one needs H'(G, S, \) to be a Banach space, equipped with the
norm

||u||%11(G,S,)\) = ||UH2L2(G,A) + ||VUH%2(G,>\)<1'

Moreover, the separability and reflexivity are also fulfilled for the space H'(G, S, ) in that
particular case, and can be proved exactly as for the classical Sobolev spaces.

2.2. The derivation in a stochastic sense

For the remainder of this section, (X, F, u) is the probability space with dynamical system T,
as introduced in the beginning of Section 1 but with z € R%, d > 2, and P the measure defined
in (1.14).

In the stochastic homogenization framework, the probability space X may be compared with
the periodicity cell Y in the periodic homogenization and, likewise, the derivation with respect
to w € X plays the same role as for a point y of Y. So, also here it is fundamental that the
differentiation with respect to a variable w € X makes sense (for more about the stochastic
differentiation, see [3, 12, 28]). Let us consider the set of continuous functions defined on X
such that the limits

(O1) ) = lim “Toes2) 1)
exist for every w € X and i € {1,2,...,d} and are continuous on X, where (e, ..., eq) is the
Euclidean canonical basis of R?. We denote this set by C1(X) and we use the notation

un = (aiu)1gi<d.

REMARK 2.2. The set C'(X) is dense in L?(X, P), since C(X) is dense in L?(X, P) and,
for every ¢ € C(X), we take the family of functions

Pe=ot| K(j) (L) dz, (2.

where K is a C5°-function with integral equal to 1. The properties of the function ¢° are derived
from the continuity of the dynamical system T,.

DEFINITION 2.2. Lgot(X, P) is the space of potential vectors defined to be the closure of
the set {V,b:beCH(X)} in L2(X, P)<
2.3. Ergodic theorems
Let g € LL (R?). The number M{g} is called the mean value of g if

loc
. 1 z
1y 1 J o(2) 2= a0t
for any Lebesgue measurable bounded set K € R?; here and in all the following, |K| stands for

the Lebesgue measure of K.
Let us now recall the well-known Birkhoff ergodic theorem (see [27]).

THEOREM 2.1. Let g € LP(X, u), p = 1. Then, for almost all w € X, the realization g(T,w)
possesses a mean value in the following sense:

9(T.jew) = M{g(T.w)} weakly in L}, (2.7)

loc®
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Moreover, the mean value M{g(T,w)}, considered as a function of w € X, is invariant and

()= | g du=| M{g(T)} dp.
b'e X
Since the system T, is ergodic,
M{g(T,w)} =(g) for almost allw € X.
There is also a generalized version of the Birkhoff ergodic theorem in terms of stationary

random measures with finite intensity (see [14] and [28, Theorem 1.1}).
Let 0 : X — R be a measurable function such that ¢ > 0 almost surely in X and

ccLMX,u), o teLlX,p). (2.8)
For every w € X, let us consider the random function defined for every z € R? by
o0u(2) =0(T.w), (2.9)
and define the measures F' and 7, respectively on X and R? by
dF(w) = o(w) dp(w), (2.10)
dr,(2) = 0,(2) dz. (2.11)

REMARK 2.3. The measure F is called the Palm measure associated to the random measure
T.- Conversely, the last one is considered as a realization of the first. Palm theory is concerned
in particular with stationary random measures; a family of Radon measures p,, on R?, w € X,
is called a stationary random measure if for every o € C5°(R?) the random function

Fol) = | oty = 2) duot)
R
is measurable and stationary, that is,

F,(z,w) =F,(T,w), (2.12)

where F(w) = [pa ©(y) dpe(y). In general, a stationary random measure f,, and its Palm
measure P are related by the Campbell formula

JX JRd f(z, Tow) dp,(2) dp(w) :J

J f(z,w) dP(w) dz (2.13)
Rd J X

for all functions f = f(z,w) which are integrable with respect to dz x P or non-negative
measurable. A detailed exposition of all these notions is given in [28].

THEOREM 2.2 (The ergodic theorem). We have
1
lim —— J 9(T.0) drz(2) :J g(w) dF(w), a.s. with respect to p, (2.14)
t—oo t4]A] Ji4 X
for all bounded Borel sets A CRY, |A| >0, and all g € L' (X, F).

2.4. Stochastic two-scale convergence with respect to random measures

The concept of two-scale convergence was introduced firstly in the periodic setting by
Nguetseng [21] and developed by Allaire (see [1, 2]; see also [19]). An extension of this method
in the stochastic framework has been elaborated by Bourgeat et al. [12] and generalized in
spaces with random measures by Zhikov and Piatnitski [28]. The present paragraph will be
formulated by collecting some results from [28] and completing them by adapting others from
the periodic two-scale convergence setting [19, 20].
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The two-scale convergence associated to a random measure as exploited in [28] depends
on the notion of typical trajectory, which is related to the validity of the ergodic theorem
(Theorem 2.2). A point w € X is said to be typical if (2.14) holds at this point for all g € C(X).
The set of typical points will be denoted by X and it satisfies (X) = 1. As pointed out in [28],
every function g € L'(X, F) can be changed on a set of F-measure zero in such a way as to be
defined on X, and (2.14) holds for all @ € X and then almost surely in X. So, in what follows,
we identify functions belonging to L?(X, F) with modifications of them for which (2.14) holds.

Let € > 0 and 0 be the function defined on RY~! by

where o, is the random function defined in (2.9), and 75 and v, be the measures defined
respectively on R¥~1 and RN by

dri(z) =05 (2) dz, (2.15)

vt (z) =dri(2') @ doy. (2.16)

Let G be a Lipchitz domain in RY and @ € X. A family of functions (ve) in L3(G, vg) is
bounded if

lim sup JG lve|? dvg (z) < +oo0. (2.17)

DEFINITION 2.3. Let (v.) be a bounded sequence of functions in L?(G, v£). Then we say

that v. two-scale converges weakly to a limit v € L?(G x X, dz x dF(w)), and we write v, 2y
if
lim J ve(2)o(2)0(Ty /@) AV, () = J v(z, w)p(z)b(w) dF (w) dz (2.18)
=0 g GxX

for every ¢ € C3°(G) and b € C1(X). If (V.) is a bounded sequence of functions in L?(G, vg)V
with Vo =(V%), i=1,..., N, then we say that V. two-scale converges weakly to a limit

V=V eL*G x X,dr x dF(w))", and we WriteVEQ—'\eVifV;agVi for every i=1,...,N.

REMARK 2.4. In the above definition, we can take any test function ¢(z, w) € R, where R
is the space of functions defined as

R:= {qb(x, w)= Z @;j(z)b;(w) : J finite, p; € C°(G), b; € CH(X) Vj € J}, (2.19)
jeJ
endowed with the norm

[6llr = sup [¢(z,w)|.
GxX

We can also define strong two-scale convergence in the variable space L(G, vg).

DEFINITION 2.4. We say that a bounded sequence (v.) in L*(G, vS) two-scale converges
strongly to a function v € L2(G x X) as € — 0 and we denote it by v, 2y if

gi_r)r(l) J'G Ve () - we(x) dvg(z) = JGXX v(z,w) - w(z,w) dF(w) de (2.20)

for every sequence (w,) for which we have weak two-scale convergence to w(z, w) in L?(G, vg).

If (V) is a bounded sequence of functions in L*(G,vg)N with V. = (V2), i=1,..., N, then
we say that V. two-scale converges strongly to a limit V = (V%) € L?(G x X, dx x dF(w))",
andwewriteVEQ;e»VifV;LVi for every i=1,..., N.
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Now, we want to incorporate a more general class of test functions in Definition 2.3. Namely,
the set By in the following definition.

DEFINITION 2.5. We say that a function v: G x X — R belongs to the set B(F) if:
(a) the function x — v(z,w) is continuous for p-almost every w € X;
(b) the function w — v(z, w) is F-measurable for every = € G;
(c) the function w — sup,cq [v(z, w)| is in L' (X, F).
We say that a function v:G x X — R belongs to the set Bo(F) if veB(F) and w—
sup,eq [v(z, w)| € L2(X, F).

To this aim, the ergodic theorem (Theorem 2.2) must be extended as follows.

THEOREM 2.3. Let v € B(F). Then, almost surely in X,

lim J v(x, Ty @) dvg () :J v(z,w) dF(w) dz. (2.21)
=0l)a GxX

Proof. Let w € X and set
bo(z,2) =v(z, T,w), G, zcRN7L

It is clear by assertions (a) and (b) satisfied by the function v and the measurability of the
map z € (RVN=1 B) — T,w € (X, F) that b, (-, 2) is continuous for almost every z € R¥~! and
b, (x, ) is measurable for every x € G, which asserts that the function b, is of Caratheodory
type and the measurability of the function x +— b, (z, 2’ /) is then ensured. Now, we divide the
remaining of the proof into two steps.

Step 1. We prove (2.21) for step functions. Let O = [0, 1[¥ and fix an integer n € N. For every
ke ZN, we set O, =1/n(0+ k) and we consider the following partition of RY:

RN = | | O (2.22)
kezZN

Let v, : G x X — R be a step function defined by

op (2, w) = Z (g, w)Xg(x),

{k:0,,xCG}

where x, is an arbitrary point in O, ; and Xy (z) = Ao, , (z). Then, for every @ € X, we have

lim J Vn (@, Ty @) dvg (z) :J vp (2, w) dF(w) dz. (2.23)
=0le GxX

Indeed, the condition (c) which v satisfies implies that v(xy, -) € L*(X, F) for each x;, € G. So,
by the change of scale z = 2’ /¢ and the ergodic theorem (Theorem 2.2),

lim J O (2, Ty je@) dvg (x) = \DQ’M lir%J v(xg, Ty )e) dr5(z")
Ok ’ £— o’

e—0
n,k

1
= |0, k| lim 7J v(zg, T,0) d15(2)
=0 |(1/)0;, 4 1/e)a, ,
— (Bl | vtan, ) dF ()
X

— Lk JX Un(z, w) dF (w) da, (2.24)
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where by notation, if A C RV,
A ={2 eRN7L: (2, zy) € A),
AN ={zy €R: (2, zn) € A}.
We get (2.23) by summing in (2.24) over the set of numbers {k:0,,; C G} (which is finite).

Step 2. We write

lim J v(z, Ty /ew) dvg(x)
G

e—0
= lir%J (v(x, Ty )e@) — v (2, Ty /@) dv ()
+ lim J O (2, Ty /@) dv (z) —J' vn (2, w) dF(w) dz
e=0Ja GxX

+ J (vn(z, w) —v(z,w)) dF (w) dz
GxX

+ J v(z,w)dF(w)de =L + Ly + Ly + Ly, (2.25)
GxX

where, for each ¢, L and L, are the terms corresponding to each line of the right-hand side
of (2.25). According to Step 1,

Ly =0. (2.26)
In what concerns the terms LT and L%, let us define a function C™ : X — R by

Cn(w) = sup |’U(CU, w) - Un(l', w)‘
z€G

Since the function v(z, w) is continuous in z for almost every w € X, C™(w) — 0 for almost
every w € X. Moreover, C"(w) < 2sup,cq [v(z,w)| € L' (X, F). So, applying the Lebesgue
dominated convergence theorem,

C™ — 0 strongly in L' (X, F).
On the one hand, we have
L8] < |G| JX O™ (@) dF (w) — 0 (2.27)
and, on the other, like in (2.24), by the ergodic theorem (Theorem 2.2),
|L?| < lim sup JG C"(Tw//gdj) dv(x)
= |G| J C"(w) dF(w) — 0, (2.28)
(2.21) is deduced by gathering (2.25)7(2.)2{8). O

REMARK 2.5. If v € B(F), then, for every ¢ € C°(G) and b € C*(X), the function (z, w) —
v(z,w) - p(z) - b(w) € B(F). So, Theorem 2.3 implies that almost surely in X,
lim J v(x, Ty ye@) - () - 0(Ty @) dvs () = J v(z,w) - p(z) b(w) dF(w)de  (2.29)
G GxX

e—0

and then the sequence v(z, T,/ /.@) weakly two-scale converges to v.

A consequence of the strong two-scale convergence is the convergence of the norms

ii—% JG |ve(z)|? dvg (z) = J'GXX |v(x, w)|*dF(w) dz.
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In fact, this relation can be used instead of (2.20) in the definition of strong two-scale
convergence. This is shown by the following theorem.

THEOREM 2.4. The weak two-scale convergence of the sequence (v.) in L*(G,vg) to
v € L?(G x X) together with

lim J lve (2)|? dvg (z) = J lv(z, w)|? dF (w) dz (2.30)
=0 Ja GxX
is equivalent to strong two-scale convergence of (v¢) to v.

The proof of this theorem is similar to that of [20, Theorem 5], and uses the following
theorem.

THEOREM 2.5. Let (v:) be a sequence in L?(G, vE) which two-scale converges weakly to
v € L*(G x X). Then

lim inf [vell2(Gvg) 2 IVllL2(axx)-

Proof. Let (¢.,) be a sequence in R (R defined as in (2.19)) such that ¢,, converges to v
strongly in L?(G x X) (by density of R in L?(G x X)). The Young inequality for real numbers
a and b states that ab < |al?/2 + |b]?/2, which implies that

J 0|2 duE () >2J 02(@) - (2, T 1e3) 5 (@) —J (G, Tor o) A5 ().
G G G
By passing to the limit in e, we get

lim iélf ||v5||%2(G ey = QJ v(x, w) -+ G (1, w) dF (W) dz
e— Yo

GxX

_ J (b, ) ? dF(w) d.
GxX
Hence, by passing to the limit in m, we obtain

lo(, w)|? dF (w) dz — J lo(z, w)|? dF (w) da

lim inf [[v2]22 e ) > QJ
e—0 o GxX

GxX

= [0l 2 axx)- U

In the next proof and also in the others throughout this paper, C' will stand for any constant
independent of € and it may be different from line to line.

Proof of Theorem 2.4. (i) We start by proving that weak two-scale convergence together
with (2.30) imply strong two-scale convergence. Let (¢,,) be a sequence in R such that ¢,
converges to v strongly in L?(G x X) and (w.) be a sequence in L?(G, vg) which two-scale
converges weakly to a function w € L?(G x X). Then

lim lim JG G (2, Ty /@) - we () dvg () :J v(z,w)  w(r,w) dF(w) dz. (2.31)

m—oo e—0 GxX
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However,

J ve(x) - we(x) dvg () — J v(z,w) - w(z,w) dF (w) dz
G GxX

<

j (02 () — o, Tor )] - we () v ()
G

+

J Gon (1, T 1o3) - we() v ()
G

- J v(z,w) - w(z,w) dF(w) dz|. (2.32)
GxX
Equations (2.31) and (2.32) imply that
lim sup J Ve () - we () dvs (z) — J v(z,w)  w(z, w) dF(w) dz
e—0 G GxX
< lim sup lim sup U [Ve(x) — (2, Ty /o ©)] - we () dVE (2)]. (2.33)
m— o0 e—0 G

By this last result, it follows that to get (2.20) it is sufficient to prove that

lim sup lim sup J (Ve () = (2, Ty ) @)] - we () dvg (2)| = 0. (2.34)

m— o0 e—0 G

The Holder inequality and the fact that each weakly two-scale convergent sequence is bounded
imply

j (02 (&) — o (2, Tor o)) - we () d
G

1/2 1/2
< (| 1) - omte T ag) - x (| poso aveio))
G G
< CHUE(m) - (bm(mv Tx’/EQ)HLz(G,UEy (2.35)
The triangle inequality gives
H’UE(IE) - d)m(x, ,111’/&‘&})H2 < 2”/05”2 + 2”¢m($, TJ,//ELD)H2 - HUE(x) + d’m(l', TJ;’/E‘:})”27
where all norms are the usual norm in L?(G, v5). However, since ¢,, € B(F) and by Remark 2.5,

~\ 2-€
¢7n($7 Ta;’/ew) = Om-

This, together with Remark 2.4, yield

lim, pm (@, Tt @) L2(G,02) = |6m (T, W) L2(@x x)- (2.36)
Therefore, thanks to (2.30), (2.36) and Theorem 2.5 applied to the sequence v.(z)+
Gm(x, Ty /), which two-scale converges weakly to v + ¢y, it follows that

lim sup Jve (@) — G (@, Tor )30

e—0
< 2||'U||2L2(Gxx) + 2”¢m”%2(G><X) —|lv+ ¢m||%2(G><X)' (2.37)

Passing to the limit m — oo in (2.37) and taking into account that ¢, converges to v strongly
in L?(G x X), we obtain
lim sup lim sup [|vz(2) = ¢ (2, Ty /-@)||> = 0. (2.38)
m— oo e—0
We deduce (2.34) by letting € — 0 and m — oo in (2.35) and making use of (2.38).
(ii) Conversely, if a sequence v. two-scale converges strongly to v(z, w), then taking w,(x) =
o(x) - b(Tp /ew) and w(z, w) = @(z) - b(w) in (2.20), where p € C°(G) and be C'(X), we see
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that v, also weakly two-scale converges to v. Equation (2.30) follows directly from (2.20) by
taking v. = w, and v = w, which ends the proof of Theorem 2.4. |

Let us recall our subject, that is, to include the set B2(F) as a space of test functions in
Definition 2.3. This is done through the following corollary.

COROLLARY 2.1. If a sequence (v.) in L*(G,vE) two-scale converges weakly to v €
L?(G x X), then

Ehg})J ve () - O(x, Ty /o @) dvg () =J v(z,w) - ¢z, w) dF(w) dx (2.39)
G GxX

for all ¢ € Ba(F).
Proof. 1If ¢ € By(F), then |¢| € Bo(F), and hence |¢|? € B(F). So, by Theorem 2.3,

lim J |o(x, TI//ELD)|2 dvs(z) = J |p(z, w)|? dF () dz. (2.40)
=0 Jg GxX

Moreover, Remark 2.5 implies that ¢(x, Ty /EG)) two-scale converges weakly to ¢. Hence, taking
into account this last result together with (2.40) and applying Theorem 2.4, (2.39) follows. [J

Below are some important properties of stochastic two-scale convergence with respect to
random measures collected from [28].

PrOPOSITION 2.1. (i) For every bounded sequence (v.) in L*(G,vg), there exist a
subsequence and a function v € L>(G x X) such that the subsequence two-scale converges
to v.

(i) Let S be a closed subset of G with Lipchitz boundary and let (v.) be a sequence in
HY(G, S, vg) such that

vellzz(ag) S C(@),  [IVvelL2(guz)y < C(@). (2.41)

Then, for a subsequence
v Z€ vo(x), 2.42)
Vo 2 Vg (z) + Vi (2, w), (2.43)

where vg belongs to the space
HYG,8):={ve H'(G):v=0on S},
Vi = (v1,0) with v; € L*(G; L2, (X, F)), which is the space of measurable functions u:x €

pot
G —u(z) € L2, (X, F) such that
u(@)||r2(x.F) € L*(G), (2.44)
where L2, (X, F) is the space given in Definition 2.2 for d= N — 1.

REMARK 2.6. We may also define H!(G, S) as the closure of C5°(G\S) in H(G).

REMARK 2.7. L?*(G; L2,,(X)) is a Banach space endowed with the norm

1
2
HUHLz(G;Lgot(X,F)) = (Lz U($)||%2(X,F)dx)
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REMARK 2.8. Assertion (ii) of this proposition is nothing else than (5.12) and (5.13) in [28,
Corollary 5.1], which we can use also here since it was proved in [28, Section 8] that the measure
dr,(z) = 0(T,w) dz is non-degenerate. Let us remark also that the structure of the function V3
comes from the fact that the dynamical system T, is independent of the variable z .

3. Main result
For a fixed € > 0 and w € X, let u,, A, be the measures defined by
dps,(2') = p(Ty jew) da’, 2/ e RN 71, (3.1)
A\ (x) = dps (o)) @ dey, == (2, zn) ERY,
with p satisfying (1.4).
In the following, a weak solution of problem (1.11) is a solution of the variational formulation
find u. € H'(Q, T, \¢) such that

J ai(z’,vsus)~vsvd:p+J u5~vd/\i)(x):J fode, Yve HY(Q, T ),
Q Q Q

(3.3)

where, for a fixed ¢ >0 and w € X, the function «f, is defined for every € RV ~! and ¢ € RY
by

ag (2, §) = a(Tz/ew, €).

REMARK 3.1. As H'(Q,T'% X¢) is a reflexive Banach space (see Remark 2.1) and under
hypotheses (Hy)—(H4) we can apply the Minty—Browder theorem (see [22, Theorem 26.A,
p. 557]) to prove existence and uniqueness of the solution u. € H*(, 't \¢) of problem (3.3)
for each e >0 and w € X (see also [20, proof of Theorem 13]).

Before the statement of the main theorem, it will be convenient to notice at first that we shall
identify the space H}(X) with the space of functions u € H(Q, I''®) such that du/dzy =0,
and also that all the convergence results in the stochastic sense contained in the theorem below
are given with respect to the measure Af.

The main result is stated as follows.

THEOREM 3.1. Assume hypotheses (Hi)—(H,) and let u. be the weak solution of
problem (1.11). Then, p-almost surely in X, as e — 0,

3'&5 2.e

0 3.4
T - (3.4)
and, up to a subsequence,
ue =, (3.5)
Ve 2 vx’UO(I/) + (Z‘, w),

1 8u5 2.¢e
2¢ 3.7
h(E) Oa:N ’ ( )

where ug € H}(X) is the weak solution of the homogenized problem

—diVI/B(vz/Uo) + 2P(X)U() =g in Z, (3 8)
ug =0 on 0%. ’
Here B is given by
B(Vaug(z')) = J ap(w, Vg (z') + uy (z, w)) du(w) dey, (3.9)
]—1,1[x X
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with, by notation,
ap(w, &) :=d'(w,&,0), weX, EcRN!
and uy € L?(Q; L2 (X, P)) is the unique solution of the following equation:

pot
J (J ap(w, Verug(a') + uy (z, w)) dacN) cPp(w) du(w) =0, Voe Lgot(X, P). (3.10)
x \Jj=1,1]
The function g is defined on X as follows:
g(z") :J f(z)dzy. (3.11)
]_1>1[

REMARK 3.2. Under hypotheses (Hi)-(Hy) on the function a and by applying the
Browder—-Minty theorem, equation (3.10) admits a unique solution u;. Hence, the function
B is well defined. Its properties and the uniqueness of the solution of (3.8) can be derived as
in [20] (see Theorem 17), and so we have convergence of the whole sequence.

4. Proof of Theorem 3.1

It will be given through several steps.

4.1. Step 1. The a priori estimates
For a fixed € > 0 and w € X, define the measures [pS]71, [\5] 7! as follows:
de) (@) = p~ N (T jew) df, o' €RV, (4.1)
A @) = dlug) "M @) © doy, == (2 an) €RY, (4.2)
with p~1 defined as in (1.4), and also recall the measure \¢, given in (3.2). The main estimates

on the solution of (3.3) are contained in the following proposition.

PROPOSITION 4.1. Assume (Hy)—(Hy) and let u. be the solution of (3.3). Then, almost

surely in X,
[[tell 1 (o,mer ne) < C, (4.3)
1 || du.
PRy <G, (4.4)
h(e) || Ozn L2(22)
lla (-, Veue) lipz(a,pe)-1)v < C. (4.5)

Proof. We start by proving estimates (4.3) and (4.4). If we take v =u, in (3.3) and use
hypothesis (1.10), we get

J [[Veue|? + |ue)?] dAS (z) < J as (2, Veue) - Veue dz + J [ue|? dNS (x) + ¢4 J dXS ()
Q Q Q Q

= J frucdr+cy J dXS (). (4.6)
Q Q
The Holder inequality gives
J, 7w do <llim@y - Buclzoco (47)

Applying it again this time with respect to the measure A3,

1/2 1/2
J lue| do < (J |ue|? d)\g) . (J P (T ) dx) . (4.8)
Q Q Q
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By the change of scale z = 2’ /e and the Birkhoff theorem (Theorem 2.1) applied to the function
1

p- -, we get
lim L pH (T /e®) dz = 2 lim L p~H (T ye) da’
1
-2l g ], 7 )
= 2|3 JX pH(w) du(w) < 4-o00. (4.9)
Making use of (4.7)—(4.9), it follows that
|, 7-uedz <Ol (4.10)

As in (4.9), we have

lim J dA;(z) = 2 lim J p(Ty e@) da’
Q P

e—0 e—0
= 2|X] JX p(w) du(w) < 4oc. (4.11)
Hence, (4.6), (4.10) and (4.11) provide
J, 19l + el a3 ) < Clluelaang) + ) (4.12)

which implies necessarily (4.3) and (4.4). It remains now to estimate the function
A (2) = ag(a', Veue ().
By definition, d[Ag] 7' (z) = p !} (T -@) dz; hence, from (1.9), (4.3) and (4.4), it is
straightforward that
J, 1@ dper @) = | 4@ Pp ! (Turye) da
2
<C| W+ IV P) (L) (L) d
Q

- CJ (14 |Veoue?) dXs (z),
Q
<C,

which gives (4.5) and ends the proof of this proposition. O

4.2. Step 2. Compactness results

In the following, we suppose that the convergence results hold true for the same subsequence
(otherwise we pass to a smaller one), and to simplify we use the same notation for the sequence
and its subsequence.

Firstly, let us prove (3.4)—(3.7). We proceed by proving (3.4). Let u. be the solution of (3.3).
Then, according to (4.4) and the Holder inequality, for every function w. which two-scale
converges weakly, we have

Ou, ou,
dAE €
JQ Oz N () - we(a) Ha-TN L2(Q,08) heellzz@ag)
< Ch(e

Hence, we obtain (3.4) by taking the limit as € — 0 in the above inequality (3.5) and (3.6) are
straightforward consequences of (4.3) and assertion (ii) of Proposition 2.1 applied to vg = A%,
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and F = P, but with the function ug dependent on x5 . To show the independence with respect
to this variable, from (3.5) and applying the two-scale convergence definition to a test function
p € C(NN) and b(w) = C, where C' is a constant independent of w, we get

%) 4o [ o) 229 by ar
P(X)JQUO(JC)- prak _me ofa) - 5 = dP(w)d
— iy [ o) S )

= ~lm JQ ag;f) “p(z) dA (@), (4.13)

with P defined as in (1.14). By the Holder inequality and estimate (4.4), we obtain

Lz Zelt) Ous() | d)\f;(w)>l/2~ (L lo(z)|? d)\i;(x))l/z

Oxy Oz
< h(e) (Jﬂ () dxzos)) "

With a majoration of the function ¢ and use of (4.11), after letting ¢ — 0 in the above inequality
the right-hand side of (4.13) will be equal to zero, that is,

o)) o < (]

9p(z)
up () - dx =0 4.14
J, w522 (414)
for every ¢ € C5°(€2), which means that the function u is independent of xy. To show (3.7),
let us set
1 Ou.
= Gl 4.15
YT ) Ozn (4.15)

By virtue of (4.4), the sequence v. is bounded in L?(2, \%). Hence, by assertion (i) of
Proposition 2.1, up to a subsequence there exists a function vy € L?(G x X, dx x dP(w)) so
that

v 2€ vo(z,w)  with respect to A%. (4.16)
To complete the proof of (3.7), it remains to show that vo(x,w) =0, which is carried out in

Step 5 (see the proof of (4.38)).

REMARK 4.1. Tt can also be proved that the function u; in (3.6) is independent of xy,
using (3.7) and [28, Theorem 2.2] applied to the measure p,,(z") = p(T,w) dz’. The details of
the proof will be given in a forthcoming paper when dealing with I € ]0, +00], I defined in (1.2).

Let us set
d[P] ™ (w) = p7 () dp(w), (4.17)
the function p~! being defined as in (1.4).

PROPOSITION 4.2. Assume (Hy)—(Hy) and let u. be the solution of (3.3). Then, almost
surely in X, up to a subsequence there exists a function A= (A’, Ay) € L*(G x X, dx x
d[P]~Y(w))" such that

ag (2, Veue(z)) Z¢ A(x,w) with respect to [A\S]7 . (4.18)
Moreover, for almost every x € ) and almost every w € X,

An(z,w) =0, (4.19)
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and, for almost every ¥’ € ¥,

J Al(z,w)  b(w) du(w) dzy =0, Vbe L?)Ot(X, P). (4.20)
—1,1[x X

Before we proceed with the proof of this proposition, we need the following lemmas.

LEMMA 4.1 (Ciarlet [13, p. 37]). Let w e LP(Q2), p > 1, be such that

J w(x) - 0 v(z)de =0, YoeC>(Q) withv=0 on '™,
Q dxn

then w = 0.

Proof. Let o € Cg°(Q) and v : Q — R be the function defined by
TN

vz, zN) = Jq (', t) dt.

Then v € C°°(Q2) and v =0 on I''®t. Hence,

jG w(a) - o(@) do = | w(@): Gov(w) dz =0,

and consequently w = 0. |

LEMMA 4.2. If a function v belongs to By(P) (cf. Definition 2.5), then the function
(2, w) — v(z,w) - p(w) belongs to Bo(P~1). Likewise, if v belongs to Bo(P~1), then the function
(z,w) — v(z,w) - p~Y(w) belongs to Ba(P).

Proof. 1t is sufficient to prove the first part of this lemma. Let us set

w(z,w) =v(z,w) - p(w).

Firstly, assertions (a) and (b) of Definition 2.5 are clear for the function w. Now, it remains to
show that the function

g(w) = sup |w(z, w)|
e

belongs to L?(X, P~1), which is true because we have

J g(w)? dP~H(w) =J sup |[v(z, w)]? dP(w).
X

X z€Q

Proof of Proposition 4.2. Let us denote
Ao = (AL Acn) = al (2, Veoue(2)). (4.21)

Estimation (4.5) and assertion (i) of Proposition 2.1 ensure the existence of a subsequence
and a function A in [L?(G x X, dx x d[P]~'(w))]"¥ such that (4.18) holds true. In order to
prove (4.19), let ¢ € C*(Q) be such that ¢ =0 on I'* peC!(X) and let us take v(x) =
h(g)p(x)b(T, )-@) as a test function in (3.3), which reads as follows:

J AL [h<5>vw/¢(x)-b<Tm//€@)+h(j> (m)-Vwb<Tx//a®>} dx
Q

] A g 0() W(T0) do+1(E) | welo) oe) BT ) X5 0
Q TN Q

=h(e) | f@)-0la) ULy da. (4.22)
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Taking into account that dr=p(T,,.0)d ;] () and recalling Lemma 4.2,
Corollary 2.1, (3.5) and (4.18), we pass to the two-scale limit with respect to [AZ]~! in the first
and second integral terms in the left-hand side of (4.22), and to the two-scale limit with respect
to AS in the third integral term. For the integral term in the right-hand side of equation (4.22),
we apply the Birkhoff theorem (Theorem 2.1). As a result, we obtain

J AN(xv w)
QxX
for every b € C1(X). So, almost surely in X,
0
An(z,w)=—0¢(z)dx =0
J, Av@w)gota)

for every function ¢ € C*>°(Q) such that ¢ =0 on I'®. Therefore, (4.19) follows in view of
Lemma 4.1. As regards (4.20), we take v(x) = e¢(2')b(T, /-©) as a test function in (3.3), where
¢ €C§°(X) and b € C1(X), which entails

0 () - b(w) du(w) dz =0
TN

JQ A eV dla) - BTy o) + S(a’) - Vob(Tar o)) de
+¢ J e () - p(a’) - b(Tyr @) dAG (2)
Q

e J F(@) - $(a') - (T ) da.
Q
After letting € — 0 in the above equation as before, we get
J Al(z,w) - ¢(x') - Vyb(w) du(w) de =0
QxX
for every function ¢ € C5°(X). Consequently, almost everywhere in X,
J Al(x,w) - Vob(w) dp(w) dzy =0
]-1,1[x X

for every b€ C!(X). Hence, (4.20) is obtained by density of the set {V,b:beC*(X)} in
L?,.(X,P) (by definition).

pot

4.3. Step 3. Convergence of energies

Let A. be defined in (4.21) and A be the function given in Proposition 4.2. Define the
vector-valued function

Uo(z,w) = (Vaug(x') + ui(z,w), vo(z,w)), z€QweX (4.23)
with vy defined as in (4.16). At this step, we prove that

lim J Ae - Veue dx + J u? d)S ()
e—0 Jq Q

:J Az, w) - Up(z, w) du(w) dz + 2P(X) J ug(z')? da’. (4.24)
Ox X )

To do so, we take v = u, in (3.3) and we pass to the limit making use of (3.5) and the fact that
f(@) - p Ty )e) 2, f(z) - p~ (w) with respect to A
(we apply Theorem 2.4). Hence,

lim J Ac - Veu. do —|—J u? d)\s(z) = lim J f(x)  ue(x) do
Q Q Q

e—0 e—0

_ J F(@) - uo(a') da. (4.25)
Q
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Let ¢ be a function in C§°(X). If we take v(x) = p(2’) in (3.3) and we pass to the two-scale
limit as before, by virtue of (3.5) and (4.18) it follows that

J, 1@ olaydo= |

Az, w) - V(o) du(w) do + 2P(X) J (&) - () dar.
QxX

>
(4.26)

A density argument yields

JQ f(x) - uo(2') do = J' Al(x,w) - Vug(z") dp(w) dz + 2P(X) J ug(z)? da’. (4.27)

QxX b
Now, taking into account (4.19) and (4.20), it turns out that
J Al(z,w) - Vug(a') dp(w) de = J Az, w) - Up(z, w) du(w) dz. (4.28)
Qx X Qx X

Applying (4.27) and (4.28) in (4.25) gives us the convergence of energies (4.24).

4.4. Step 4. Identification of the function A
This step aims at showing that
A(z,w)=a(w,Up(z,w)) a.e. in Qx X, (4.29)

and the tool will be the well-known Minti argument. Let 7(z,w) € RY, the space R being
defined by (2.19), and let us denote n.(x) = n(x, T, ,.®). Since R C By(P), by Corollary 2.1
and Lemma 4.2,

2-e

Ne(x) —— n(z,w) with respect to A, (4.30)
Ne(x) - p(Tyr /) e, n(x,w) - p(w) with respect to [AS] 7 . (4.31)
According to the monotonicity condition (Hy), we have
L [Ae(2) — ag (2, me)] - (Veue —n.) dz >0 (4.32)
and equivalently
JQ A -V.u. dr — JQ A -nedx — JQ ag(z',ne) - (Veue —ne) dz > 0. (4.33)

Letting € — 0 in the second integral term of the left-hand side of (4.33) and by virtue of (4.18)
and (4.31), we get

lim J Ae(‘r) ) 775(33) dx = lim J AE(‘T) ) 775(33) 'p(Tz’/s‘:)) dp‘i’;]_1<m)
Q Q

e—0 e—0

= J Az, w) -z, w) du(w) d. (4.34)
QAxX

On the other hand, we want to prove that the third integral term of the left-hand side of
inequality (4.33) converges toward

| atwn(e.w) - o) = n(w,0) du(w) do (4.35)
Qx X
as € — 0. To do so, set

v(z, w) =a(w,n(z,w)), € welX.

Then v € Ba(P~1). Indeed, the conditions (H;) and (H3) on a and the continuity of 7 provide
immediately (a) and (b) in Definition 2.5. Moreover, since a(w, -) is continuous and satisfies
(Hz) and (-, w) is continuous on 2 (it vanishes outside ), the sup,cq |v(x, w)| is attained.
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Therefore, making use of (1.9), there exists a point zy € 2 such that

sup [v(@, )| = |v(zo, w)| = |a(w, n(wo, w))| < c5 p(w) - (1 + In(zo, w)|) € L*(X, P71

since /)E L2 X7P 1 and n is bounded). SO, A BQ P 1 and hence, by COI‘OH&I‘y 2.1 and
Lemma 42,

a5, (' 0e(2)) - p N (T )e®) = a(w, n(z,w)) - p~ (w)  with respect to S
Since, by (3.6) and (4.16),
Veue 2¢ Up(z,w) with respect to A,

the last two results together with (4.30) and the fact that du=p~ (T} ,.0)dAS(x)
provide (4.35). However, as we know by (4.24) and Theorem 2.5 applied to the sequence (u.),
which by (3.5) weakly two-scale converges to uy with respect to Ag,

lim supJ Ae - Veue dx < J Az, w) - Up(z, w) dp(w) dx
e—0 Q Qx X

+ 2P(X) J ug(x')? da’ — lim infj u? d)S ()
Q

D) e—0
< J Az, w) - Up(z, w) dp(w) da. (4.36)
Qx X

Now, if we pass to the limit superior in inequality (4.33) whenever £ — 0 making use
of (4.34)—(4.36), we get as a result

JQ 4G, 0) — aluw, nie,w)] - (Uol, @) — (e, ) du(w) de > 0 (4.37)

for every function n(z,w) € RY. But, since Cg°(Q) is dense in L2?(2) and C!(X) is dense
in L?(X,P), we have also the density of R in L?(Q x X). So, there exists a sequence of
functions (Uy)x in RY such that Uy — Uy strongly in [L?(Q x X)]V as k — oco. If we take
n(z,w) = Uk(z,w) — ty(z,w) in (4.37), where ¥(z,w) = ¢(z) - b(w), ¢ € [C°(Q)]V, be CH(X)
and ¢t >0, and, by the continuity of the function a with respect to its variable £ (by
hypothesis (Hs)), firstly we pass to the limit as k — +o00 in (4.37), then we divide the whole
by t and we pass to the limit as ¢ — 0. This procedure leads to

j A, w) — a(w, U(z, w))] - $(x) - b(w) du(w) dz >0
QxX

for every ¢ € [C5°(Q)]Y and b€ C}(X), which provides that A(x,w) = a(w, Up(x,w)) almost
everywhere in  x X and so proves (4.29).

4.5. Step 5. Homogenized and auxiliary equations

To finish the proof of Theorem 3.1, it remains to verify the equations satisfied by ug and w;.
At first, we end the proof of (3.7) by claiming that

vo(z,w)=0, ae x€QandweX. (4.38)
Indeed, condition (Hs) implies that

an (w, Vug(z') + ui(z,w),0) =0 (4.39)
and (4.19), (4.23) and (4.29) mean that
an (w, Vug(z") + uy (2, w), vo(z,w)) =0. (4.40)
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So, taking & = (Vug(2') + ui(z, w), vo(z,w)) and & = (Vue(a') + u1(z, w),0) in condition
(H,) and making use of (4.39) and (4.40), it follows that

0> Cp(w)(1 + |Vug(z') + uy(z, w)| + [vo(z, w))> 77 - |vo(z, w)|?,

which gives (4.38). Now, by (4.20), (4.23) and (4.29) we see immediately that the function u,
solves equation (3.10) and, by (3.9), we have

B(Vaup(z)) = J]—1 e a'(w, Up(z, w)) du(w) dey

= J Az, w) du(w) dzy.
]—-1,1[x X

Now, integrating (4.26) by parts and by (3.11), it follows directly that ug is the variational
solution of the homogenized system (3.8) and the proof of Theorem 3.1 is then accomplished.
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